Title: | A note on proximity spaces and connection based mereology |
Authors: |
Dimiter Vakarelov,
Department of Mathematical Logic with Laboratory for Applied Logic,
Faculty of Mathematics and Computer Science, Sofia University,
Ivo Düntsch , Dept of Computer Science , Brock University , St Catherines, Ontario, L2S 3A1, Canada Brandon Bennett, School of Computing, University of Leeds (Equal authorship implied) |
Status: | Proceedings of the 2nd International Conference on Formal Ontology in Information Systems (FOIS 2001), Ed. C. Welty and B. Smith (2001), 139 - 150 |
Abstract: | Representation theorems for systems of regions have been of interest for some time, and various contexts have been used for this purpose: Mormann has demonstrated the fruitfulness of the methods of continuous lattices to obtain a topological representation theorem for his formalisation of Whiteheadian ontological theory of space; similar results have been obtained by Roeper. In this note, we prove a topological representation theorem for a connection based class of systems, using methods and tools from the theory of proximity spaces. |
View technical report version |