n\d | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 4 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 8 | 4 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
4 | 16 | 8 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
5 | 32 | 16 | 4 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
6 | 64 | 32 | 7 | 4 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
7 | 128 | 64 | 12 | 5 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 |
8 | 256 | 128 | 19 | 9 | 4 | 2 | 2 | 2 | 1 | 1 | 1 | 1 |
9 | 512 | 256 | 34 | 13 | 5 | 4 | 2 | 2 | 2 | 1 | 1 | 1 |
10 | 1024 | 512 | 54-68 | 21 | 8 | 4 | 2 | 2 | 2 | 2 | 1 | 1 |
11 | 2048 | 1024 | 94-136 | 30-42 | 11 | 6 | 4 | 2 | 2 | 2 | 2 | 1 |
12 | 4096 | 2048 | 174-256 | 50-84 | 16-18 | 9 | 4 | 4 | 2 | 2 | 2 | 2 |
16 | 65536 | 32768 | ≥1062 | ≥65 | ||||||||
20 | 1048576 | 524288 | ≥6208 | ≥379 | ≥35 | |||||||
23 | 8388608 | 4194304 | ≥16927 | ≥1268 | ≥97 | |||||||
24 | 16777216 | 8388608 | ≥14089 | ≥1489 | ≥132 | |||||||
32 | 2^32 | 2^31 | ≥211170 | ≥1667 |
The above table shows E2(n,d), the number of codewords in an optimal binary code of fixed length n and minimum edit distance d. Where exact values are not known, upper and lower bounds are provided.
The earliest version of this table appeared in the technical report: S.K.Houghten, D.Ashlock and J.Lenarz, "Bounds on Optimal Edit-Metric Codes"and was ultimately published as "Construction of Optimal Edit Metric Codes", Proceedings of the 2006 IEEE Workshop on Information Theory (ITW 2006), 259-263.
Modifications since that time:
If you have improvements, comments, etc, please e-mail shoughten@brocku.ca
This page last modified 6th August 2008 © Copyright Sheridan Houghten, 2005-2008