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Abstract—Vehicular network connectivity within Intelligent
Transport Systems (ITS) is essential for enabling seamless
data and resource sharing, including transmitting critical safety
messages, traffic management information, entertainment, and
comfort services. This connectivity enhances the user experience
by supporting complex interactions between vehicles and infras-
tructure in dynamic network environments. Edge connectivity
management has recently gained attention for maintaining con-
nection stability while managing complex models effectively. In
this context, connectivity refers to vehicles’ ability to maintain
a stable and robust link with network resources and other
vehicles for optimal data exchange. In this paper, we propose an
edge connectivity management approach, the Edge Connectivity
Estimation Model ECEM, aimed at ensuring connection stability
and strength. We design and implement the SARSA Reinforce-
ment Learning (RL) algorithm to assess and estimate the overall
connection reliability, determining the optimal vehicular edge -
a selective combination of vehicles within groups - to ensure
superior connection strength for data and resource sharing, even
in high-mobility scenarios. This estimation process helps identify
the most suitable edge to meet the data-sharing requirements
for each vehicle. Our approach considers multiple parameters,
including mobility, application parameters, and network density.
Extensive realistic simulations have demonstrated that our pro-
posed approach outperforms existing methods by reducing packet
loss and delay while increasing throughput.

Index Terms—Edge, Connectivity, SARSA, Data and Resource
Sharing, High Mobility, Ultra-dense Network

I. INTRODUCTION

Intelligent Transport Systems (ITS) are rapidly transforming
the landscape of modern transportation, driven by enhanced
connected vehicles [1]. These vehicles generate vast amounts
of data, which they seamlessly share with surrounding infras-
tructure and other devices, creating a highly interconnected
ecosystem [2]. The recent advancements in the automotive
industry have given rise to intelligent vehicles incorporating
cutting-edge technologies, significantly enhancing the overall
driving experience. These developments mark the beginning
of a new era in vehicular networks, where road safety, traffic
management, and passenger comfort are being elevated to
unprecedented levels [1]. With the continuous evolution of
ITS, we are witnessing a profound shift towards smarter, safer,
and more efficient transportation systems that cater to the
needs of both drivers and the broader community.
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The development of 5G technologies and IEEE 802.11p
dedicated short-range communication (DSRC) provides a new
era of wireless communication among vehicles and infrastruc-
ture [3] [4]. These advancements are revolutionizing how data
is shared, enabling rapid and efficient communication even
in highly mobile and dense environments. With the advance-
ment of 5G and DSRC, vehicles can exchange vast amounts
of data, ensuring high reliability, increased bandwidth, and
minimal latency. This technological leap is not only enhancing
the effectiveness of ITS but also paving the way for more
responsive and resilient communication networks. As a result,
we are moving towards a future where real-time data exchange
supports safer and more efficient roadways, enabling the
seamless integration of connected and autonomous vehicles.

Numerous studies have delved into various facets of vehic-
ular network connectivity, such as route management, routing
efficiency, and route optimization [5] [6] [7]. Some research
has focused on the formation of clusters to maintain stable
and reliable communication between vehicles and infras-
tructure [8] [9] [10], while others have sought to enhance
service delivery by optimizing network performance and re-
ducing collision risks [11] [12] [13]. In addition, machine
and deep learning algorithms have been utilized to predict
network behaviour and manage connectivity in dynamic and
evolving environments [14] [15] [16]. While these strategies
are crucial for improving the efficiency and robustness of
vehicular networks, there remains a pressing need for better
connectivity management, particularly for highly mobile and
dense network scenarios. Moreover, edge connectivity man-
agement comes to attention for its outperformed performance
in enhanced data and resource sharing, allowing networks to
adapt more effectively to varying conditions and demands [17].
By incorporating the edge strategy, the overall connectivity
in Intelligent Transport Systems (ITS) can be significantly
enhanced, leading to safer, more reliable, and highly optimized
vehicular communication networks.

In vehicular networks, maintaining and managing connec-
tivity efficiently is crucial, especially for the dynamic nature
of the environment [18]. Connectivity is facilitated through
data exchanges within the environment, among vehicles,
and between vehicles and infrastructure. However, ensuring
consistent and reliable connections is challenging in highly
mobile settings, where intermittent connectivity can disrupt



services that rely on real-time data exchange. This work
proposes an intelligent connectivity management approach
leveraging the State–Action–Reward–State–Action (SARSA)
Reinforcement Learning (RL) algorithm. We design SARSA
RL in our approach as the vehicular network environment to
optimize connectivity in vehicular networks by incorporating
edge connectivity management to enhance overall network
performance. We consider a scenario where multiple groups
of vehicles, also referred to as clusters, define a series of
network edges where vehicles share data and resources among
themselves and towers [19]. Our proposed approach, ECEM,
identifies the most suitable group of vehicles to act as the
edge for data and resource sharing for each vehicle based
on connectivity parameters. Multiple edges are possible in
the network scenario. Vehicles within a group migrate to
the edge, providing optimal connectivity and improving data
and resource exchange efficiency. Our work aims to estimate
and optimize connectivity strength among vehicles within a
defined network edge in dynamic vehicular environments.
To achieve this, we consider several connectivity parameters,
including application, signal, mobility, and density, impacting
connection stability, managing complex scenarios involving
numerous vehicles, and adapting to evolving connectivity
trends in urban settings. Our approach is designed to ensure
robust and reliable connectivity, ultimately contributing to the
effectiveness of data and resource sharing in ITS in highly
mobile and unpredictable environments.

The structure of this paper is organized as follows. Sec-
tion II offers a comprehensive review of previous research
on connectivity estimation and modelling. Section III intro-
duces our proposed approach for connectivity management.
Section IV details the performance analysis and comparative
results analyses. Finally, Section V concludes the paper and
outlines potential directions for future research.

II. RELATED WORKS

Adopting SDVN modelling enables vehicular connectiv-
ity to adapt effectively to dynamic environments [20]. Self-
learning theorems enable SDVN networks to adapt to changing
environments, while Markov Decision Processes (MDP) intro-
duce stochastic elements into connectivity models [21]. These
learning-based approaches focus on optimizing connectivity
across various parameters and may involve improving routing
algorithms or maximizing service without network conges-
tion. Overall, these models aim to enhance the efficiency
and dependability of SDVN-based vehicular communication
frameworks.

SDN enhances network performance, especially in urban
SDVN where a fuzzy-based routing scheme segments re-
gions based on criteria like mixed distribution and Valid
Distance [7]. A central controller with initial routing values set
by fuzzy logic prioritizes packet forwarding within segments,
while Reinforcement Learning (RL) algorithms dynamically
update routing table values, optimizing connectivity and stabil-
ity. Utilizing UAVs as communication relays faces challenges

like limited energy and coverage, addressed by a Deep Rein-
forcement Learning (DRL) framework [22] optimizing UAV
control to enhance connectivity.

The Vehicular Mobility Management (VMM) model [23]
regulates vehicle navigational parameters to foster robust
communication links, ensuring sustained vehicle connectivity
and enabling multi-hop paths. Quality of Service (QoS) is
assessed by considering parameters like throughput and end-
to-end data delivery delay, with an upstream Roadside Unit
(RSU) regulating vehicle speeds to establish stable chains for
continuous links between source and destination nodes. Graph
theory, including Laplacian-based and adjacency exponent
methods, plays a crucial role in VANET routing design [24],
facilitating precise simulations of network behaviour and
evaluating vehicle connectivity within fixed communication
ranges. V2V mobility model analyzes highway communi-
cation, focusing on the impact of mobility-dependent met-
rics [25]. This model integrates fine-grained mobility patterns
and lane-changing decisions with the AODV routing protocol
in the RNN network. A study on the probability of link
connectivity among vehicles has been conducted to enhance
the accuracy of connectivity estimation, as detailed in [26].
This model is particularly suitable for vehicular networks on
highways, considering vehicular headway dissemination while
accommodating varying traffic conditions. This framework
establishes a correlation between connectivity and the headway
distance between vehicles, considering the characteristics of
the corresponding communication channel in various traffic
scenarios.

A modified Ad hoc On-demand Distance Vector (AODV)
clustering algorithm has been used to analyze vehicle speed,
energy usage, and link maintaining time to choose the best
and most stable path for data transmission [5]. This model
considers the intensity and high speed of the vehicle and
performs data transmission and clustering. It optimizes the
regular AODV routing protocol by predicting the link holding
time of the node.

MDP-based solutions aid VANET in ensuring vehicle safety
by disseminating alert messages during emergencies, detailing
accident location, severity, and time [13]. Another MDP-based
model has been used to estimate and represent the connectivity
level in VN [21]. It maps resources and contents to estimate
the connectivity level. It finds the suitable vehicular candidate
in a VC scenario where vehicular access spreads the service
delivery and resources. Vehicles individually supervise their
recent connections and improve their MDP action of transition
and reward matrices in an entirely distributed fashion. Region-
based Connectivity Model (FMDP) [19] classifies regions by
making clusters and updating them to find better connectivity.
However, this model can handle limited states, actions, and
transitions.

Our study finds that previous works have faced challenges
in maintaining stable connectivity. High vehicle mobility
presents challenges, leading to intermittent connectivity and
compromising network safety. Cellular communication de-
ployed in certain areas allows vehicles to join and leave at



will, complicating efforts to maintain stable connectivity. In
the FMDP Model, vehicles lack long-term communication
prediction due to the model’s complexity stemming from
numerous states and actions. Our work addresses this defi-
ciency by proposing a reinforcement learning-based model
for computationally tractable, predictive, and adaptive system
development. Training this model over extended periods can
yield precise estimates, while adaptive learning enables real-
time network adaptation to enhance stability.

III. CONNECTIVITY MANAGEMENT MODEL

Vehicular network connectivity is vital for seamlessly ex-
changing critical data and resources, particularly in envi-
ronments characterized by high vehicle mobility and dense
network populations. Ensuring reliable data transmission in
such scenarios requires a robust connectivity model. Our
proposed approach, ECEM, introduces an edge connectivity
management model that utilizes key connectivity parameters
to ensure consistent and dependable data transfer. ECEM
operates by evaluating multiple groups of vehicles within
the network to identify the optimal edge for establishing
connections. This evaluation is based on a thorough analysis
of connectivity parameters, enabling ECEM to select the most
suitable set of vehicles as the edge among multiple groups
for data and resource sharing. By implementing this strategy,
ECEM ensures that the vehicular network remains resilient and
capable of meeting the dynamic demands of high-speed mobil-
ity and dense networks. Our proposed approach leverages the
SARSA RL algorithm, which dynamically adjusts connectivity
based on real-time network conditions. SARSA RL employs
a set of connectivity parameters, continuously refining the
edge selection process to adapt to the ever-changing network
environment.

In our scenario, a set of vehicles V = {v1, v2, ..., vj}
communicates with network infrastructures, such as RSUs and
5G towers, utilizing IEEE 802.11p (DSRC) and 5G network
technologies, represented as T = {t1, t2, ..., tm}. A back-end
controller (BNC) ensures seamless communication between
5G and DSRC devices, enabling efficient message exchange
among the vehicles vj and the network infrastructures tm. Bea-
con messages containing connectivity parameters and SARSA
RL data are exchanged periodically among the vehicles vj and
with the infrastructures tm. The operation of ECEM occurs in
the BNC for determining the optimal edge Ec for vj among
available sets of vehicles ci ∈ C, facilitating efficient data and
resource sharing across the network.

A. Connectivity Parameters

We consider a comprehensive set of connectivity parameters
(CPs), encompassing factors from the application layer, signal
strength, and mobility, to accurately estimate the connection
strength between vehicles when forming a cluster. These
parameters are essential for determining the reliability and
efficiency of connections for data and resource sharing [25].

1) End to End Data Delivery Delay: We consider end-to-
end data delivery delay as CP for measuring the time a packet
travels across the network from its source to its destination.
Lower data delivery delay helps regulate the speeds of in-
coming vehicles with interconnected, stable links [23]. These
paths have a higher likelihood of improved connectivity. We
systematically capture and log the content data sets throughout
the simulation period. This data delivery delay has been
measured for all the vehicles in the cluster using Equation (1).

dddci =

∑n
j=1 dddvj

n
(1)

Here, dddci is the average end-to-end data delivery delay
for all the vehicles of the group ci, dddvj is the end-to-end
data delivery delay for an individual vehicle vj and n is the
number of vehicles in the group ci.

2) Throughput: Throughput is another CP, defined as the
amount of data a node receives successfully over a specific
route during the analysis period. Higher throughput determines
the possibility of the end-to-end path and improved communi-
cation performance among the communicating nodes [23]. It is
calculated by the total number of bits received by any vehicle
within a given time frame, as outlined in Equation (2).

Thθ
i =

∑
j ̸=i pkt

l
rs

Tθ
(2)

Here, pktl is the length of the received packet, rs represents
all the senders of the packets that arrived at vj , and Tθ is the
period in which the throughput was observed.

3) Inter-Vehicle Distance: We use inter-vehicle distance as
a CP to represent the Euclidean distance between two vehi-
cles. Inter-vehicle distance directly impacts the connectivity
between two vehicles [26] [27] [28]. Each vehicle vj travels
across different road segments and records its coordinates
(xi, yi). These coordinates are then used to calculate the
distance di,j from its previous position (x′

i, y
′
i). A lower

distance represents better connectivity.
4) Signal Quality: Signal quality is a critical factor in

ensuring reliable and efficient connectivity among vehicles
when defining groups of vehicles. High signal quality trans-
lates to stronger, more stable connections, essential for main-
taining uninterrupted communication and data transfer in
a vehicular network. In our proposed approach, we have
considered the average values of the following signal pa-
rameters SQ, Signal-to-Interference-plus-Noise Ratio (SINR),
Received Signal Strength Indication (RSSI), Reference Signal
Received Power (RSRP), and Reference Signal Received Qual-
ity (RSRQ) as CP. These signals indicate stronger coverage
with higher throughput and lower interference [29]. Signal
quality determines the reliability and efficiency of the network.

5) Vehicular Speed: We consider vehicular speed as a CP.
As vj moves across different road segments, variations in
speed can cause fluctuations in signal parameters [25]. V S(vj)
denotes the estimated speed of vehicle j. Vehicles travelling
at lower speeds are more likely to remain within a group,



facilitating more effective data and resource sharing compared
to those at higher speeds.

6) Density: We consider vehicle density V D as a con-
nectivity parameter (CP). Vehicle density refers to the total
number of vehicles simultaneously travelling per unit area
within a given network scenario. It significantly influences
the performance of VANET systems. When the number of
vehicles is consistently high, inter-vehicle spacing decreases,
and the likelihood of collisions increases if there is a fixed
communication infrastructure in place. On the other hand, if
node density is very low, inter-vehicle spacing can be quite
extensive. Therefore, achieving a moderate vehicle density is
essential to maintaining stable VANET communication [25].
Density is measured as the number of vehicles per unit area
(typically in square kilometres) and can be calculated using
equation V D = n

A where n represents the number of vehicles
in Area A.

7) Vehicle Arrival Rate: Vehicle arrival rate is another CP
that indicates how the rate of new vehicle arrivals impacts
connectivity. An increased arrival rate generally leads to a
higher vehicle density, which typically enhances connectivity
across roadways [25]. While vehicle density measures the
number of vehicles in a specific area, vehicle arrival rate tracks
the change in the number of vehicles entering the network
over time. To determine the vehicle arrival rate, we monitor
the number of new vehicles joining a group of vehicles within
a given time t. The vehicle arrival rate in group ci is calculated
using the equation varci =

n
t , where n represents the number

of vehicles entering the group during period t.
8) Data Delivery Rate: The data delivery rate is considered

CP, which reflects the amount of data successfully transmitted
from a source to a destination within a specific time frame.
It indicates the speed at which data moves between locations.
This rate provides valuable insight into the data transmission
performance over a group during a given interval, considering
both successful and failed transmissions [25]. We measure the
data delivery rate using the formula ddrci =

n
t , where ddrci

represents the data delivery rate for group ci, n is the total
number of bits transmitted from the group, and t is the time
period over which the transmission occurs.

B. ECEM Functioning

We use SARSA reinforcement learning (RL) to manage
edge connectivity and make informed decisions. In our pro-
posed approach, SARSA RL identifies the most suitable edge
for data and resource sharing from a set of clusters [19].
SARSA RL is a model-free online learning technique that
updates Q-values based on actions taken under the current pol-
icy [30]. When the agent is in state sk, it selects an action ak
according to policy π and receives a reward rk+1, transitioning
to the next state sk+1. The agent then selects action ak+1 in
state sk+1 following the same policy. SARSA maintains these
state-action transitions as tuples (sk, ak, rk+1, sk+1, ak+1),
which are used to update Q-values with a learning rate α
and a discount factor γ. We define state-action pairs based
on vehicular communication requirements.

1) State-Action: We define each group c as a state sk.
The action ak involves the transition of a vehicle vj from
one group c to another. Taking an action results in a change
in the vehicle’s state, meaning it migrates to another group
of vehicles, which is represented as an edge transition. The
available groups c ∈ C in the network is the next state sk+1,
reflecting its new position in the network - existing groups of
vehicles.

2) Reward: The reward rk+1 is calculated when an ac-
tion ak is performed for transition. We consider the average
throughput of the corresponding group of vehicles has been
used as the reward RThθ

i
in our proposed approach as in

Equation (3).

RThθ
i
= Thθ

i (3)

3) Policy: In our proposed approach, we employ an ϵ-
greedy policy to effectively balance exploration and exploita-
tion, tailored to the needs of vehicular networks [31]. At
each time step k, we dynamically calculate ϵk based on
the average of control parameters (CPs) over a time interval
that includes the available groups of vehicles. Initially, we
randomly select an action at time k, with the probability of
exploration determined by ϵk. As the process continues, we
shift towards selecting the action that yields the highest reward,
using the probability allocated to exploitation.

4) Q-value Update: We consider the estimated connectivity
ES as the Q-value, a scalar value derived from all the CPs
associated with the factors discussed in Sub-section III-A.
For simplicity, we compute ESci for each group ci using
Equation 4, where each CP is treated as a weighted positive
integer.

We used min-max normalization to scale the data, ensuring
all variables were transformed to a common range [32]. This
technique rescales the data to a fixed range, typically between
0 and 1, by subtracting the minimum value and dividing by
the range (the difference between the maximum and mini-
mum values). By doing so, we preserve the relationships and
distribution of the data while making it easier to compare
and analyze different metrics on a standardized scale. This
approach is beneficial when dealing with diverse datasets
where the metrics may have varying units or ranges.

Here, higher values indicate better connectivity for data and
resource sharing. ES reflects the overall performance of a
connection, with a higher ES signifying stronger connectivity
among vehicles within their group. Therefore, a higher Q-value
indicates that a group of vehicles is more suitable for maintain-
ing a stable connection. Since we use the average throughput
as the reward, this directly measures the performance of data
and resource sharing, influencing decision-making.

ESci
=

(1 − dddci
) + Thθ

i + (1 − di,j) + (1 − V Sci)

n

+
SQ + V Dci

+ varci + ddrci
n

(4)

Initially, when a vehicle vj enters the network, it joins the
group ci and composes an edge with the highest estimated



connectivity ESci . The initial state, action, and reward are
determined based on this first group. As time progresses, the
Q-value is continuously updated by performing actions within
a state and observing the corresponding rewards. At each time
step k, the beacon messages exchanged among vj and between
vj and tm carry SARSA RL-related information. Our proposed
approach uses this information within a back-end controller
(BNC) to make edge selection decisions. The BNC updates
the Q-value for each vj for a neighbour in range group ci
using Equation (5). When the Q-value for a particular vj
reaches its maximum value within a group ci, that group is
selected as the edge Ec for vj . This process is repeated for
every vehicle vj within the BNC, enabling vehicles to migrate
between groups (edges) and find the optimal edge for data and
resource sharing. The continuous updates and edge selection
ensure that each vj maintains the best possible connectivity
within the network.

ES ← ESEc + α(RThθ
i
+ γESngbr − EScur) (5)

The Q-value ESEc
represents the Q-value at the time of the

last migration to edge Ec, while EScur is the current Q-value
for the present group ci or edge Ec. Additionally, ESngbr

denotes the Q-value of neighbouring groups within the range.
The update of the Q-value is performed each time k. The
Algorithm 1 describes the operation of our proposed approach
ECEM.

ALGORITHM 1: ECEM for Adaptive Learning

Data: dddci , Thθ
i , (xi, yi), SQ, V S(vj), V D, varci , ddrci

Result: Ec

1 InitializeCondition;
2 while c ̸= ∅ do
3 CP ← calculateCP ();
4 ES ← determineConn();
5 ak ← assignAction();
6 RThθ

i
← assignReward();

7 ϵk ← determinePolicy();
8 Q− value ← assign ES;
9 set α, γ;

10 ES ← ESEc + α (RThθ
i

+ γ ESngbr - EScur) if
argmaxci(ES) then

11 Ec ← determindeEdge;
12 execute migration from ci to another Ec;
13 ESEc ← argmaxci(ES);
14 end
15 end

IV. PERFORMANCE ANALYSIS AND RESULTS

A sequence of simulations has been executed utilizing
Veins, OMNet++, SUMO, and Simu5G to evaluate the sug-
gested ECEM strategy for ensuring connection stability in
vehicular networks. Our simulation setup utilizes the Cologne,
Germany map, encompassing urban and highway environ-
ments, depicted in Figure 1. This map is a valuable tool for
simulating ultra-dense networks and scenarios characterized by
high mobility and dynamic randomness, mirroring real-world
challenges.

Figure 1: Map of Cologne, Germany in the simulation analysis.

Table I: Simulation Parameters.
Parameter Value Range

Cologne area 5532x3869m2

Vehicle density 100 - 1000
Vehicle Speed 0 - 35m/s
RSU density 3 - 7
gNodeB density 2 - 3
RSU PHY model IEEE 802.11p
gNodeB PHY model LTE
Vehicle comm. range 400m
RSU comm. range 400m
gNodeB comm. range 14000m
Transmission power 30mW

α (Learning Rate) 0.5, 0.7
γ (Discount Factor) 0.5, 0.8

A. Parameters

We assess the performance of our proposed approach using
various parameter settings, as summarized in Table I. The
performance of the groups (vehicular edges), in terms of
connectivity, is influenced by various factors, such as vehicle
density and speed. We randomly positioned 7 RSUs and 3
gNodeBs across the map, and this deployment has been reused
for multiple iterations. Here, the red dots represent RSUs,
while the yellow dots represent 5G towers.

B. Performance Metrics

We evaluate the efficacy of our proposed model by employ-
ing a set of key metrics. These metrics serve as quantitative
measures to assess and analyze performance, ensuring a com-
prehensive evaluation of the effectiveness and reliability of the
proposed model. Group Connectivity indicates the effective-
ness of inter-vehicle connections within a group. Enhanced
connectivity implies robust links, facilitating seamless data
sharing with minimal disruptions. Connectivity is quantified
through diverse parameters outlined in Section III-A and
derived from Equation 4. Delay corresponds to the time it
takes for a packet to be transferred from an RSU/tower to a
vehicle that belongs to the respective edge/group. This delay
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Figure 2: Average Connectivity, Delay, Packet Loss, and Throughput Results from the ECEM Simulation with 5 RSUs and 2
gNodeBs.

is measured in every transmission within a cycle where the
model estimates connectivity and updates a group. Packets
Loss is calculated based on the number of messages sent and
received successfully among all nodes (vehicles and RSUs).
The metric accounts for the number of packets lost during the
transmissions within an estimation and group update cycle. An
average is calculated among all cycles across the simulation.
The average is ϕ, where ϕ = n/iteration. Here, n is the total
number of lost packets within a simulation, and iteration is
the number of cycles during the observed time (the simulation
duration). Throughput corresponds to the amount of data
transmitted to a single node (vehicle). Finally, an average
throughput is obtained from all individual readings in each
cycle and across the simulation time. It is measured in MBps.

C. Results

We evaluate our proposed approach across various vehicle
densities ranging from 100 to 1000. The results are averages
obtained from 30+ runs with different seeds, with 95%
confidence intervals. The performance of ECEM is compared
with a stochastic model, FMDP [19]. FMDP is a simple MDP-

based naive connectivity estimation approach to maintain
connectivity.

Categorizing vehicle groups establishes the degree of reli-
ability. The performance evaluation of these groups involves
analyzing metrics, such as group connectivity, packet delay,
packet loss, and throughput, all of which contribute to as-
sessing group/edge dependability. This analysis considers the
deployment of 7 Roadside Units (RSUs) and 3 5G towers
strategically placed in densely populated regions. Typically,
adding RSUs has minimal impact on connectivity due to their
ability to reach a larger number of vehicles and integrate them
into the groups.

In the experiment depicted in Figure 2, we present the
average results for group connectivity, delay, packet loss, and
throughput across scenarios involving 100 to 1000 vehicles
with 5 RSUs and 2 5G towers. In the ECEM scenario,
connectivity ranges from 0.32 to 0.37, except where a spike
occurs at a density of 300. This anomaly is due to the presence
of groups with a minimal number of vehicles, some of which
are out of range, preventing all vehicles from being considered.
Consequently, scaling a smaller amount of data results in
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Figure 3: Simulation Results of ECEM with 7 RSUs and 3 gNodeBs.

higher connectivity values. Figures 2b and 2c show that both
average delay and packet loss increase with vehicle density.
The average delay ranges from 0.1 to 0.15 ms, while packet
loss varies between 2.3 and 4.5. Throughput also increases
with vehicle density, ranging from 1 to 4 for lower densities
and around 7.8 to 8 for higher densities.

These graphs illustrate that the ECEM model surpasses the
FMDP model in maintaining stable connectivity within groups
of vehicles. For this scenario, the stochastic model FMDP
initially gives better results than ECEM regarding average
delay and packet loss. However, with the increasing density,
it experiences overlapping intervals. For throughput, both the
models produce similar results initially, however, gradually
higher dense vehicles produce higher throughput. This hap-
pens because learning algorithms produce better results when
applied with enough data for sufficient time. Learning-based
approaches are designed to steer vehicles toward groups with
optimal connectivity by employing algorithms that estimate
connectivity considering 8 different factors. While there are
marginal differences among the models regarding delay, packet
loss, and throughput calculations, with occasional overlapping

intervals, there is a discernible gradual increase as more
vehicles are introduced into the scenario. These trends indicate
that these models exhibit an upward trajectory, yielding higher
values as the exchange of data packets escalates.

However, with more RSUs and towers, the evaluation met-
rics become more consistent. In the experiment illustrated
in Figure 3, we present the averaged outcomes for group
connectivity, delay, packet loss, and throughput across sce-
narios with 100 to 1000 vehicles, using 7 RSUs and 3 5G
towers. In this ECEM scenario, connectivity ranges from 0.35
to 0.52 for lower-density vehicles and stabilizes around 0.34
to 0.35 for higher-density vehicles. While the slope of delay
and packet loss is lower in ECEM than in FMDP, the slope
for group connectivity and throughput is higher. The graphs
show that the ECEM model outperforms the FMDP model in
maintaining stable group/edge connectivity. Although there are
slight variations between the models regarding delay, packet
loss, and throughput, with some overlapping intervals, there is
a noticeable gradual increase as more vehicles are introduced.
In this scenario, more vehicles were discovered by more
RSUs and 5G towers. Hence, more data has been considered



for training purposes. For this reason, ECEM consistently
outperforms FMDP in this setting. These patterns indicate
an upward trend, resulting in higher values as data packet
exchanges intensify.

V. CONCLUSION

This paper addresses the connectivity management chal-
lenges for highly mobile, ultra-dense vehicular networks. To
tackle these challenges, we introduce an edge connectivity
management approach, ECEM, using SARSA RL to determine
optimal connectivity estimation for a vehicle to share data
and resources. Our proposed ECEM demonstrates significant
improvements in network connectivity by reducing packet
loss and delay while increasing throughput, as evidenced by
comprehensive performance analyses. In future work, we plan
to explore edge formation mechanisms within this framework
and investigate its performance across various scenarios to
further enhance the robustness and scalability of our approach.
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