Insertion-deletion correcting codes are designed to correct insertions and deletions of characters. Insertion-deletion distance measures the minimum number of insertions and/or deletions required to transform one word into another.
Define Dq(n,d) to be the number of codewords in an optimal q-ary code of length n and minimum insertion-deletion distance d. We consider the variable-length case, in which n is the length of the longest codeword.
The earliest versions of the tables below appeared in: S.Baker, R.Flack and S.Houghten, "Optimal Variable-Length Insertion-Deletion Correcting Codes and Edit Metric Codes", Congressus Numerantium 186 (2008), 65-80. For each of the tables, upper and lower bounds are provided where exact values are not known.
Table of Bounds on Optimal Binary Insertion-Deletion Correcting Codes
n\d | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 7 | 5 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 15 | 10 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
4 | 31 | 21 | 6 | 5 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 |
5 | 63 | 42 | 9 | 7 | 3 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
6 | 127 | 85 | 15 | 12 | 6 | 5 | 2 | 2 | 2 | 2 | 2 | 2 |
7 | 255 | 170 | 25-31 | 18 | 7 | 6 | 3 | 2 | 2 | 2 | 2 | 2 |
8 | 511 | 341 | 41-63 | 31-37 | 10 | 8 | 6 | 5 | 2 | 2 | 2 | 2 |
9 | 1023 | 682 | 67-127 | 49-75 | 16-21 | 13 | 7 | 6 | 3 | 2 | 2 | 2 |
10 | 2047 | 1365 | 116-255 | 83-151 | 20-43 | 18-27 | 8 | 7 | 6 | 5 | 2 | 2 |
11 | 4095 | 2730 | 205-511 | 143-303 | 30-87 | 24-55 | 11-17 | 9 | 6 | 6 | 3 | 2 |
12 | 8191 | 5461 | 360-1023 | 255-607 | 45-175 | 36-111 | 15-35 | 14-19 | 8 | 7 | 6 | 5 |
Table of Bounds on Optimal Ternary Insertion-Deletion Correcting Codes
n\d | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
1 | 4 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 13 | 10 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 40 | 30 | 6 | 5 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 |
4 | 121 | 91 | 13 | 12 | 4 | 3 | 3 | 3 | 1 | 1 | 1 | 1 |
5 | 364 | 273 | 29-40 | 25-37 | 7 | 6 | 3 | 3 | 3 | 3 | 1 | 1 |
6 | 1093 | 820 | 67-121 | 55-112 | 14 | 12 | 5 | 5 | 3 | 3 | 3 | 3 |
7 | 3280 | 2460 | 158-364 | 122-337 | 24-43 | 21-37 | 8 | 7 | 4 | 3 | 3 | 3 |
8 | 9841 | 7381 | 396-1093 | 310-1012 | 43-130 | 36-112 | 15-25 | 13-22 | 6 | 6 | 3 | 3 |
9 | 29524 | 22143 | 1022-3280 | 792-3037 | 92-391 | 75-337 | 20-76 | 18-67 | 9-19 | 8-19 | 5 | 5 |
10 | 88573 | 66430 | 2678-9841 | 2064-9112 | 187-1174 | 152-1012 | 32-229 | 28-202 | 13-58 | 13-58 | 7-16 | 7-16 |
If you have improvements, comments, etc, please e-mail houghten@brocku.ca
This page last modified 5th August 2008 © Copyright Sheridan Houghten, 2005-2008