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Abstract—Ensuring connection stability is crucial for both
vehicular safety and user experience. With the increasing amount
of data sharing among connected vehicles, there is a need for
more bandwidth, stability, and reliability. While 5G technology
can offer these benefits with its small cellular range and den-
sification, it also presents a challenge in frequent handovers
(HOs). This issue can result in unnecessary HO, HO failures,
and ping-pong effects, negatively impacting service delivery and
compromising safety data sharing. To this end, we present High-
mobility and Ultra-density Aware Handover decision-making
(HMUD-H) approach using the SARSA Reinforcement Learning
algorithm for connection management, which efficiently makes
HO decisions to ensure stable connectivity. The HMUD-H al-
gorithm is adaptable and can handle dynamic, highly mobile,
and ultra-dense vehicular networks. Realistic simulated analyses
have demonstrated that our algorithm significantly reduces the
number of HOs, average cumulative HO time, HO failures, and
ping-pong effects, thus improving overall connection stability.

Index Terms—5G, SARSA, Handover, High-mobility, Ultra-
density of Networks

I. INTRODUCTION

Connection stability plays a significant role in ensuring
vehicular safety and infotainment services [1]. Vehicles gen-
erate vast data with the enriched On-Board-Units (OBU),
and exchange information with other vehicles, traffic infras-
tructure, and smart devices. A stable connection is crucial
for safety-related data, as even a brief connection drop can
lead to disastrous consequences. In addition, with the rising
expectations for user experience, a reliable, high bandwidth,
and low latency connection is necessary for vehicular networks
to ensure a seamless experience [2].

In urban and highway scenarios, high mobility and random
movement are common, adding to the complexity of ensuring
a stable connection [2]. The growing number of vehicles on
the road leads to an ultra-dense network, posing a significant
challenge in maintaining a stable connection in terms of
network load balancing. To address this challenge, the 5G
standard offers a potential solution for vehicular networks.
Designed to deliver high data rates, ultra-low latency, small
cell densification, improved energy efficiency, and robustness,
the 5G standard shows great potential as a data communication
technology for vehicular networks [3].

The handover (HO) operation is ultimately needed and
executed for vehicles to keep connected and support ongo-
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ing services. However, HO can affect connection stability,
especially for low coverage ranges of the 5G network where
frequent HO may be necessary to remain connected and
support ongoing services [2]. It is essential to make intelligent
HO decisions to ensure a stable connection and enhance user
experience. However, frequent HO and HO times can impact
service delivery; HO failures, unnecessary HO, and ping-pong
effects can also affect connection stability and degrade user
experience [2].

Numerous studies have addressed the issue of connec-
tion stability. Various techniques based on different methods
and technologies, such as software-defined networks (SDN),
heterogeneous networks (HetNet), edge computing, hybrid
networks, and virtual cell (VC), have been proposed to reduce
HOs and improve connection stability [2], [4]–[6]. Despite
these efforts, optimizing stable connections in 5G networks
remains challenging, especially for high-mobility vehicles and
ultra-dense networks in extensive scenarios. To tackle the
challenge of maintaining stable connections in 5G vehicular
networks by reducing HO, HO time, HO failure, and ping-
pong effects in HO, we present an adaptive learning technique
utilizing the SARSA Reinforcement Learning algorithm. Our
approach involves continuous communication between vehi-
cles and towers while traversing various road segments, en-
abling real-time parameter adjustment of the adaptive learning
model. Our algorithm can make efficient HO decisions by
maintaining connection stability in both urban and highway
scenarios.

The structure of this paper is as follows. Section II pro-
vides an overview of previous works on connection stability.
Section III presents our proposed handover technique for
achieving and maintaining stable 5G connections. Section IV
defines the performance analysis, presenting and discussing the
results. Finally, Section V concludes the paper and provides
future research directions.

II. RELATED WORKS

Stable connection for high mobility vehicles is always
a concerning research area. Many strategies with different
approaches have attempted to support HOs for ensuring sta-
ble connection [4]. Previous works showed that connection
stability improved through their methods by managing com-
munication cells and achieving a reduction of HOs and HO
times. However, high mobility and ultra-dense networks are



not considered simultaneously in all handover management
approaches for 5G networks, and there is not much work
can be found that deals with adaptive learning strategies and
considers real-world scenarios [2].

Some approaches have considered the diversity of network
technologies and communication media in their strategies to
ensure network stability. One approach based on HetNet is
proposed to optimize overall service delivery while maintain-
ing reliability and minimizing unnecessary handovers [7]. This
approach considers factors, such as connection signal, power,
bandwidth, location, and velocity, within a Markov Decision
Process (MDP) model. The model explores stochasticity by
considering the user’s current and future service experience.
This is achieved by computing a weighted sum of throughput
and handover cost and using an action elimination method to
optimize beam width and network actions.

An SDN-based approach is another strategy to ensure
continuous service and seamless coverage with minimal han-
dovers. One such approach involves using a Multiaccess Edge
Computing (MEC) enabled strategy to manage service-aware
handovers to reduce the number of required handovers [8].
Another approach uses SDN in a multi-level view by dividing
the network’s support into edges and core to optimize handover
times [9].

Two models are proposed for improving download time
and handover management, which are based on multi-layer
many-to-one LSTM architecture and a multi-layer LSTM
AutoEncoder (AE) combined with a MultiLayer Perceptron
(MLP) neural network [10]. These models leverage heteroge-
neous data to make more informed handover decisions, taking
into account the expected Quality of Experience after the
handover rather than relying solely on signal strength before
the handover.

Studies have investigated the use of virtual cell (VC) man-
agement as a means of maintaining stable connections in 5G
networks. The use of probabilities to manage VC formation
and updates in a user-centric manner is described in [11].
This approach enables decision-making in a decentralized
manner and reduces network complexity. Probabilities are
employed to represent network status to define the size of
the virtual cell by analyzing the network betweenness, base
station degree, and distances. Similarly, in 5G V2X networks,
the VC paradigm has been utilized to handle handovers,
utilizing probabilities and comparable parameters to select
cells [5]. In another approach, an anchor is selected using a
static cluster of small cells with localized mobility, assisted
by the VC scheme for achieving stable connections [12].
Furthermore, a dynamic approach is employed to update VC
by tracking the mobility of vehicles [13], where it models
resource management in vehicle-to-everything communication
as max-min optimization.

Machine learning techniques have also been applied to
handover management in intelligent vehicular networks [2].
A handover management approach proposed to predict signal
strength and decide on handovers using recurrent neural net-
work model to [14]. A stochastic Markov model is then used to
determine the new access point based on the predicted signal
strength. This approach was presented in a study focusing
on improving handover management in intelligent vehicular

networks.
Our study finds that many previous works on handover man-

agement have faced challenges such as slow decision-making,
high computational requirements, and network complexity [2].
Furthermore, a few previous approaches incorporate adaptive
learning strategies, and most of them relied on limited con-
nectivity parameters to estimate general communication con-
ditions and did not provide a guarantee of stable connections.

III. HIGH-MOBILITY AND ULTRA-DENSITY AWARE
HANDOVER DECISION-MAKING

Handover is essential for ensuring stable connections, and
the decision-making process must be executed efficiently
to enhance the user experience. We propose an intelligent
handover decision-making approach using SARSA Reinforce-
ment Learning (SRL), named High-mobility and Ultra-density
Aware Handover decision-making (HMUD-H), to ensure sta-
ble connections in 5G vehicular networks. We assume that
vehicles run in a scenario where multiple 5G towers (gNodeB)
are placed. Vehicles continue exchanging beacon messages
with every gNodeB while they remain within the communica-
tion range. The beacon message contains measurement reports,
including connectivity parameters for handover decision-
making. We also assume the beacon message with the serving
gNodeB contains a measurement report with connectivity
parameters and SRL information. HMUD-H considers several
connectivity parameters, such as Received Signal Strength
Indicator (RSSI), Reference Signal Received Quality (RSRQ),
and Signal to Interference & Noise Ratio (SINR), distance,
density, and vehicle speed.

We assume a backbone controller runs in the system to
perform all necessary HO decision-making operations. We
refer to the controller as gNodeB for the sake of simplification.
Each gNodeB runs the SRL algorithm and keeps a Q-table,
updated over time and shared among the network. A vehicle
registers for service as soon as it is within the range of a
gNodeB. The gNodeB then updates the storage area for the
Q-table with measurement reports of the cell for the vehicle.
Vehicles periodically send beacon messages to the connected
serving gNodeB for necessary computation and operation of
connection management. The serving gNodeB performs SRL
operation, updates Q-table for each vehicle, and forwards it to
the next selected gNodeB at the time of HO.

Let us consider a finite number of vehicles denoted as
V = {v1, v2, ..., vi} are traversing in an intelligent transporta-
tion scenario where a number of 5G towers (gNodeBs) are
deployed, represented as T T = {tt1, tt2, ..., ttj}. Vehicle vi is
within the communication range of gNodeBs of T T at time k;
such gNodeBs are represented as T = {τ1, τ2, ..., τj}, where
τj ∈ T , and T ⊂ T T .

A. Connectivity Parameters

Handover decision depends on the Connectivity Parame-
ters (CPs). We employ CPs with several signal parameters,
including RSSI, RSRQ, and SINR, as well as mobility factors,
such as distance and speed. We consider multiple connectivity
parameters because of the parameters’ relevant impact on
network connectivity differently [15] [16].



1) Signal Measurement: We consider χi
rssiτj

, χi
rsrqτj

, and
χi
sinrτj

signal levels to represent the quality of RSSI, RSRQ,
and SINR reading estimates, respectively. Many signal mea-
surements in CPs allow dealing with the diversity and dynam-
ics of environments, which have a direct impact on the stability
of network connections [15]. The exchanged beacon messages
of a vehicle vi and gNodeB τj have signal values in the
measurement report M. Beacon messages carry the generated
RSSI, RSRQ, and SINR, as well as their parameters; an evenly
spaced time interval k1, k2, ..., kn defines the frequency of the
messages. The beacon message exchanged with the serving
gNodeB contains information of M of every τj ∈ T for
the computation of SRL. To minimize computational cost,
this exchanged beacon message takes place in vehicle-gNodeB
pairs with at least minimum signal readings.

We convert χi
rssiτj

, χi
rsrqτj

, and χi
sinrτj

to the form where
a higher value means better connectivity. We have converted
in this form so that our approach takes decisions in a fixed
direction for SRL computation; a higher value means a better
result, and a lower value is the opposite. Among all factors
related to networks and communication, χi

rssiτj
, χi

rsrqτj
, and

χi
sinrτj

present high significance to the connectivity status,
being, as signal measurement CPs. They present additional
information when existing decision factors are insufficient for
connectivity management decisions and the overall functioning
of a connection [17].

2) Mobility: We consider distance and speed as the mobil-
ity parameters for HMUD-H. For calculating distance, each vi
keeps (x, y) positions of its traversing path in the storage area
of its OBU. We presume that gNodeB positions are known
across the entire system. A vehicle vi uses the Euclidean
distance according to Equation (1) to determine its distance
to τj ∈ T at time k.

d(vi, τj) =

√(
xvi − xτj

)2
+

(
yvi − yτj

)2 (1)

The exchanged beacon messages contains d(vi, τj) in the
M of every gNodeB τj ∈ T . This information is shared with
the current τ ξj for further operation of SRL.

Speed is another factor considered as mobility CP. The
speed of each vi is measured and stored in the OBU. The speed
data is added to the M and sent with the beacon message to
the serving gNodeB τ ξj for further processing of SRL.

3) Density: The number of vehicles linked to a gNodeB is
referred to as its density when a high density compromises
network stability. In our proposed approach, beacon messages
are used to exchange M with the density of τj ∈ T . It is
assumed that all gNodeBs in T T shared data related to density
among themselves.

For each vehicle and corresponding gNodeB, an estimate of
the density ratio Rτj is calculated using Equation (2), where
lτj denotes the load of τj (number of associated vehicles), and∑

lttj∈T T
(lttj ) represents the sum of the number of associated

vehicles with gNodeBs in T T in the given scenario. The ratio
Rτj is a measure of relative density compared to a single
gNodeB. A lower value of Rτj indicates a higher density of
the gNodeB, reducing the likelihood of selecting τj as the
serving gNodeB.

Rτj = 1−
lτj∑

lttj∈T T
(lttj )

(2)

Equation (3) describes a dynamically updated value of
density χi

densityk
which is calculated by summing average

density Rτj and hysteresis value is determined by dividing
the density ratio Rτj by the hysteresis value from the previous
time period χi

densityk−1
.

χi
densityk

= Rτj +
Rτj

χi
densityk−1

(3)

B. SRL Model
Based on the recently collected connectivity parameters, our

proposed approach HMUD-H determines which gNodeB τ ξj
among the towers τj ∈ T is most suited to serve the vehicle
vi based on the recently gathered connection metrics. We inte-
grate adaptive learning in the dynamic vehicular environment
using the SRL algorithm. By employing SARSA, which is
an online temporal difference learning technique, agents can
effectively learn the value of policies and associated actions
during state-action transitions [18]. SRL’s unique advantage
lies in its ability to function without a predefined dataset or
prior training or testing, making it an ideal fit for the complex
and rapidly evolving vehicular network. With the high dynamic
behaviour of vehicles, relying on pre-defined static models for
decision-making can be challenging to achieve efficiently.

The SRL approach involves taking an action ak in state
sk according to policy π, receiving a reward of rk+1 and
transitioning to the next state sk+1 [18]. Subsequently, the
action ak+1 is taken in the next state sk+1 based on pol-
icy π. This is done in an online fashion using the tuple
(sk, ak, rk+1, sk+1, ak+1). The Q-values are updated using α
and γ – learning rate and discount factor, respectively – under
the state-action transitions [19].

We define the components of our proposed HMUD-H model
as vehicular connectivity requirements to cope with high
mobility and ultra-density to guarantee stability. HMUD-H
performs its operation each time k.

1) State: We define states as gNodeB serving a vehicle.
The current serving gNodeB τ ξj is the current state for vi at
time k. The state sk+1 can be any in-range gNodeB of τj ∈ T .

2) Action: In state sk, there are multiple actions ak avail-
able, which can be denoted as ak,1, ak,2, ..., ak,m, with the
same number as the gNodeBs that are in range. The action
ak,m may lead to migration from the current gNodeB to
available gNodeBs τj ∈ T at time k. The available actions
in state sk can be expressed as ak,mτ ξj → τj ∈ T . Upon
performing the action ak,m, the state transitions to sk+1, where
the serving tower τ ξj is changed to the gNodeB of sk+1.

3) Reward: By transitioning from state sk to sk+1 through
the action ak, the corresponding reward rk+1 is obtained.
The scalar combination CPRk+1 is calculated using χi

rssiτj
,

χi
densityτj

and d(vi, τj) of an action ak as the reward rk+1

using Equation (4).

CPRk+1 = (χi
rssiτj

∗ ŵrssi) + (χi
densityj

∗ ŵdenscity)

+ ((dx − d(vi, τj)) ∗ ŵd)
(4)



Here, ŵrssi, ŵdencity and ŵd are the weights of RSSI,
density, and distance, respectively, and dx conditions d(vi, τj)
where the higher value of the distance, better is the connection.
This relation simplifies the reward calculation - a higher
reward provides better performance with a higher Q-value.

4) Policy: Our approach utilizes a well-known ϵ-greedy
policy in reinforcement learning to balance the exploration-
exploitation trade-off [18] [19]. At the time k, we calculate ϵk
as a scalar combination of the average CPs

∑e
b CPj/e of all

gNodeBs within range over a specific time interval. Initially,
an action is chosen randomly at time k, and the exploration
probability is determined by ϵk. The action with the highest
reward is selected as the iterations continue and follow the
exploitation probability (1− ϵk).

5) Q-value: RSRQ and SINR are regarded as Q-values,
while their scalar combination is considered the overall Q-
value. Q-value is calculated using Equation (5), where ŵrsrq

and ŵsinr are the weights of RSRQ and SINR, respectively.

Qval = (χi
rsrqτj

∗ ŵrsrq) + (χi
sinrτj

∗ ŵsinr) (5)

The signal is better when RSRQ and SINR have higher
scalar values. Hence, a gNodeB is better for connection
stability if its Q-value is higher. Moreover, we employ the
scalar combination of CPs as the reward, maintaining the
variety of connectivity-related variables in HMUD-H. It is
noted that all the parameters that have impacts on connection
stability are added in our proposed approach, which makes it
more adaptive to the real-world dynamic scenario.

C. HMUD-H Functioning
Upon the registration of vi in a network, vi is connected

to the first τj that comes to its range. The gNodeB τj starts
updating the Q-table and executing the Q-value of SRL for
each vi. At the initial stage, a default Q-value is selected,
and state, action, and reward are chosen according to the first
registered gNodeB of a vehicle. In subsequent iterations, the
Q-value of HMUD-H is updated by taking an action in a state,
observing its corresponding reward, and utilizing the policy
function. This process is performed on gNodeBs.

In HMUD-H, the serving gNodeB τ ξj calculates Q-value for
each vi. τ

ξ
j maintains Q-table for each vi separately. The Q-

value for each vi is generated for every gNodeB τj ∈ T . vi
exchanges beacon messages with every gNodeB that is in the
range that contains M, and updates its storage of M at each
time k. The M is exchanged with the current τ ξj at each time
k for performing SRL. When HO takes place, it exchanges
the beacon message with M that contains the latest Q-value
of the Q-table to the new τ ξj . The calculation of the Q-value
update is defined by Equation (6).

Qval(sk, ak)← Qval(sk, ak)
ξ +α[CPRk+1 +γQmbr

valτj
−Qsrv

valτj
] (6)

Suppose that a handover to gNodeB τ ξj occurs at time k.
The Q-value of the selected serving gNodeB is updated to
Qval(sk, ak)

ξ during this period. The Q-value of gNodeB
τj ∈ T is defined as Qi

val(sk+1, ak+1), which is equivalent to
the next state’s Q-value. Consequently, Qi

val(sk+1, ak+1) =
Qmbr

valτj
defines the Q-value of in-range gNodeBs τj ∈ T .

ALGORITHM 1: High-mobility and Ultra-density Aware
Handover decision-making (HMUD-H)

Data : χi
rssiτj

, χi
rsrqτj

, χi
sinrτj

, d(vi, τj), χi
densityj

,

χi
speed

Result: τξj
1 InitializeCondition;
2 while (τj ∈ T ≠ ∅) do
3 ak ← τj ∈ T ;
4 CPRk+1 ← sca(χi

rssiτj
, χi

densityj
, d(vi, τj));

5 ϵk ← calPolicy();
6 α, γ ← setBasedOnSpeed;
7 Qval ← sca(χi

rsrqτj
, χi

sinrτj
);

8 Qval(sk, ak)←
Qval(sk, ak)

ξ + α[CPRk+1 + γQmbr
valτj

−Qsrv
valτj

];

9 while (τξj remainedSame) do
10 Qval(sk, ak)

τ ← Qval of cur τξj ;

11 if (Qval(sk, ak)τj > Qval(sk, ak)
τ ) then

12 τξj ← τj – execute handover;

13 else
14 remain connected to same τξj ;

Equation (6) contains Qmbr
valτj

, the scalar form of RSRQ and
SINR of a gNodeB, and Qsrv

valτj
, the scalar form of RSRQ

and SINR of the serving tower that is currently connected. It
updates these terms each period k. It is worth noting that the
update frequency of Qsrv

valτj
and Qmbr

valτj
in each time k while

Qval(sk, ak)
ξ refers to the value during last HO.

Each vehicle updates the Q-value respective to a state
transition sk to sk+1 of every available action ak. A table
is shared with gNodeB τ ξj to store the updated Q-values. The
Q-value of current τ ξj is averaged Qval(sk, ak)

τ and stored
in the Q-table until HO is performed to a new τ ξj . When
a Q-value Qval(sk, ak)τj for actions ak at time k within in
range τj ∈ T is greater than averaged Q-value Qval(sk, ak)

τ ,
HMUD-H performs HO operation to the new τ ξj .

We have categorized vehicle speeds into three groups,
namely faster (121 km/h to 180 km/h), fast (61 km/h to 120
km/h), and medium (0 km/h to 60 km/h), and we use the
vehicle speed as a tuning factor for the SRL learning rate
(α) and discount factor (γ). Learning must be applied at a
higher frequency for higher-speed vehicles to accommodate
the fast-paced changes [19]. Specifically, for faster vehicles,
we set slightly lower values of α and γ, while for fast- and
medium-speed vehicles, we choose relatively higher values
for these parameters. The exact values of α and γ for each
speed category are shown in Table I, and this approach is
applied during the time interval k′−k. HMUD-H functioning
is summarized in Algorithm 1.

IV. PERFORMANCE ANALYSIS AND RESULTS

A series of simulations have been conducted using Veins,
OMNet++, SUMO, and Simu5G to analyze the proposed
HMUD-H approach for connection stability in vehicular net-
works. Our simulation environment employs the Cologne, Ger-
many map, which presents both urban and highway scenarios.
This map is useful in simulating ultra-dense networks and



high-mobility and dynamic random situations that vehicles
may encounter.

A. Parameters
We assess the performance of our proposed approach using

various parameter settings, as summarized in Table I. The
performance of handover (HO) in terms of connectivity is
influenced by factors, such as vehicle density and speed. We
randomly place ten 5G gNodeBs over the map, strategically
inside and outside each other’s range to ensure different
overlapping communication ranges.

B. Performance Metrics
The effectiveness of our approach has been evaluated using

a variety of performance indicators on vehicles with various
densities and levels of mobility. The number of HO estimates
the overall number of HO. The amount of time spent on
HO is shown by the average cumulative HO time. They
are determined by dividing the total number of HOs by the
cumulative HO time. The number of HO failure is used as
another metric by calculating the number of HO failed after
attempting. We calculate number of ping-pong effects during
HO. This is calculated by determining the number of the
switching serving tower of HO operation between the previous
tower as the immediate last serving tower and a new tower.
In other words, HO performed to the immediate last serving
tower in the next time step. The lower the value the better
the user experience. To assess the frequency of HOs across
different speeds, we compute the percentage of HO. This is
calculated by dividing the total number of HO by the total
count of vehicles that traveled within specific speed ranges.
A lower HO percentage indicates better performance, as it
measures the variability of HO incidents across various speed
ranges. Moreover, we calculate the percentage of HO failures
by dividing the total number of failures by the total number
of handovers that occurred within each speed range, a smaller
proportion of HO failures indicates an improved performance.

C. Results
We evaluate our proposed approach across various vehicle

densities ranging from 100...3100. The results are the averages
obtained from 30+ runs with different seeds, with 95%
confidence intervals.

The performance of HMUD-H is compared with a dynamic
RSSI-based approach named Naive Signal RSSI (NSIG-R).
It is a simple threshold-based naive HO decision-making ap-
proach to maintain connectivity. In each time k, the threshold
of RSSI is adjusted by dividing the current RSSI by an average
RSSI of a time interval. When a vehicle observes an RSSI
value lower than the threshold – HO occurs. For comparison,
we also consider a previous work named a two-tier Machine
Learning-based scheme (TTML) [14]. TTML observes the
stochasticity of the environment for HO decision-making.

The total number of handovers (HO) increases with the
density of vehicles, as shown in Figure 1a. In this regard,
the number of HO for HMUD-H ranges between 500...15000,
while TTML and NSIG-R have ranges of 2000...60000 and
2500...85000, respectively. The graph depicts an almost linear
increase in the number of HOs as the density of vehicles
increases. However, the slope is lower for HMUD-H compared

Table I: Simulation Parameters.
Parameter Value Range

Simulation Area 5 ∗ 5 km2

Density of Vehicle 100− 3100
Speed of Vehicle 0km/h - 180km/h
Num of gNodeB 10
Distribution of gNodeB Random
Comm. Range of gNodeB 1000m
PHY Model 5G
Transmission Power (gNodeB) 46dbm
Transmission Power (Vehicle) 26dbm
Medium, Fast, Faster (α) 0.8, 0.5, 0.3
Medium, Fast, Faster (γ) 0.8, 0.5, 0.1

to TTML and NSIG-R, indicating that HMUD-H performs
better than the other two methods in reducing the number of
HO. The number of HOs directly impacts the total HO time,
as shown in Figure 1b. The average cumulative time for HO
in HMUD-H ranges from 10...380, while TTML and NSIG-
R have average ranges of 20...600 and 23...560, respectively.
TTML requires longer time due to the need for additional
time for LSTM training and testing purposes during a certain
period. Among three of them, HMUD-H performs better.

Figure 1c depicts the total number of HO failures for dif-
ferent densities, where NSIG-R exhibits a linear increase with
fluctuations. However, HMUD-H and TTML maintain a low,
almost constant value of HO failures. This demonstrates that
both HMUD-H and TTML can maintain stable connections
without experiencing extensive HO failures. Specifically, the
number of HO failures for HMUD-H and TTML ranges from
15...460, while NSIG-R ranges from 85...1370.

Figure 1d illustrated the total ping-pong effects on HO for
different densities. It remains almost flat with a low value for
HMUD-H 20...400. It increases linearly for TTML. NSIG-
R has a larger value with some fluctuations. The number of
ping-pong effects on HO for TTML and NSIG-R is 100...3200
while 200...3900.

We analyzed the impact of speed on the HO decision-
making process by examining different speed ranges in 20km/h
intervals, from 0−20km/h to 160−180km/h in a scenario with
1000 vehicles. The results are presented in Figure 1e, show-
ing the HO percentage for each speed range. Our proposed
approach, HMUD-H, exhibits a slightly increasing pattern
with respect to speed, which is expected since high-speed
vehicles require more HO to maintain stable connections. In
contrast, TTML displays fluctuations in the percentage of HO,
while NSIG-R shows a sharply linear increasing pattern. The
difference in HO percentage between HMUD-H and the other
methods is significant.

The percentage of the HO failure for every speed range
is shown in Figure 1f. HMUD-H remains below 0.3, which
means it maintains stability with proper HO decision-making.
TTML maintains stability with a range of 0.28...0.43. The
previous work with LSTM and MDP leans well toward HO
decision-making. NSIG-R has a sharp increasing pattern of
starting at a comparatively high value of 0.38...0.85. NSIG-
R depends on RSSI for HO-decision making. High-speed
vehicles frequently face varied signal values from different
gNodeBs. For this reason, it is unstable with speed ranges
with a higher value. It is noted that HMUD-H performs better
than TTML and NSIG-R.
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(c) # of HO failures vs vehicle density
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(d) # of ping-pong HOs vs vehicle density
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(e) Percentage of HOs vs speed
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(f) Percentage of HO failures vs speed

Figure 1: Simulation Results of Proposed HMUD-H.

V. CONCLUSION

The stability problem of vehicular networks in 5G networks
has been addressed in this paper, particularly in ultra-dense
networks and high mobility scenarios. To mitigate issues
related to HO, such as HO number, HO time, HO failure,
and ping-pong effects, an adaptive approach called HMUD-H
using SRL has been proposed. The study results demonstrate
that HMUD-H provides stable network connectivity while sig-
nificantly reducing HO overhead, surpassing the performance
of TTML and NSIG-R methods. For future work, various
SRL learning rates and discount factors will be explored
across many scenarios and setups where different topologies,
5G gNodeB placements, and coverage ranges will be varied.
In addition, long- and short-term time dependencies will be
explored in other learning techniques.
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[15] M. Cicioğlu, “Performance analysis of handover management in 5g
small cells,” Computer Standards & Interfaces, vol. 75, p. 103502, 2021.

[16] V. Sharma, F. Song, I. You, and H.-C. Chao, “Efficient management and
fast handovers in software defined wireless networks using uavs,” IEEE
Network, vol. 31, no. 6, pp. 78–85, 2017.

[17] G. Kaur, R. K. Goyal, and R. Mehta, “An efficient handover mecha-
nism for 5g networks using hybridization of lstm and svm,” Springer
Multimedia Tools and Applications, pp. 1–29, 2022.

[18] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[19] S. Zhang, T. Wu, M. Pan, C. Zhang, and Y. Yu, “A-sarsa: A predictive
container auto-scaling algorithm based on reinforcement learning,” in
Proc. of the IEEE Int. Conf. on Web Services, 2020, pp. 489–497.


	Introduction
	Related Works
	High-mobility and Ultra-density Aware Handover decision-making
	Connectivity Parameters
	Signal Measurement
	Mobility
	Density

	SRL Model
	State
	Action
	Reward
	Policy
	Q-value

	HMUD-H Functioning

	Performance Analysis and Results
	Parameters
	Performance Metrics
	Results

	Conclusion
	References

