
COSC 3P91

Lab 7

In this lab you are going to use multiple threads and the Producer-Consumer design
pattern.

1. Implement a generic class Queue<E> of a queue storing elements from E. This
class is supposed to be thread safe, i.e., can be used safely in a multiple thread
environment. The class has methods void push(E element) and E pull()
for adding and getting the next element from the queue. The pull() method is
supposed to be blocking, i.e., if pull() is called and the queue is empty, then the
thread calling pull() is supposed to wait until an element becomes available. In
addition, the class has to have a method close() that if called sets the queue in
an inactive state. An inactive queue will ignore any call of push(). Any subsequent
call of pull() on an inactive queue will continue to return the elements in the
queue until it is empty. If empty, pull() will return null as an indication that
there will be no more elements.

2. Implement a class FibMaker that is a thread. The class has an int limit and a
Queue<Integer> queue that are passed in the constructor. In the run()
method the FibMaker will send all Fibonacci numbers in ascending order smaller
or equal to the limit to the queue. You can use a loop and two variables int a
always containing the n-th Fibonacci number and int b always containing the
n+1-st Fibonacci number to achieve this. Once the limit is reached the queue
must be closed and the thread terminates.

3. Implement a class PrimeMaker that is a thread. The class has an int limit and
a Queue<Integer> queue that are passed in the constructor. In the run()
method the PrimeMaker will send all prime numbers in ascending order smaller or
equal to the limit to the queue. You can use the sieve of Eratosthenes to achieve
this. Once the limit is reached the queue must be closed and the thread
terminates.

4. Implement a generic class Filter<E> that is Runnable for a generic class E
extending Comparable. This class has two Queue<E>’s queue1 and queue2 that
are passed in the constructor. In the run() method you should print any element
that you receive from both queues, i.e., you find the same element in both queues,

to System.out. It is assumed that the elements in both queues are ascending (cf.
Week 3, Slide 31). If there are no more elements, then print an appropriate message
to System.out. and terminate.

5. In the main() method of the program create two queues, a FibMaker and a
PrimeMaker with some limit and one of the queues, respectively. Furthermore,
connect the two threads to an object of the Filter class by passing the queues.
Finally, start the FibMaker and the PrimeMaker thread and call run() of the
Filter.

