
Brock University

Lab Test 3, Winter 2025 Number of Pages: 3
Course: COSC 3P91 Number of Hours: 2
 Instructor: M. Winter

Instructions
1) Write a program as indicated below using Java and NetBeans.
2) Zip your project folder and name it with your name and student number,

e.g., MichaelWinter123456.zip
3) Send the file to your lab instructor by email.
4) Wait for a confirmation email.
5) Log out of the lab computer and hand back the question sheets to the lab

instructor. You can now leave the lab.
6) The test is worth a total of 20 marks.

In this test you are going to use XML, multiple threads and the design patterns Producer-
Consumer and Singleton. Implement the following:

1. Add the COSC3P91.jar (available on the course webpage) file as a library to your
project so that you can use the classes and methods discussed in class. Add the
XSD and XML folder that you will find in a zip file on the course webpage to your
project, i.e., add the folders to the project folder (same folder src).

2. For all classes in this test make fields private resp. final if possible. Implement
getter and setter methods only when needed.

3. Whenever you implement toXMLString()you can use plain strings, i.e., you do
not need to use a StringBuilder.

4. (1 mark) Implement a class Employee that has the following fields firstName,
lastName of type String, and age and hourlyRate of type int. In addition to
a constructor receiving values for the fields make the class an instance of
XMLObject. Refer to the file Employee.xml and the XML schema Employee.xsd
for the syntax of an employee in XML. Add a method int computeID() that
compute an ID of an employee. The ID is the sum of the employee’s age, the first
character of his/her first name casted to an int, and the first character of his/her
last name casted to an int. Add a static method Employee read(Reader
source) to the class that returns an employee based on the XML description in
source (refer to 7.).

5. (1 mark) Implement a class SalaryData that has the fields id and hourlyRate
of type int. In addition to a constructor receiving values for the fields make the

Brock University

class an instance of XMLObject. Refer to the XML schema SalaryData.xsd and
the example below for the syntax of SalaryData in XML.
<SalaryData id="193" checkSum="1" hourlyRate="2346"/>

Add methods int computeCheckSum() and boolean check(int
checksum)that compute the checksum of an ID and check that the parameter
checkSum equals the checksum of this ID. The checksum of an ID is id % 16. Add
a static method SalaryDate read(Reader source) to the class that returns
a SalaryData based on the XML description in source (refer to 8.).

6. (1 mark) Implement a class WorkData that has the fields id, and hoursWorked of
type int. In addition to a constructor receiving values for the fields make the class
an instance of XMLObject. Refer to the file WorkData.xml and the XML schema
WorkData.xsd for the syntax of an employee in XML. Add a method void
addHours(int amount) that increases the hoursWorked by amount. Add a
static method WorkData read(Reader source) to the class that returns a
WorkData based on the XML description in source (refer to 9.).

7. (2 marks) Implement a class XMLNodeConverterEmployee that is an
XMLNodeConverter for Employee. The convertXMLNode(Node node)
method should return null if the node is not a node of a Employee. Make this
class a Singleton, i.e., use the Singleton design pattern for this class.

8. (2 marks) Implement a class XMLNodeConverterSalaryData that is an
XMLNodeConverter for SalarayData. The convertXMLNode(Node node)
method should return null if the node is not a node of a SalaryData. Make this
class a Singleton, i.e., use the Singleton design pattern for this class.

9. (2 marks) Implement a class XMLNodeConverterWorkData that is an
XMLNodeConverter for WorkData. The convertXMLNode(Node node)
method should return null if the node is not a node of a WorkData. Make this
class a Singleton, i.e., use the Singleton design pattern for this class.

10. (2 mark) Implement a generic class Queue<E> of a queue storing elements from E.
This class is supposed to be thread safe, i.e., can be used safely in a multiple thread
environment. The class has methods void push(E element) and E pull()
for adding and getting the next element from the queue. The pull() method is
supposed to be blocking, i.e., if pull() is called and the queue is empty, then the
thread calling pull() is supposed to wait until an element becomes available.

11. (3 marks) Implement a class EmployeeThread that is a thread. The class has a
Queue<Integer> queue that is passed in the constructor. The run() method
the EmployeeThread reads the employees from the file Employee.xml (each

Brock University

line is one employee) using a BufferedReader, creates a SalarayData from
the employee, and pushes this into the queue. If there is no employee left in the file,
push null to the queue as an indication that all data has been processed.

12. (3 marks) Implement a class WorkDataThread that is a thread. The class has an
int bonusHours and a Queue<Integer> queue that are passed in the
constructor. The run() method the WorkDataThread reads the WorkData from
the file WorkData.xml (each line is one WorkData) using a BufferedReader,
adds the bonusHours to the WorkData, and pushes this into the queue. If there
is no WorkData left in the file, push null to the queue as an indication that all
data has been processed.

13. (3 marks) In the main()method of the program set the XSD path of the XMLReader
to your XSD folder, i.e., add XMLReader.setXSDPath("./XSD/");. Then
implement the Producer-Consumer design pattern for the EmployeeThread, the
WorkDataThread, and the main thread (the thread of the method main()).
Therefore, create two queues, an EmployeeThread and a WorkDataThread with
bonusHours=10 and one of the queues, respectively, and start the two threads.
Then receive the SalaryData from the EmployeeThread via the first queue and
add the data to a Map<Integer,Integer> that maps an id to its hourlyRate.
Finally, receive the WorkData from the WorkDataThread via the second queue
and print the employee’s salary following output format as listed below, where the
salary is the hoursWorked * hourlyRate.
Employee 193 gets $3096.72.
Employee 210 gets $3319.34.
Employee 182 gets $2788.45.

