A Table of Bounds
on Optimal Fixed-Length Quaternary Edit-Metric Codes
n\d |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
1 |
4 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
16 |
4 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
3 |
64 |
16 |
4 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
4 |
256 |
64 |
16 |
4 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
5 |
1024 |
256 |
44 |
11 |
4 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
6 |
4096 |
1024 |
114-176 |
28-32 |
8 |
4 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
7 |
16384 |
4096 |
356-614 |
65-128 |
18-24 |
8 |
4 |
1 |
1 |
1 |
1 |
1 |
1 |
8 |
65536 |
16384 |
1132-2340 |
176-512 |
38-96 |
14-32 |
5 |
4 |
1 |
1 |
1 |
1 |
1 |
9 |
262144 |
65536 |
3451-9360 |
495-2048 |
97-384 |
27-128 |
11-20 |
5 |
4 |
1 |
1 |
1 |
1 |
10 |
4^10 |
262144 |
11743-30417 |
1463-8192 |
249-1536 |
60-496 |
20-80
|
10-16 |
5 |
4 |
1 |
1 |
1 |
11 |
4^11 |
4^10 |
40604 |
4574 |
676 |
139 |
41 |
16 |
7 |
4 |
4 |
1 |
1 |
12 |
4^12 |
4^11 |
40604 |
4574 |
1894 |
338 |
79 |
30 |
13 |
6 |
4 |
4 |
1 |
13 |
4^13 |
4^12 |
40604 |
7744 |
5517 |
879 |
188 |
54 |
17 |
11 |
5 |
4 |
1 |
14 |
4^14 |
4^13 |
40604 |
15206 |
5517 |
879 |
188 |
54 |
27 |
13 |
7 |
5 |
4 |
15 |
4^15 |
4^14 |
40604 |
17780 |
6419 |
880 |
196 |
61 |
45 |
19 |
10 |
6 |
4 |
16 |
4^16 |
4^15 |
40604 |
18308 |
9220 |
1784 |
333 |
196 |
83 |
32 |
16 |
8 |
6 |
17 |
4^17 |
4^16 |
40604 |
18308 |
9220 |
1784 |
333 |
322 |
143 |
57 |
24 |
13 |
8 |
The above table shows E4(n,d), the number of codewords
in an optimal quaternary code of fixed length n and minimum edit
distance d. For n ≤ 10, exact values are given where known, with upper
and lower bounds provided when an exact value is not known.
For n > 10, the value
shown is the lower bound on E4(n,d).
The earliest version of this table appeared in the technical report: S.K.Houghten,
D.Ashlock and J.Lenarz, "Bounds on Optimal Edit-Metric Codes"and was
ultimately published as "Construction
of Optimal Edit Metric Codes", Proceedings of the 2006 IEEE Workshop on
Information Theory (ITW 2006), 259-263.
Improvements since that time:
- E4(5,3) ≥ 44 and E4(5,3) ≤
46 (D.Ashlock & S.Houghten, July 2005)
- E4(6,4) ≤ 32 and thus E4(7,4)
≤ 128, E4(8,4) ≤ 512, E4(9,4) ≤ 2048 and E4(10,4)
≤ 8192 (D.Ashlock & S.Houghten, July 2005)
- E4(7,5) ≤ 28 and thus E4(8,5)
≤ 112, E4(9,5) ≤ 448 and E4(10,5) ≤ 1792
(D.Ashlock & S.Houghten, July 2005)
- E4(5,3) = 44 and thus E4(6,3)
≤ 176 (S.Houghten, August 2005)
- E4(7,5) ≤ 24 and thus E4(8,5)
≤ 96, E4(9,5) ≤ 384 and E4(10,5) ≤ 1536
(S.Houghten, August 2006)
- E4(6,3) ≥ 108 (D.Ashlock and
S.Houghten, October 2008)
- Table expanded to n=16 (R.Flack & S.Houghten, 2008)
- E4(10,9) ≥ 5, E4(11,7)
≥ 34 (and thus E4(12,7) ≥ 34) ,
E4(11,8) ≥ 14 (and thus E4(12,8) ≥ 14), and E4(11,9) ≥ 7 (and thus E4(12,9)
≥ 7)(D.Ashlock & S.Houghten, March 2010)
- E4(6,3) ≥ 111, E4(7,3) ≥ 343, E4(8,3)
≥ 1082, E4(7,4) ≥ 65, E4(8,4) ≥ 173 (D.Ashlock,
S.Houghten, J.A.Brown & J.Orth, September 2010)
- E4(9,4) ≥ 495, E4(9,5) ≥ 97, E4(9,6)
≥ 27, E4(9,8) ≥ 5, E4(10,6) ≥ 59, E4(10,7)
≥ 20, E4(11,5) ≥ 676, E4(11,6) ≥ 133 (D.Ashlock,
S.Houghten, J.A.Brown & J.Orth, September 2010)
- E4(11,3) ≥ 40604, E4(11,4) ≥ 4574 (and thus E4(12,4)
≥ 4574), E4(12,5) ≥ 1894, E4(13,5) ≥ 5517 (and
thus E4(14,5) ≥ 5517), E4(11,6) ≥ 133, E4(12,6)
≥ 338, E4(13,6) ≥ 879 (and thus E4(14,6) ≥ 879), E4(12,7)
≥ 79, E4(13,7) ≥ 188 (and thus E4(14,7) ≥ 188), E4(12,8)
≥ 28, E4(13,8) ≥ 54 (and thus E4(14,8) ≥ 54) and E4(12,9)
≥ 12 (and thus E4(13,9) ≥ 12) (D.Ashlock, S.Houghten,
J.A.Brown & J.Orth, September 2010)
- E4(6,3) ≥ 114, E4(7,3) ≥ 356, E4(8,3)
≥ 1132, E4(8,4) ≥ 176, E4(10,5) ≥ 249, E4(10,6)
≥ 60, E4(11,6) ≥ 139, E4(11,7) ≥ 41, E4(11,8)
≥ 16, E4(12,8) ≥ 30, E4(12,9) ≥13 (and thus E4(13,9)
≥
13): see D.Ashlock, S.K.Houghten, J.A.Brown and J.Orth, On the
synthesis of DNA error correcting codes, BioSystems 110 (2012),
1-8.
- E4(12,10) ≥ 6, E4(13,9) ≥ 17, E4(13,11)
≥ 5, E4(14,9) ≥ 27, E4(14,10) ≥ 13, E4(14,11)
≥ 7, E4(14,12) ≥ 5, E4(15,9) ≥ 45, E4(15,10)
≥ 19, E4(15,11) ≥ 10, E4(15,12) ≥6, E4(16,9)
≥ 83, E4(16,10) ≥ 32, E4(16,11) ≥ 15, E4(16,12)
≥ 8, and addition of values for E4(17,d): see
D.Ashlock and S.Houghten, Lexicode Crossover for Embeddable
Biomarkers, IEEE Conference on Computational Intelligence in
Bioinformatics and Computational Biology, 2015.
- E4(16,8)
≥ 196, E4(16,11) ≥ 16, E4(17,8) ≥ 322, E4(17,9)
≥ 143, E4(17,10) ≥ 57, E4(17,11) ≥ 24, E4(17,12)
≥ 13, and addition of values for E4(n,13),
D. Ashlock and S. Houghten, Hybridization and Ring Optimization
for Larger Sets of Embeddable Biomarkers, 2017 IEEE Conference
on Computational Intelligence in Bioinformatics and Computational
Biology, 2017.
If you have improvements, comments, etc,
please e-mail shoughten@brocku.ca
This page last modified 13th November, 2023
© Copyright Sheridan Houghten, 2005-2023