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Abstract. Boolean contact algebras are the abstract counterpart of region–based theo-
ries of space, which date back to the early 1920s. In this paper, we survey the development
of these algebras and relevant construction and representation theorems.

1 Introduction

The origins of mereotopology go back to the works of [22] on mereology and [21]
on the calculus of individuals on the one hand, and, on the other hand, the works
of [5], [39], [27], and [45] to use regions instead of points as the basic entity of
geometry. In this “pointless geometry”, points are now second order definable as
sets of regions, similar to the representation of Boolean algebras, where points
can be recovered as sets of ultrafilters. An overview of pointless geometry can be
found in [18]. Whitehead’s addition to the mereological structures of Leśniewski
(which were, basically, complete Boolean algebras B without a smallest element)
was a “connection” (or “contact”) relation C among nonempty regions, which,
in its simplest form is a reflexive and symmetric relation satisfying an additional
extensionality axiom

(∀a, b)[((∀c)aCc =⇒ aCb) =⇒ aPb],(1)

where P is Leśniewski’s “part-of” relation. Historically, standard (models for)
mereotopological structures were collections of regular open sets of topological
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spaces 〈X, τ〉 with the standard (Whiteheadian) contact among regions defined
by

uCv ⇐⇒ cl(u) ∩ cl(v) 6= ∅.(2)

The primary example is the collection of all nonempty regular open sets of the
Euclidean plane. Other forms of connection have been studied by [4]. In a parallel
development, proximity structures have been investigated in a topological context
since the 1950’s. Proximity spaces are relational structures on families of sets that
satisfy axioms which to some extent coincide with those for the contact structures
mentioned above [16, 26, 37].

Algebraizations of mereotopological structures have been considered for some
time and in various ways, see e.g. [2, 3, 19, 21, 31, 36]. Representation results for
algebras of regular open sets of locally compact Hausdorff spaces have been given
first by [32] and [24]1. However, their represention does not result in the White-
headian contact relation, and we refer the reader to [24, 32] for details.

In the sequel, 〈B, +, ·, ∗, 0, 1〉 will denote a Boolean algebra (BA); we will
usual identify algebraic structures with their base set. For properties of BAs not
explained here we refer the reader to [20]. B+ is the set of all non-zero elements
of B. To avoid trivialities, we assume that all Boolean algebras under discussion
have at least four elements. If M ⊆ B+, we call M dense in B, if for all b ∈ B+

there is some m ∈ M such that m ≤ b.

2 Binary relations and their algebras

Relations and their algebras have been studied since the latter half of the 19th
century by [6], [28] and [33]. [38] gave a first formal introduction to the algebra of
relations; his aim was to give an algebraic semantics to first order logic – just as
Boolean algebras were an adequate algebraization of classical propositional logic.

Besides the Boolean set–theoretic connectives, natural operations on binary
relations on a set U are composition and converse, defined, respectively, as

R ◦ S = {〈x, y〉 ∈ U × U : (∃z ∈ U)xRzSy},(3)

R˘ = {〈y, x〉 : xRy}.(4)

We will usually write xRy for 〈x, y〉 ∈ R; we also set R(x) = {y ∈ U : xRy}.
The full algebra of relations on U is the structure Rel(U) = 〈2V ,∪,∩,−, ∅, V,

◦, ˘ , 1′〉, where V = U × U , and 1′ is the identity relation. A subset of Rel(U)

1 D. Vakarelov has pointed out in error in [24], and that stronger assumptions are required for the
main result to hold.
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which is closed under the distinguished operations and contains the constants
∅, V, 1′ is called an algebra of binary relations (BRA). If {Ri : i ∈ I} ⊆ Rel(U),
then 〈Ri〉i∈I is the subalgebra of Rel(U) generated by {Ri : i ∈ I}.

An (abstract) relation algebra (RA) is a structure

〈A, +, ·,−, 0, 1, ◦, ˘ , 1′〉

of type 〈2, 2, 1, 0, 0, 2, 1, 0〉 which satisfies for all a, b, c ∈ A,

1. 〈A, +, ·,−, 0, 1〉 is a Boolean algebra (BA).
2. 〈A, ◦, ˘ , 1′〉 is an involuted monoid, i.e.

(a) 〈A, ◦, 1′〉 is a semigroup with identity 1′,
(b) a˘ ˘ = a, (a ◦ b)˘ = b˘ ◦ a˘.

3. The following conditions are equivalent:

(a ◦ b) · c = 0, (a˘ ◦ c) · b = 0, (c ◦ b˘) · a = 0.(5)

The class of all relation algebras will be denoted by RA. It can be shown that
RA is an equational class [38]. Each BRA is an RA, but not vice versa [23]. Many
properties of binary relations can be expressed in equational form, for example

R is symmetric ⇐⇒ R˘ = R,

R is reflexive ⇐⇒ 1′ ⊆ R.

R is transitive ⇐⇒ R ◦ R ⊆ R,

R is total ⇐⇒ R ◦ V = V,

R is one-one ⇐⇒ R ◦ R˘ ⊆ 1′.

The following construction will be useful in later Sections: Let A be an RA, and
suppose that a, b ∈ A. Even though the equation a ◦ x = b does not always have
a solution, there is an element a Âres b, called the residual of b by a, such that

a ◦ x ≤ b ⇐⇒ x ≤ a Âres b.

The residual can be expressed as an RA term in a and b by

a Âres b = −(a˘ ◦ −b).(6)

If a is symmetric, then aÂresa reduces to −(a◦−a); we will denote this expression
by res(a). It has been shown by [30] that a Âres a is reflexive and transitive. For
R,S ∈ Rel(U), the residual is given by the condition

x(R Âres S)y ⇐⇒ R˘(x) ⊆ S˘(y).(7)

The expressiveness of RA logic turns out to be equipollent to a fragment of first
order logic [40]:
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Proposition 1. If R0, . . . , Rk ∈ Rel(U), then 〈R0, . . . , Rk〉 is the set of all binary
relations on U which are definable in the (language of the) relational structure
〈U,R0, . . . , Rk〉 by first order formulas using at most three variables, two of which
are free.

3 Topological spaces

For any notion not explained here, we invite the reader to consult [17]. We will
denote topological spaces by 〈X, τ〉, where τ is the topology on X; for u ⊆ X,
we let clτ (u) be the τ -closure of u, and intτ (u) its τ -interior. If τ is understood,
we will just speak of X as a topological space, and drop the subscripts from the
operators. Unless otherwise indicated, we assume for the rest of the paper that

All topological spaces considered are T1,

i.e. that singletons are closed. For u ∈ τ , we let ∂(u) = cl(u) \ u be the boundary
of u. If u, v ∈ τ , then u and v are called separated, if cl(u) ∩ v = u ∩ cl(v) = ∅. A
non–empty open set u is called connected if it is not the union of two separated
nonempty open sets.

u ⊆ X is called regular open if u = int(cl(u)), and regular closed, if u =
cl(int(u)). The set complement of a regular open set is regular closed and vice
versa. RegCl(〈X, τ〉) is the collection of regular closed sets, and RegOp〈X, τ〉)
the collection of regular open sets; we will sometimes just write RegCl(X) or
RegCl(τ) (respectively, RegOp(X) or RegOp(τ)) if no confusion can arise. It is
well known that RegCl(X) is a complete Boolean algebra with the operations
a + b = a ∪ b, a · b = cl(int(a ∩ b))), and a∗ = cl(X \ a). Note that we can have
a · b = 0, while a ∩ b 6= ∅. Similarly, RegOp(X) is a Boolean algebra with the
operations a + b = int(cl(a ∪ b)), a · b = a ∩ b, a∗ = int(X \ a).

A topological space is called regular if for each x ∈ X and each nonempty
closed set A not containing x, there are disjoint open sets u, v such that x ∈ u

and a ⊆ v. It is well known that X is regular, if and only if for each non–empty
u ∈ τ and each x ∈ u there is some v ∈ τ such that x ∈ v ⊆ cl(v) ⊆ u. We call X

weakly regular if it is semiregular (i.e. it has a basis of regular opens sets) and for
each non–empty u ∈ τ there is some non–empty v ∈ τ such that cl(v) ⊆ u. Weak
regularity may be called a “pointless version” of regularity, and each regular space
is weakly regular.

A topological space X is called normal, if any two disjoint closed sets can be
separated by disjoint open sets. X is called κ–normal, if any two disjoint regular
closed sets can be separated by disjoint open sets. Then,

X is normal =⇒ X is κ–normal =⇒ X is regular =⇒ X is weakly regular
=⇒ X is semiregular,
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and none of the implications can be reversed: [34] gives an example of a κ-normal
space which is not normal, and of a regular space which is not κ-normal. [13]
exhibit a weakly regular T1 space which is not T2, and thus, it is not regular.
Finally, [35, Example 60] provide a connected, semiregular space which is not
weakly regular.

4 Proximities

Suppose that a, b ⊆ X. The intuitive meaning of a proximity δ is that aδb holds,
when a is close to b in some sense. Proximities were introduced by [16] in the early
1950s, and they show a remarkable likeness to the Boolean connection algebras to
be discussed below. It is therefore surprising that in mereotopology little attention
has been paid to these structures. The main source on proximity spaces is the
monograph by [26].

Formally, a binary relation δ on the powerset of a set X is called a proximity,
if it satisfies the following axioms for a, b, c ⊆ X:

P1. If a ∩ b 6= ∅ then aδb.
P2. If aδb then a, b 6= ∅.
P3. δ is symmetric.
P4. aδ(b ∪ c) iff aδb or aδc.
P5. If a(−δ)b then a(−δ)c and b(−δ)c∗ for some c ⊆ a.

A proximity is called separated if it satisfies

Psep {x}δ{y} implies x = y.

The pair 〈2X , δ〉 is called a proximity space. Each proximity space determines a
topology on X in the following way: Define an operator cl on 2X by

cl(a) = {x ∈ X : {x}δa}.(8)

Now,

Proposition 2. [26]

1. The operation of (8) defines the closure operator of a topology τ(δ) on X

which is not necessarily T1.
2. 〈2X , τ(δ)〉 is a completely regular space. If δ is separated, then 〈2X , τ(δ)〉 is

also a T1 space.
3. aδb iff cl(a)δ cl(b).

A proximity which is relevant to our investigation is the standard proximity
on X [26]: Let 〈X, τ〉 be a normal (T1) space and define

aδb ⇐⇒ cl(a) ∩ cl(b) 6= ∅.(9)

Observe that δ is separated, since X is T1 and thus, singletons are closed.
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5 Boolean contact algebras

5.1 Definition and first properties

A standard model of regions are the regular closed sets of a regular T1 topological
space 〈X, τ〉 with a relation C defined on RegCl(X) by

uCv ⇐⇒ u ∩ v 6= ∅.(10)

C will be called the standard (topological) contact on X. Even though we will
be concerned mostly with RegCl(X), it is worthy to mention that the structure
〈RegOp(X), CRegOp〉 with CRegOp defined by

uCRegOpv ⇐⇒ cl(u) ∩ cl(v) 6= ∅(11)

is isomorphic to 〈RegCl(X), C〉.
The concept of a Boolean contact algebra (BCA), as defined below, is an

attempt to model standard topological contact; a variant, Boolean connection
algebras, were introduced by [36] in order to capture the algebraic properties of
the RCC system, which we will discuss below. A slightly different system was
given by [44] to capture proximity spaces. The notion of BCA is, in a way, the
common part of these systems. More formally, a binary relation C on a Boolean
algebra B is called a contact relation if it satisfies

C0. aCb =⇒ a, b 6= 0.
C1. a 6= 0 =⇒ aCa.
C2. C is symmetric.
C3. aCb and b ≤ c =⇒ aCc (The compatibility axiom).
C4. aC(b + c) =⇒ aCb or aCc (The sum axiom).
C5. C(a) = C(b) =⇒ a = b (The extensionality axiom).

As shown in [43], in the presence of the other axioms we can replace C5 by

C5’. If a 6≤ b, there is some c ∈ B such that aCc and c(−C)b.

Furthermore, it is known from [11] that we may also replace C5 by

C5”. res(C) is antisymmetric.

Since res(C) is always reflexive and transitive, C5” says that res(C) is a partial
order which we denote by P (for “part of”).

If C is a contact relation on B, the pair 〈B,C〉 will be called a Boolean contact
algebra (BCA). We will consider the following additional properties of C:

C6. a(−C)b =⇒ (∃c)[a(−C)c and − c(−C)b] (The interpolation axiom).
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C7. a 6= 0, 1 =⇒ aCa∗ (The connection axiom).

In these axioms (and henceforth) we denote the complement in the underlying
Boolean algebra by ∗, and the set complement in 2B×B by −.

Some relations which are relationally definable from C, and which will be
used in the sequel, are given in Table 1. In a way, these are the two–dimensional

Table 1. Some C–definable relations

P = −(C ◦ −C), part of(12)

PP = P ∩ −1′
. proper part of(13)

O = P ˘ ◦ P overlap(14)

PO = O ∩ −(P ∪ P ˘) partial overlap(15)

EC = C ∩ −O external contact(16)

TPP = PP ∩ (EC ◦ EC) tangential proper part(17)

NTPP = PP ∩ −TPP non–tangential proper part(18)

DC = −C disconnected(19)

version of Allen’s interval relations [1], see [9] for details. Additionally, we define

ECD = −[(EC ◦ EC ˘) ∪ (EC ˘ ◦ EC)],(20)

ECN = EC ∩ −ECD.(21)

Observe that aECDb ⇐⇒ b = a∗ [10]. Furthermore, C3 and C5 imply that P is
the Boolean partial order ≤ on B+, and that therefore

aOb ⇐⇒ a · b 6= 0.(22)

For later use we mention some properties of these relations:

Lemma 1. [10]

1. ECN = TPP ◦ ECD, i.e. xECNz ⇐⇒ xTPPz∗.
2. If xDCz, then xTPP (x + z).
3. xNTPPz and yNTPPz ⇐⇒ (x + y)NTPPz.
4. If xNTPPz, then (x∗ · z)TPPz.
5. TPP ⊆ ECN ◦ ECN .
6. xTPPy ⇐⇒ xECNy∗. .
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The following result shows that contact relations on finite BAs, or, more gen-
erally, on finite–cofinite algebras, are not very illuminating. The second part
demonstrates an important relationship between relational properties of C and a
property of B:

Proposition 3. 1. [15] O is the smallest contact relation on B. If B is a finite–
cofinite algebra, then O is the only contact relation on B.

2. [12] If C satisfies C7, then B is atomless.

Let us consider the expressiveness of BCAs of topological properties; as an
example we will show that in regular T1 spaces, the standard topological contact
(11) on RegOp(X) is strong enough to express topological connectivity of regular
open sets.

Proposition 4. [15] Let B = RegOp(X) for some regular T1 space X. Let
u ∈ B \ {∅, X}. Then,

u is not connected ⇐⇒ (∃s ∈ B)[∅ 6= s ( u and TPP ˘(s) ⊆ TPP ˘(u).

Corollary 5 Let 〈B,C〉 be as above. Then, there is a relation T ⊆ 1′ in the RA
generated by C such that for all u ∈ B+, u is not connected iff uTu.

Proof. Applying (7) and Proposition 4 we obtain

u is disconnected ⇐⇒ u(PP ˘ ◦ (TPP Âres TPP ))u.(23)

We write disc(u) if u fulfills condition (23).
An RCC algebra is a BCA which satisfies C7. These correspond to the Region

Connection Calculus of [31] which has received some prominence in qualitative
spatial reasoning. If B satisfies C0 – C6 we call it a proximity BCA (PBCA).
These algebras were introduced by [44] in relation with proximity spaces.

An alternative axiomatization of BCAs can be given via the NTTP relation.
This relation is known under various names, such as “well inside”, “well below”,
“interior parthood”, or “deep inclusion”. For better readability, and in keeping
with the tradition, will write ¿ instead of NTPP .

First, observe that

a ¿ b ⇐⇒ a(−C)b∗.(24)

Now, consider the following statements:

(¿0). 0 ¿ a.
(¿1). a ¿ b =⇒ a ≤ b.
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(¿2). a ¿ b =⇒ b∗ ¿ a∗.
(¿3). a ¿ b and b ≤ c =⇒ a ¿ c.
(¿4). a ¿ b and a ¿ c =⇒ a ¿ b · c.
(¿5). a 6≤ b =⇒ (∃z)[z ¿ a and z 6¿ b].
(¿6). a ¿ c =⇒ (∃b ∈ B)[a ¿ b ¿ c].
(¿7). a ¿ a =⇒ a ∈ {0, 1}.

Given a contact relation C, we let x ¿C y ⇐⇒ x(−C)y∗, and, given ¿, we let
xC¿y ⇐⇒ x(− ¿)y∗. Then, C¿C

= C, and ¿C¿
=¿, so we just write C and

¿ in the sequel, assuming these definitions. The detailed relationship among the
axioms is as follows:

(¿0) ⇐⇒ C0.(25)

(¿1) =⇒ C1.(26)

(¿1) ⇐= C1,C3.(27)

(¿2) ⇐⇒ C2.(28)

(¿3) ⇐⇒ C3.(29)

(¿4) ⇐⇒ C4.(30)

(¿5) ⇐⇒ C5.(31)

(¿6) ⇐⇒ C6.(32)

(¿7) ⇐⇒ C7.(33)

The ¿ relation was used by [24] in connection with continuous lattice, and by
[43] in connection with proximity spaces.

5.2 Constructions of BCAs

We first make sure that full regular open algebras are models for the various
classes of BCAs; the following results show that the various axioms of BCAs are
intimately related to topological properties.

Proposition 6. [13] Suppose that 〈X, τ〉 is a topological space and C the stan-
dard topological contact on B = RegCl(X). Then,

1. C satisfies C0 – C4.
2. C satisfies C5 if and only if X is weakly regular.
3. C satisfies C6 if and only if X is κ–normal.
4. C satisfies C7 if and only if X is connected.

Corollary 7 Let B = RegCl(X) for some topological space X. Then,
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1. B is a BCA if and only if X is weakly regular.
2. B is an RBCA if and only if X is weakly regular and connected.
3. B is PBCA if and only if X is weakly regular and κ–normal.

As the axioms for BCAs are first order, we may expect them to have non-standard
models in the sense of Section 5.1. In particular, they must have countable models
which, clearly, are not complete Boolean algebras. We will give two examples of
countable BCAs: The first one, the interval algebra of a dense linear order could
be called a one–dimensional BCA. We then use this structure to build a rather
unusual BCA, where every region is full of holes. This part is taken from [14],
where the proofs can be found.

First, we recall the definition of an interval algebra [20]. Let L be a dense
linear order with smallest element m. Suppose that ∞ is a symbol not in L, and
set L+ = L ∪ {∞} with x ¯ ∞ for all x ∈ L. An interval of L is a set of the
form [s, t) = {u ∈ L : s ≤ u ¯ t}. IntAlg(L) is the collection of all finite unions
of intervals

[x0
0, x

1
0) ∪ [x0

1, x
1
1) ∪ . . . ∪ [x0

t(x), x
1
t(x)),(34)

together with the empty set. It is well known that IntAlg(L) is a Boolean algebra
[20, see p.10], called the interval algebra of L.

Each nonzero x ∈ IntAlg(L) can be written in the form (34) in such a way
that xi

j ∈ L+, x0
j < x1

j < x0
j+1, and the intervals [x0

j , x
1
j) are pairwise disjoint.

The representation of x in this form is unique, and we call it the standard rep-
resentation. In the sequel, we shall assume that all elements of IntAlg(L) are in
standard representation.

For each x ∈ IntAlg(L)\{∅}, we let rel(x) = {x0
j : j ≤ t(x)}∪{x1

j : j ≤ t(x)}
be the set of relevant points of x. Next, we define a binary relation C on IntAlg(L)
by

xCy ⇐⇒ x · y > 0 or rel(x) ∩ rel(y) 6= ∅.(35)

The following now is not hard to show:

Proposition 8. [14] 〈B,C〉 satisfies C0 – C7.

Our next example is a more exotic one, which, together with a Representation
Theorem given below, has interesting topological consequences. [25] defines a
“hole relation” H by

xHy ⇐⇒ xECy, x + y 6= 1, (∀z)[xECz =⇒ yOz].(36)

xHy is read as “x is a hole of y”. In Figure 1, x is a hole of y; Figure 2 shows a
hole x of a sphere y in 3–space.
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Fig. 1. A 2–dimensional hole

.

y

x

Lemma 2. If x 6= 0, x + y 6= 1, x · y = 0, then

xHy ⇐⇒ xNTPP (x + y).(37)

Proof. “=⇒”: Assume xTPP (x + y), i.e. xECN(x∗ · y∗). Since xHy, we have
(x∗ · y∗)Oy, a contradiction.

“⇐”: Since xNTPP (x + y), we have xDC(x∗ · y∗). Let sECNx, and assume
s · y = 0, i.e. s ≤ y∗. Then, s ≤ x∗ implies that s ≤ x∗ · y∗, and hence, xDCs,
contradicting xECNs.

A region y is called solid, if it does not have any holes, i.e. if H ˘(y) = ∅. In
other words,

y is solid ⇐⇒ (∀x ∈ B+)[xECNy =⇒ (∃z ∈ B+)(xECNz and z · y = 0)].
(38)

Lemma 3. Suppose that x is a hole of y. Then,

1. (x + y)∗ is also a hole of y.
2. y∗ is disconnected in the sense of (23).

Proof. 1. was shown in [25]. For 2. we first show

¬ disc(u) =⇒ (∀s, t ∈ B+)[s + t = u =⇒ sCt].(39)

Proof. Suppose that ¬ disc(u) and assume that there are s, t ∈ B+ such that
s+t = u and sDCt. Then, there is some z ∈ B+ such that zTPPs and zNTPPu.
Now, zTPPs implies that zECNs∗ by Lemma 1(1), and since s∗ = t + u∗ we
have zCt or zCu∗ by C4. The first case contradicts sDCt, and the second case
contradicts zNTPPu.
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Fig. 2. A 3–dimensional hole

Since y∗ = x+x∗ ·y∗, all that is left to show is that x(−C)(x∗ ·y∗), i.e. xNTTP (x+
y). But this follows immediately from (37).

Mormann conjectured that every RCC algebra contained solid proper regions.
Below, we will exhibit an RCC algebra in which every proper region has infinitely
many holes. Our example will involve the construction of two Boolean algebras,
of which the first algebra serves as an index for a family of interval algebras, from
which we will construct our desired model. As a preparation, we characterize the
solid regions in an interval algebra. The result shows that not all intervals are
solid, which is somewhat surprising, and one wonders whether the terminology of
“hole” and “solid” are adequate for BCAs in which some regions have “absolute
boundaries” (see Figure 3):

Lemma 4. Suppose that B = IntAlg(L), and m = min L.

1. x ∈ B+ is solid if and only if x has the form [m, s) or [t,∞) or [m, s)∪ [t,∞)
with s ¯ t.

2. If xHy, then there is some z ∈ B+ such that zHy and z is an interval.

The strategy is to let Qn be the rational interval [n, n+1) and Ln = IntAlg(Qn)).
If x is a solid of L0, then

1. Replicate x in all intervals Q2n by setting

t2n(x) =











[2n, 2n + s), if x = [0, s),

[2n + s, 2n + 1), if x = [s, 1),

[2n, 2n + s) ∪ [2n + t, 2n + 1), if x = [0, s) ∪ [t, 1).

(40)
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Fig. 3. Some holes and solids in IntAlg([0, 1))

.

[
0 1

)

a

)

[ )

a*

[ )

b

a is solid and it is also a hole of b.

to obtain x.
2. Fill the space between t4n(x) and t4n+2(x) to obtain a hole of x.

see Figure 4.

Fig. 4. Destroying a solid

0 1 2 3 4 5 6

[ ) [ ) [ ) [ )

[ ) [ )

x

[ [ [ [) ) ) )

For 2 ≤ n, 0 ≤ k ¯ n, let Mn,k = {q ∈ ω : q ≡ k mod n} be the kth–residue
class of n, see Figure 5. B+ is the collection of all sets of the form Mn,k0

∪. . .∪Mn,kt
.

Here, as below, we suppose that 0 ≤ k0 ¯ k1 ¯ . . . ¯ kt ¯ n. Furthermore, set
B = B+ ∪ ∅. Then,

Fig. 5. Residue classes mod 4

.

0 4 8 121 5 9 132 6 10 143 7 11 15

MMMM
4,0 4,1 4,2 4,3

Proposition 9. B is an atomless Boolean subalgebra of 2ω.

For each n ∈ ω let tn : Q → Q be the translation q 7→ q + n. Furthermore, we
let Ln be the interval algebra of the rational interval [n, n+1) (with n+1 taking
the place of ∞) endowed with the contact relation defined in (35), and define
fn : L0 → Ln by fn(x) = {tn(q) : q ∈ x}. Clearly, fn is a BCA isomorphism, and
n 6= m implies fn(x) ∩ fm(y) = ∅. Next, define g : B × L0 → 2Q by g(T, x) =
⋃

{fn(x) : n ∈ T}. Note that g(T, x) = ∅ if T = ∅ or x = ∅. Furthermore,
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Lemma 5. 1. g(T, x) ∪ g(T, y) = g(T, x + y).
2. g(T, x) ∪ g(S, x) = g(S ∪ T, x).
3. −g(T, x) = g(−T, [0, 1)) ∪ g(T, x∗).
4. g(T, x) ∩ g(S, y) = g(T ∩ S, x · y).

Let A be the collection of all finite unions of sets of the form g(T, x), where
T ⊆ ω and x ∈ L0. Then,

Proposition 10. A is a Boolean subalgebra of 2Q.

Observe that each nonempty a ∈ A is a union of intervals of Q, and thus, the
notion rel(a) still makes sense. As with IntAlg(L), we define C on A+ by

aCb ⇐⇒ (a ∩ b) ∪ (rel(a) ∩ rel(b)) 6= ∅.

Now,

Proposition 11. 〈A,C〉 is an RCC algebra which has no proper solid regions.

This construction has interesting topological consequences. We know from
[13], that 〈A,C〉 is isomorphic to a dense substructure of the Boolean algebra
RegCl(X) of regular closed sets of some connected T1 space X. Now suppose
that 〈A,C〉 itself is such a substructure of some such space X. Since A is dense
in RegCl(X), its non-zero elements are a basis for the closed sets. Since for each
x ∈ A+, its complement x∗ in RegCl(X) is topologically disconnected, we observe
that X has an open basis of disconnected regular open sets.

Some more general constructions of BCAs from a given BCA can be summa-
rized as follows:

Proposition 12. [14]

1. If 〈A,C〉 is a BCA and A is a dense subalgebra of B, then there is a contact
relation D on B such that D ¹ A2 = C.

2. If 〈B,C〉 is a BCA and A a dense subalgebra of B, the C ¹ (A × A) is a
contact relation on A.

3. Let B be atomless, F,G be distinct ultrafilters of B, and R = C ∪ (F × G) ∪
(G× F ). Then, R is a contact relation on B. Furthermore, if C satisfies C7,
so does R.

5.3 Representability

The major problem in mereotopology is how algebraic properties of BCAs and
their extensions translate into topological ones (and vice versa), and whether
the axioms are complete for certain classes of topological spaces. In other words,
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can we find topological properties such that the spaces with these properties and
standard topological contact are completely characterized by a class of BCAs?
To make this clearer, we say that a BCA 〈B,C〉 is representable if there are a
topological space 〈X, τ〉 and a Boolean embedding e : B → RegOp(X) such that
aCb ⇐⇒ e(a)Cτe(b) for all a, b ∈ B and the standard topological contact Cτ on
X as defined in (10).

The proximity approach The first result in this direction was the work of
[44], who used proximity techniques to show that every BCA B satisfying C6 has
a representation in a compact Hausdorff space X. If B is, in addition an RCC
model, then X is connected in the topological sense. Applications of proximity
spaces to similar problems can be found in [42] and [8]. There, proximity spaces
are used to formalise the notions of local and global similarity relations. A local
similarity relation has a semantics just as the overlap relation O in mereology,
and a global similarity relation is interpreted just by the proximity relation.
This shows another possible approach to the theory of mereological relations –
the theory of similarity relations (or, more generally, informational relations) in
information systems (see [41] for references). As the axioms for proximity spaces
and BCAs have a common core, the following comes as no surprise:

Lemma 6. [44] Let (X, δ) be a separated proximity space, and τ be the topology
on X defined by (8). Then, (RC(X), δ) is a BCA which satisfies C6.

(RC(X), δ) is called the proximity connection algebra over (X, δ). It is called a
standard connection algebra, if

AδB iff A ∩ B 6= ∅.(41)

It can be shown that

Proposition 13. [44] Each proximity connection algebra is isomorphic to a stan-
dard connection algebra.

The proof depends on the Smirnov Compactification Theorem [26] which, in turn,
makes heavy use of C6. It can now be shown that each BCA satisfying C6 can
be isomorphically embedded into a proximity connection algebra and thus, into
a standard proximity connection algebra. The strategy is analogous to Stone’s
representation Theorem for Boolean algebras which uses sets of ultrafilters to
determine the points of the algebra. In the present case, the notion of p− cluster

is borrowed from the theory of proximity spaces; in the rest of this Section, we
will suppose that 〈B,C〉 is a BCA satisfying C6.

A nonempty subset Γ of B is called a clan if the following conditions are
satisfied:
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CL1. If x, y ∈ Γ then xCy.
CL2. If x + y ∈ Γ then x ∈ Γ or y ∈ Γ .
CL3. If x ∈ Γ and x ≤ y, then y ∈ Γ .

A clan is called a p–cluster if it satisfies

CL4. If xCy for every y ∈ Γ , then x ∈ Γ .

The set of all p–clusters on B is denoted by pClust(B). In analogy to the Stone
representation theorem for Boolean algebras, we define a mapping h : B →
2pClust(B) by

h(a) = {Γ ∈ pClust(B) : a ∈ Γ}.(42)

We observe that in this context, the p–clusters play the role that ultrafilters play
in Stone’s Theorem, i.e. they are the points of our representation space. Next, we
set for X,Y ⊆ pClust(B)

XδBY iff (∀x, y ∈ B)[x ∈
⋂

X and y ∈
⋂

Y =⇒ xCy].

By definition of h, we have

XδBY ⇐⇒ (∀x, y ∈ B)[X ⊆ h(x) and Y ⊆ h(y) =⇒ xCy].

Let PS(B) be the structure 〈pClust(B), δB〉. Using the the Smirnov Compact-
ification Theorem [26], it can be shown that

Proposition 14. [44] PS(B) is a separated proximity space.

Let X be the powerset of pClust(B), and τ be the topology on X induced by δB,
as defined in (8). Then, for each M ∈ X we have

cl(M) = {Γ ∈ pClust(B) : (∀x, y ∈ B)[x ∈ Γ and M ⊆ h(y) =⇒ xCy]}.

With these instruments, the following representation Theorem can now be proved:

Proposition 15. [44]

1. Each connection algebra can be embedded into a proximity connection algebra.
2. Each connection algebra can be embedded into a standard connection algebra.

So, the representation problem has a solution in case the BCA satisfies the inter-
polation axiom C6. The next section will show how to remove this restriction.
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Representing BCAs The definition of p–cluster was very much geared towards
the interpolation axiom C6. In order to remove the requirement of C6, one can
look at a more general definition of p–cluster: Clearly, the class of clans on B

is closed under union of chains, and thus each clan is contained in a maximal
element which we simply call cluster. The set of all clusters in B will be denoted
by Clust B. Clearly, each p–cluster is a cluster, but the converse need not be true.
However, if C satisfies C6, then the two notions coincide:

Proposition 16. [13] Suppose that C satisfies C6. Then, each cluster is a p–
cluster.

With this more general notion of cluster, we can proceed along the lines of [44]:
Let 〈B,C〉 be a BCA, X = Clust B and h : B → 2X be defined by the Stone–like
assignment h(x) = {Γ ∈ Clust B : x ∈ Γ}. Then, h is injective and preserves +:

Lemma 7. 1. x ≤ y ⇐⇒ h(x) ⊆ h(y).
2. h(0) = ∅, h(1) = X, and h(x) ∪ h(y) = h(x + y) for all x, y ∈ B.

Using this embedding, it is now possible to show

Proposition 17. 1. Each BCA B is isomorphic to a dense substructure of some
〈RegCl(X), Cτ 〉 where τ is T1 and weakly regular.

2. B satisfies C7 if and only if X is connected.

The following example shows that 〈X, τ〉 need not be a T2 space:

Example 1. Let 〈B,C〉 be the interval algebra of Proposition 8, 0 ¯ a ¯ b ¯ c ¯ 1
and Fa, Fb, Fc be the ultrafilters of B of all elements of B containing, respectively,
a, b or c. Let D = C∪ (Fa×Fb)∪ (Fb×Fa)∪ (Fa×Fc)∪ (Fc×Fa). By Proposition
12, D is a contact relation. One can show that Γ = Fa ∪ Fb and ∆ = Fa ∪ Fc

are clusters. Incidentally, this shows that an ultrafilter can be contained in two
different clusters which is not possible for p-clusters. Assume that there are open
sets u, v such that Γ ∈ u, ∆ ∈ v and u ∩ v = ∅. Since the sets h(x) are a
basis for the closed sets, there are x, y in B such that Γ 6∈ h(x), ∆ 6∈ h(y) and
h(x) + h(y) = X. Since h is an embedding, the latter implies x + y = 1. On the
other hand, Γ 6∈ h(x) implies that a 6∈ x and b 6∈ x, and ∆ 6∈ h(y) implies that
a 6∈ y and c 6∈ y. Together, we obtain a 6∈ x + y, contradicting x + y = 1. ¤

This also shows that not every RCC–algebra can be represented in a regular
T1 space (which is necessarily T2). This shows that the assumption of regularity
as standard models for RCC algebras is too strong: Not every RCC algebra has a
representation in a regular T1 space. Weak regularity, however, is necessary and
sufficient.



178 Ivo Düntsch and Michael Winter

6 Summary and outlook

We have collected various results concerning the construction of Boolean Contact
Algebras and their mereotopological expressiveness. The most striking example
of BCA was the “hole algebra” of Proposition 11; it shows that BCAs indeed give
rise to quite strange worlds of regions. A basic open problem in this area is the
following:

– Is it possible to define a contact relation which satisfies C7 on every atomless
BA?

The question of representability of RCC algebras, which has been an open prob-
lem for some time, was answered by Proposition 17; Example 1 tells us that this
result is the best possible. In particular, the RCC calculus is too weak to include
connection substructure of regular closed algebras of regular T1 spaces. So, one
can ask

– Which other important topological properties can be expressed by additional
axioms?

More concretely, one can ask

– What is the topological expressive power of the first order theory of specific
BCAs, such as the polygonal algebras or the bounded–cobounded algebras
[29]?

Another area of interest is the the study of the collection of contact relations on a
Boolean algebra. The interesting case here is when the underlying BA is atomless
(see Proposition 3).

– Investigate lattice theoretic properties of the collection of contact relations on
an atomless Boolean algebra.

Here, one may want to obtain general results, as well as some insight for concrete
BAs, such as the regular closed algebra of the line or the plane.
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