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Maintaining Light Spanners via Minimal Updates

David Eppstein ∗ Hadi Khodabandeh †

Abstract

We study the problem of maintaining a lightweight
bounded-degree (1 + ε)-spanner of a dynamic point set
in a d-dimensional Euclidean space, where ε > 0 and d
are arbitrary constants. In our fully-dynamic setting,
points are allowed to be inserted as well as deleted, and
our objective is to maintain a (1 + ε)-spanner that has
constant bounds on its maximum degree and its lightness
(the ratio of its weight to that of the minimum spanning
tree), while minimizing the recourse, which is the num-
ber of edges added or removed by each point insertion
or deletion. We present a fully-dynamic algorithm that
handles point insertion with amortized constant recourse
and point deletion with amortized O(log∆) recourse,
where ∆ is the aspect ratio of the point set.

1 Introduction

Spanners are sparse subgraphs of a denser graph that
approximate its shortest path distances. Extensive study
has been made of geometric spanners, for which the dense
graph is a complete weighted graph on a point set in
d-dimensional Euclidean space, and where the weight of
an edge (u, v) is simply the Euclidean distance between
u and v. The approximation quality of a spanner is
measured by its stretch factor t, where a t-spanner S
is defined by the property that for every two vertices u
and v in the graph, dS(u, v) ≤ t · d(u, v). Here d and
dS are respectively the Euclidean metric of dimension
d and the shortest path metric induced by the spanner.
In other words, the Euclidean distances are stretched by
a factor of at most t in the spanner.

In this paper, we study the problem of maintaining
1 + ε-spanners under a dynamic model in which points
are inserted and removed by an adversary and our goal is
to minimize the recourse, which is the number of changes
we make to the edge set of the spanner. The recourse
should be distinguished from the time it takes us to
calculate the changes we make, which might be larger;
our use of recourse instead of update time is motivated
by real-world networks, where making a physical change

∗Department of Computer Science, University of California,
Irvine, eppstein@uci.edu. Work funded by NSF grant CCF-
2212129.

†Department of Computer Science, University of California,
Irvine, khodabah@uci.edu. Work funded by NSF grant CCF-
2212129.

to the network is often more costly than the actual run-
time of the algorithm that decides what changes need
to be made.

As our main contribution in this paper, we construct
a fully-dynamic spanner that maintains, at all times, a
lightness and a maximum degree that are bounded by
constants. Our maintenance regime achieves amortized
constant recourse per point insertion, and amortized
O(log∆) recourse per point deletion. We state and
prove our bounds in the following theorem:
Theorem 18 Our fully-dynamic spanner construc-

tion in d-dimensional Euclidean spaces has a stretch-
factor of 1 + ε and a lightness that is bounded by a
constant. Furthermore, this construction performs an
amortized O(1) edge updates following a point insertion,
and an amortized O(log∆) edge updates following a
point deletion.

1.1 Related work

Geometric t-spanners have numerous applications in net-
work design problems [15]. Finding a sparse lightweight
t-spanner is the core of many of these applications. The
existence of such spanners and efficient algorithms for
constructing them have been considered under different
settings and constraints [3, 12, 17]. In offline settings,
where the point set is given as a whole to the algorithm,
the prominent greedy spanner algorithm is well known
for its all-in-one quality due to its optimal performance
under multiple measures including sparsity (its number
of edges), lightness (the weight of the spanner divided
by the weight of the minimum spanning tree), and max-
imum degree [1, 4]. The output of the greedy spanner
also has low crossing number in the plane and small
separators and separator hierarchies in doubling metric
spaces [8, 14]. However, in some applications, the points
of an input set may repeatedly change as a spanner for
them is used, and a static network would not accurately
represent their distances. The dynamic model, detailed
below, deal with these types of problems.

In the dynamic model, points are inserted or removed
one at a time, and the algorithm has to maintain a t-
spanner at all times. In this setting the algorithm is
allowed to remove previous edges. For n points in d-
dimensional Euclidean space, Arya, Mount, and Smid [2]
designed a spanner construction with a linear number of
edges and O(log n) diameter under the assumption that
a point to be deleted is chosen randomly from the point
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set, and a point to be inserted is chosen randomly from
the new point set. Bose, Gudmundsson, and Morin [5]
presented a semi-dynamic (1 + ε)-spanner construction
with O(log n) maximum degree and diameter. Gao,
Guibas, and Nguyen [9] designed the deformable spanner,
a fully-dynamic construction with O(log∆) maximum
degree and O(log∆) lightness, where ∆ is the aspect
ratio of the point set, defined as the ratio of the length
of the largest edge divided by the length of the shortest
edge.

In the spaces of bounded doubling dimension,
Roditty [16] provided the first dynamic spanner con-
struction whose update time (and therefore recourse)
depended solely on the number of points (O(log n) for
point insertion and Õ(n1/3) for point removal). This
was later improved by Gottlieb and Roditty [11], who
extended this result in doubling metrics and provided a
better update time as well as the bounded-degree prop-
erty. The same authors further improved this construc-
tion to have an asymptotically optimal insertion time
(and therefore recourse) of O(log n) under the algebraic
decision tree model [10] but logarithmic lightness.

It is worth to mention that none of the work mentioned
above in the dynamic setting achieve a sub-logarithmic
lightness bound on their output. The problem of main-
taining a light spanner in this setting has remained open
until now.

2 Preliminaries and overview

In this section, we cover the notations as well as impor-
tant definitions and facts that we use throughout the
paper. We also provide an overview of what to expect in
the upcoming sections and the methods we use to reach
our bounds on the recourse.

Notation. We denote the current point set by V and
its aspect ratio (as defined earlier) by ∆. We use the
notations ∥e∥ and ∥P∥ for the Euclidean length of an
edge e and a path P , respectively. We also refer to the
Euclidean distance of two points u and v by ∥uv∥ or
d(u, v), interchangeably. The notation |E| is used when
we are referring to the size of a set E. Also, for a spanner
S, the weight of S is shown by w(S).

2.1 Overview

We build our spanners on top of a hierarchical clustering
(T , R) of the point set that we maintain dynamically as
the point set changes over time. The tree T represents
the parent-child relationship between the clusters, and
the constant R specifies how cluster radii magnify on
higher levels. Each cluster C ∈ T is specified by a pair
C = (p, l) where p ∈ Rd is one of the given points at the
center of the cluster and l ∈ Z is the level of the cluster.
The level of a cluster determines its radius, Rl. It is

possible for the same point to be the center of multiple
clusters, at different levels of the hierarchy.

We maintain our hierarchy so that after a point in-
sertion, a cluster is added centered at the new point,
and after a point deletion, each cluster with the deleted
point as its center is removed. Meanwhile, we maintain
a separation property on the hierarchy to help us build a
sparse spanner. Additional edges of our sparse spanner
connect pairs of clusters of the same level. Each such
edge ensures that pairs of descendants of its endpoints
have the desired stretch-factor. These edges form a
bounded-degree graph on the clusters at each level, but
this property alone would not ensure bounded degree
for our whole spanner, because of points that center
multiple clusters. Instead, we redistribute the edges of
large degree points to derive a bounded-degree spanner.

Maintaining bounded lightness on the other hand is
done through an iterative pruning process. We start
by removing certain edges to decrease the weight of the
spanner, which in turn might cause some other pairs
that previously used the removed edge in their shortest
paths to not meet the stretch bound of 1 + ε. We fix
those pairs by adding an edge between them, which again
increases the weight of the spanner. This causes a chain
of updates that alternatively improve the stretch and
worsen the weight of the spanner, or improve the weight
and worsen the stretch of the spanner. We show that
this sequence of updates, which we call maintenance
updates, if performed properly and for the right pairs,
will indeed not end in a loop, and even more strongly,
will terminate after an amortized constant number of
iterations. This will be covered in section 4.

The rest of this section includes the techniques we use
for our light-weight spanner construction. We start with
one of these techniques which is called the bucketing
technique. Instead of enforcing the stretch bound and
the lightness bound on the whole spanner, we partition
its edges into a constant number of subsets and we
enforce our criteria on these subsets. This partitioning
is necessary for the purpose of our analysis.

Bucketing. We maintain a partition of the span-
ner edges into a constant number of subsets. As we
mentioned before, our invariants are enforced on these
subsets instead of the whole spanner. Let C ≫ c > 1 be
constants that we specify later. We partition the edges of
the spanner into k = ⌈logc C⌉ subsets, S0, S1, · · · , Sk−1,
so that for each set Si and any pair of edges e, f ∈ Si
such that ∥e∥ ≥ ∥f∥, one of the following two cases
happen: (i) either ∥e∥/∥f∥ < c or (ii) ∥e∥/∥f∥ ≥ C. In
other words, the edge lengths in the same set are either
very close, or very far from each other.

Such partitioning can be maintained easily by as-
signing an edge e to the set with index index(e) =
⌊logc∥e∥⌋ mod k. We refer to this as the index of
the edge e. We also define the size of an edge e as
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size(e) = ⌊(logc∥e∥)/k⌋. By definition, if index(e) = i
and size(e) = j, then ckj+i ≤ ∥e∥ < ckj+i+1. We
similarly define the index and the size for any pair
(u, v) of vertices that are not necessarily connected
in the spanner: index(u, v) = ⌊logc∥uv∥⌋ mod k, and
size(u, v) = ⌊(logc∥uv∥)/k⌋.

Invariants. In order to construct a light-weight span-
ner, we start from our sparse dynamic spanner construc-
tion. To distinguish the edges of our light spanner with
the edges of our sparse spanner, we call the edges of
our sparse spanner the potential pairs, since a carefully
filtered set of those edges will make up our light-weight
spanner. After bucketing the potential pairs, since we
maintain the edges of each bucket separately, we must
find per-bucket criteria that guarantee the the main prop-
erties we expect from our spanner: the stretch-factor
and the lightness. We call these criteria the invariants.
To make sure the union of the buckets meets the stretch
bound, we generalize the notion of stretch factor to work
on individual buckets and we call it Invariant 1.

• Invariant 1. For each pair of vertices (u, v) /∈ Si
with index i, there must exist a set of edges e1 =
(x1, y1), e2 = (x2, y2), . . . , el = (xl, yl) in Si such
that

l∑

i=1

∥ei∥+(1+ε)

(
∥ux1∥+

l−1∑

i=1

∥yixi+1∥+ ∥ylv∥
)

< (1 + ε)∥uv∥.

In other words, u must reach v by a path of cost
at most (1 + ε)∥uv∥ where the cost of every edge
e ∈ Si is ∥e∥ and the cost of every edge e /∈ Si is
(1 + ε)∥e∥.

Lemma 1 If Invariant 1 holds for all Si, then S =⋃k−1
i=0 Si is a (1 + ε)-spanner.

Proof. [Proof of Lemma 1] Let (u, v) be a pair of
vertices. We find a (1 + ε)-path between u and v using
edges in S. Let i = index(u, v). By Invariant 1 there
exists a set of edges e1 = (x1, y1), e2 = (x2, y2), . . . , el =
(xl, yl) in Si such that

l∑

i=1

∥ei∥+(1+ε)

(
∥ux1∥+

l−1∑

i=1

∥yixi+1∥+ ∥ylv∥
)
< (1+ε)∥uv∥.

Consider the path P = ux1y1x2y2 · · ·xlylv between u
and v. We call this path the replacement path for (u, v).
The edges x1y1, x2y2, . . . , xlyl are present in Si (and
therefore present in S) but the other edges of the re-
placement path are missing from Si. A similar procedure
can be performed on the missing pairs recursively to find
and replace them with their corresponding replacement
paths. This recursive procedure yields a (1 + ε)-path for

(u, v) and it terminates because the length of each miss-
ing edge in a replacement path is smaller than the length
of the edge that is being replaced (otherwise Invariant 1
would not hold). □

Furthermore, we bound the weight of the spanner
by ensuring the second invariant, which is the leapfrog
property on Si. [7]

• Invariant 2. Let (u, v) ∈ Si. For every subset of
edges e1 = (x1, y1), e2 = (x2, y2), . . . , el = (xl, yl)
in Si the inequality

l∑

i=1

∥ei∥+(1+ε)

(
∥ux1∥+

l−1∑

i=1

∥yixi+1∥+ ∥ylv∥
)

> (1 + ε′)∥uv∥

holds, where ε′ < ε is a positive constant. In other
words, u should not be able to reach v by a (short)
path of cost (1 + ε′)∥uv∥, where the edge costs are
the same as in Invariant 1.

The leapfrog property leads to a constant upper bound
on the lightness of Si, for each 0 ≤ i < k. And since the
weight of the minimum spanning tree on the end-points
of each Si is at most a constant factor of the weight of
the minimum spanning tree on the whole point set, this
implies a constant upper bound on the lightness of the
spanner S =

⋃k−1
i=0 Si. As well as the weight bound, we

prove, in the following lemma, that Invariant 2 implies a
similar result to the packing lemma, but for the number
of edges on the same level.

Lemma 2 (Edge packing) Let E be a set of edges
(segments) with the same index and the same level that
is consistent with Invariant 2. Also, assume that E is
contained in a ball of radius R, and the minimum edge
size in E is r. Then

|E| < C1(R/r)
2d

where C1 = (2(1 + ε)/ε′)2ddd is a constant.

Proof. [Proof of Lemma 2] A simple observation is
that for any two segments (u, v) and (y, z) in E we must
have

max(∥uy∥, ∥vz∥) > ε′

2(1 + ε)
· r

because otherwise, assuming that ∥uv∥ ≥ ∥yz∥, for the
pair (u, v) and the sequence e1 = (y, z), the left hand
side of the inequality in Invariant 2 would be at most

2(1 + ε) · ε′

2(1 + ε)
· r + ∥yz∥ ≤ (1 + ε′)∥uv∥

contradicting the fact that E is consistent with Invariant
2. Thus, given a covering of a ball of radius R with
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M balls of radius r′ = ε′

2(1+ε) · r, every segment in E

has its endpoints in a unique pair of balls, otherwise
Invariant 2 will be compromised. Hence, |E| ≤M2. A
simple calculation yields a covering with M < (2(1 +
ε)/ε′)ddd/2(R/r)d balls. □

We can simplify the two invariants by defining a dis-
tance function d∗i over the pairs of vertices,

Definition 1 Let S∗i be a complete weighted graph over
the vertices such that the weight of an edge e in S∗i is
defined as

w(e) =

{
∥e∥ if e ∈ Si
(1 + ε)∥e∥ if e /∈ Si

We define an extended path between u and v in Si as
a path between u and v in S∗i that only uses edges (y, z)
where size(y, z) < size(u, v). We also define the length
of an extended path as the sum of its edge weights in S∗i .
Finally, we define d∗i (u, v) as the length of the shortest
extended path between u and v.

Using this new distance function we can rephrase the
two invariants as follows.

• Invariant 1. For every pair (u, v) /∈ Si with
index(u, v) = i, we have d∗i (u, v) < (1 + ε)d(u, v).

• Invariant 2. For every pair (u, v) ∈ Si, we have
d∗i (u, v) > (1 + ε′)d(u, v).

It is worth noting that these forms are not exactly
equivalent to the previous forms, as we are only consid-
ering paths of lower level edges in the definition of d∗i ,
while a short path in the spanner could potentially con-
tain an edge of the same level. This provides a stronger
variation of Invariant 1, which still implies a 1+ε stretch
for the spanner. However, this change weakens Invariant
2. But as we will see, a careful addition of the same-level
edges can prevent any possible violations of Invariant 2
that could be caused by this new form.
Maintaining the invariants. The quality of our

light-weight dynamic spanner depends on the two invari-
ants we introduced above, and an update like a point
insertion or removal could cause one of them to break,
if not both. Therefore, we establish a procedure that
addresses the inconsistencies and enforces the invariants
to hold at all times.
The procedure for fixing a violation of Invariant 1

is straightforward: as long as there exists a pair (u, v)
that violates Invariant 1 for its corresponding subset Si,
add an appropriate potential pair to Si that connects
an ancestor of u to an ancestor of v in the hierarchy T .
This resolves the inconsistency for (u, v) if the ancestors
are chosen properly, but it might cause other pairs to
violate Invariant 2 because of this edge addition. We will

prove that if certain criteria are met, there would be no
side effect on the same-level pairs and the addition can
only result in a constant amortized number of inflicted
updates on higher level pairs.
Fixing a violation of Invariant 2, on the other hand,

is more tricky. After we remove the violating edge (u, v)
from its subset Si, the effect on higher level pairs would
be similar to the previous case, but removing (u, v) might
cause multiple updates on the same level, which in turn
cascade to higher levels. We therefore analyze the re-
moval of (u, v) together with the subsequent additions of
same-level edges that aim to fix the incurred violations
of Invariant 1, and we prove that a constant amortized
bound on the number of inflicted updates on higher
level pairs would still hold. We get to the details of our
maintenance updates in section 4.3.
Amortized analysis. We analyze the effects of an

update (edge addition and removal) on higher level pairs
using a potential function, for each Si separately. We
define our potential function over the potential pairs in
Si. The change in the potential function shows how much
a pair is close to violating one of the invariants. The
higher the potential, the closer the pair is to violating the
invariants. This enables us to assign a certain amount
of credit to each update, that can be used to pay for the
potential change of the updated pair and the affected
pairs, which in turn results on an amortized upper bound
on the number of edge updates in the future. Therefore,
for a potential pair (u, v) with index i and following an
update in Si,

• if (u, v) ∈ Si and d∗i (u, v) decreases, or

• if (u, v) /∈ Si, and d∗i (u, v) increases,

we increase the potential of the pair (u, v) to account
for its future violation of the invariants.
More specifically, we define the potential function

pi(u, v) of a potential pair (u, v) in Si as

pi(u, v) =




(1 + ε)− d∗i (u,v)

d(u,v) if (u, v) ∈ Si
Cϕ ·

(
d∗i (u,v)
d(u,v) − (1 + ε′)

)
if (u, v) /∈ Si and
index(u, v) = i

where Cϕ > 1 is a positive constant coefficient that we
specify later. This implies that if pi(u, v) < ε− ε′, then
both invariants would hold for the pair (u, v) (in Si).
Based on this observation, we define a potential function
on Si in the following way,

Φi =
∑

(u,v)∈Pi∪Si

pi(u, v)

where Pi is the set of potential pairs with index i. We
simply define the potential of the whole spanner as

Φ =
∑

i

Φi

4
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We add another term to this potential function later
in section 4 to account for future edges between the
existing nodes.

Φ∗ = Φ+
pmax
2
·
n∑

i=1

(Dmax − degS1(vi))

We first prove some bounds on Φ but we ultimately
use the adjusted potential function Φ∗ to prove our
amortized bounds on the number of updates. In the
remainder of this paper, we specify our sparse and light-
weight construction in more details, and we will provide
our bounds on the recourse in each case separately.

3 Sparse spanner

In this section, we introduce our dynamic construction
for a sparse spanner with constant amortized recourse per
point insertion and O(log∆) recourse per point deletion.
We build our spanner on top of a hierarchical clustering
that we design early in this section.
Krauthgamer and Lee [13] showed how to maintain

such hierarchical structures in O(log∆) update time
by maintaining ε-nets. However, this hierarchy is not
directly applicable to our case since a point can appear
log∆ times on its path to root, which would imply a
O(log∆) bound on the degree of the spanner instead
of a constant bound. Cloe and Gottlieb [6] improved
the update time of this hierarchy to O(log n). Gottlieb
and Roditty [10] later introduced a new hierarchical
construction with the same update time for their fully-
dynamic spanner, which also satisfied an extra close-
containment property. Here, we introduce a simpler
hierarchy that suits our needs and does not require the
close-containment property. Our hierarchy performs con-
stant cluster updates for a point insertion and O(log∆)
cluster updates for a point deletion.
Our hierarchy consists of a pair (T , R) where T is a

rooted tree of clusters and R > 0 is a constant. Every
cluster C ∈ T is associated with a center c(C) ∈ V and
a level l(C) ∈ Z. The level of a cluster specifies its
radius; C covers a ball of radius Rl(C) around c(C). We
denote the parent of C in T by p(C). The root of T ,
denoted by T .root, is the only cluster without a parent.
Furthermore, the level of a parent is one more than of
the child, i.e. l(p(C)) = 1+ l(C), for all C ∈ T except the
root. A parent must cover the centers of its children.
Besides these basic characteristics, we require our

hierarchy to satisfy the separation property at all times.
This property states that the clusters at the same level
are separated by a distance proportional to their radii,

Definition 2 (Separation property) For any pair
of same-level clusters C1, C2 ∈ T on level j,

d(c(C1), c(C2)) > Rj

Each point at the time of insertion creates a single
cluster centered at the inserted point, and during the
future insertions, might have multiple clusters with dif-
ferent radii centered at it. In fact, each point could have
clusters centered at it in at most O(log∆) levels. At
the time of deletion, any cluster that is centered at the
deleted point will be removed.

Our clusters are of two types: explicit clusters and
implicit clusters. Explicit clusters are the ones we create
manually during our maintenance steps. Implicit clusters
are the lower level copies of the explicit clusters that
exist in the hierarchy even though we do not create them
manually. Therefore, if a cluster C = (p, l) is created
in the hierarchy at some point, we implicitly assume
clusters (p, i) for i < l exist in the hierarchy after this
insertion, and they are included in their corresponding
Ti as well. We maintain the separation property between
all clusters, including the implicit ones. We use these
implicit clusters for constructing our spanner.

3.1 Maintaining the hierarchy

We initially start from an empty tree T and a constant
R that we specify later.

Point insertion. Let Ti be the set of clusters
with level i, i.e. Tsize(T .root) only contains the root,
Tsize(T .root)−1 contains root’s children, etc. Upon the in-
sertion of a point p, we look for the lowest level (between
explicit clusters) i that p is covered in Ti. We insert
C = (p, i− 1) into the hierarchy. Since p is covered in Ti,
we can find a cluster C′ = (p, i) that covers p and assign
it as the parent of C (Algorithm 1).

In the case that p is not covered in any of the levels in
T , which we handle by replicating the root cluster from
above until it covers the new point, then the insertion
happens the same way as before.

Algorithm 1 Inserting a point to the hierarchy.
1: procedure Insert-to-Hierarchy(T , R, p)
2: if |T | = 0 then
3: Add a root cluster C = (p, 0) to T .
4: return C
5: Let i be the lowest level in T .
6: while Ti does not cover p do
7: Increase i by 1.
8: if i > size T .root then
9: Create a new cluster C = (T .root, size(T .root) + 1).
10: Make C the new root of the hierarchy.
11: The old root becomes a child of C.
12: Let C′ be a cluster in Ti that covers p.
13: Create a cluster C = (p, size(C′)− 1) and add it as a child

of C′.

The basic characteristics of the hierarchy hold after
an insertion. We now show that the separation property
holds after the insertion of a new cluster C = (p, l).
Assume, on the contrary, that there exists a cluster
C′ = (q, l) that (C, C′) violates the separation property.
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C is inserted on level l, thus p is not covered by Tl.
According to the assumption, d(q, p) ≤ Rl, meaning
that C′ covers p. This contradicts the fact that Tl does
not cover p since C′ ∈ Tl. A similar argument shows that
the separation property holds for the implicit copies of
C as well.

Point deletion. Upon the deletion of a point p, we
remove all the clusters centered at p in the hierarchy.
The clusters centered at p create a chain in T that starts
from the lowest level explicit copy of p and ends at the
highest level copy. We remove this chain level by level,
starting from the lowest level cluster C = (p, l) that is
centered at p. Upon the removal of C, we loop over
children of C one by one, and we try to assign them to a
new parent. If we find a cluster on level l+1 that covers
them, then we assign them to that cluster, otherwise we
replicate them on one level higher and we continue the
process with the remaining children. After we are done
with (p, l), we repeat the same process with (p, l + 1),
until no copies of p exist in the hierarchy (Algorithm 2).

Algorithm 2 Deleting a point from the hierarchy.
1: procedure Delete-from-Hierarchy(T , R, p)
2: Let C = (p, l) be the lowest level (explicit) cluster centered

at p.
3: Delete C from T and mark its children.
4: while there exists a marked cluster on level l − 1 do
5: Let C′ = (q, l − 1) be a marked cluster.
6: Find a cluster C′′ on level l that covers q.
7: if such cluster exists then
8: Assign C′′ as the parent of C′ and unmark C′.
9: else
10: Create C′′ = (q, l) and make it the parent of C′.
11: Mark C′′ and unmark C′.
12: if there still exists a marked cluster in T then
13: Increase l by one and repeat the while loop above.

Again, the basic characteristics of the hierarchy hold
after a deletion. We need to show that the separation
property still holds. Immediately after removing the
cluster (p, l) the separation property obviously holds.
After re-assigning a marked child to another parent the
property still holds since no cluster has changed in terms
of their center or level. If a marked child is replicated on
level l+1, it means that there was no cluster covering it
on this level, otherwise it would have been assigned as
its new parent. Therefore, the separation property holds
after the replication on level l + 1. We will prove more
properties of our hierarchy later on when we define the
spanner.

3.2 The initial spanner

Our initial spanner is a sparse spanner that is defined on
the hierarchy T and it has bounded cluster degree but
not bounded point degree. The reason that a bounded
degree on the clusters would not imply a bounded degree
on the point set is that every point could have multiple

clusters centered at it, each of which have a constant
number of edges connected to them. This would cause
the degree of the point to get as large as Ω(log∆). Later
we will fix this issue by assigning edges connected to
large degree points to other vertices.
The initial spanner consists of two types of edges.

The first type that we already mentioned before, is the
edges that go between clusters of the same level. These
edges guarantee a short path between the descendants
of the two clusters, similar to a spanner built on a well-
separated pair decomposition. And the second type is
the parent-child edges, that connect every node to its
children. The edge weight between two clusters is the
same as the distance between their centers.

We define the spanner formally as follows,

Definition 3 (Initial spanner) Let (T , R) be a hier-
archy that satisfies the separation property. We define
our sparse spanner S0 to be the graph on the nodes of T
that contains the following edges,

• Type I. Any pair of centers p and q whose clusters
are located on the same level and d(p, q) ≤ λ ·Rl are
connected together. Here, λ is a fixed constant.

• Type II. Any cluster center in T is connected to the
centers of its children in T .

Note that the implicit clusters are also included in
this definition. Meaning that if two implicit same-level
clusters are close to each other then there would be an
edge of type I between them. We show that the spanner
S0 has a bounded stretch.

Lemma 3 (Stretch-factor) For large enough λ =
O(ε−1) the stretch-factor of S0 would be bounded from
above by 1 + ε.

Proof. Let p and q be two points in the point set, and
also let C = (p, l) and C′ = (q, l′) be the highest level
clusters in T that are centered at p and q, respectively.
By symmetry, assume l ≥ l′. If d(p, q) ≤ λ · Rl′ , then
there is an edge between the (possibly implicit) cluster
(p, l′) and C′. This edge connects p and q together,
therefore the stretch would be equal to 1 for this pair.
If d(p, q) > λ · Rl′ , we perform an iterative search for
such shortcut edge. Start with C = (p, l′) and C′ = (q, l′)
and every time that the inequality d(p, q) ≤ λ ·Rl′ is not
satisfied set C and C′ to their parents and set l′ = l′ + 1
and check for the inequality again. We show that the
inequality eventually will be satisfied. Let pi and qi
be the centers of C and C′ on the i-th iteration of this
iterative process (i = 1, 2, . . . ), and let l′ have its initial
value before any increments. We have d(pi+1, pi) ≤ Rl

′+i

and d(qi+1, qi) ≤ Rl
′+i. By the triangle inequality,

d(pi+1, qi+1) ≤ d(pi+1, pi)+d(pi, qi)+d(qi+1, qi) ≤ 2·Rl′+i+d(pi, qi)

6
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Denote the ratio d(pi, qi)/R
l′+i−1 by xi. We have,

xi+1 ≤ 2 +
xi
R

Therefore, xi is roughly being divided by R on every
iteration and it stops when xi ≤ λ. We can easily see
that the loop terminates and the value of xi after the
termination would be greater than λ/R. This particu-
larly shows that the edge between C and C′ is a long
shortcut edge when λ is chosen large enough, since its
length is more than λ/R times the radius of the centers
it is connecting.
Now we show that this shortcut edge would be good

enough to provide the 1 + ε stretch factor for the initial
points, p and q. Note that because of the parent-child
edges, p can find a path to q by traversing pis in the
proper order and using edge between pi and qi and
traversing back to q. We show that the portion of the
path from p to pi (and similarly from q to qi) is at most
Rl′+i−1
R−1 . We prove it only for p, the argument for q is

similar. Note that if the termination level l′ + i ≤ l then
pi = p and this path length from p to pi would be 0,
confirming our claim for p. Therefore, we assume the
termination level is above the level of p. The length of
the path from p to pi that only uses type II edges would
be at most

Rl+1 + · · ·+Rl
′+i <

Rl
′+i+1 − 1

R− 1

Thus the length of the path from p to q would be at
most

2 · R
l′+i+1 − 1

R− 1
+ d(pi, qi)

On the other hand, by the triangle inequality,

d(p, q) ≥ d(pi, qi)− 2 · R
l′+i+1 − 1

R− 1

Finally, the stretch-factor of this path would be at most

2 · Rl′+i+1−1
R−1 + d(pi, qi)

d(pi, qi)− 2 · Rl′+i+1−1
R−1

A simple calculation yields that this fraction is less than
1 + ε when λ = 2(2 + ε)ε−1R = O(ε−1). □

Next, we show that the degree of every cluster in S0
is bounded by a constant. Note that this does not imply
a bounded degree on every point, since a point could be
the center of many clusters.

Lemma 4 (Degree bound) The degree of every clus-
ter in S0 is bounded by O(ε−d).

Proof. We first prove that the type I degree of every
cluster C = (p, l) is bounded by a constant. Let C′ = (q, l)

be a cluster that has a type I edge to C. This means that
d(p, q) ≤ λ ·Rl. By the separation property, d(p, q) > Rl.
Thus, by the packing lemma there are at most

dd/2λd = O(ε−d)

type I edges connected to C. The last bound comes from
the fact that a choice of λ = O(ε−1) would be enough
to have a bounded stretch.

Now we only need to show that the parent-child edges
also add at most a constant degree to every cluster, which
is again achieved by the packing lemma. Because the
children of this cluster are located in a ball of radius Rl

around its center, p, and they are also pair-wise separated
by a distance of at least Rl−1, we can conclude that the
number of children of C would be upper bounded by
dd/2Rd = O(1). □

Representative assignment. So far we showed how
to build a spanner that has a bounded degree on each
cluster and the desired stretch-factor of 1 + ε. But this
spanner does not have a degree bound on the actual point
set and that is a property we are looking for. Here, we
show how to reduce the load on high degree points and
distribute the edges more evenly so that the bounded
degree property holds for the point set as well.
The basic idea is that for every cluster C in the hier-

archy, we pick one of lower level clusters, say C′, to be
its representative and play its role in the final spanner,
meaning that all the spanner edges connecting C to other
clusters will now connect C′ to those clusters after the
re-assignment. This re-assignment will be done for every
cluster in the hierarchy until every cluster has a repre-
sentative. Only then we can be certain that the spanner
has a bounded degree on the current point set. Since
by Lemma 4 the degree of every center is bounded by
a constant, we only need to make sure that every point
is representing at most a constant number of clusters in
the hierarchy.
First, we define the level of a point p, denoted by

size(p) to be the level of the highest level cluster that
has p as its center, i.e. size(p) = max(p,l)∈T l.

Definition 4 (Representative assignment) Let T
be a hierarchy. We define the representative assignment
of T to be a function L that maps every cluster C = (p, l)
of T to a point q in the point set such that l ≥ size(q)
and d(p, q) ≤ Rl. We say L has bounded repetition b if
|L−1(q)| ≤ b for every point q.

Connecting the edges between the representatives in-
stead of the actual centers would give us our bounded-
degree spanner.

Definition 5 (Bounded-degree spanner) Define
the spanner S1 to be the spanner connecting the pair
(L(C),L(C′)) for every edge (C, C′) ∈ S0.

7
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Now we show that this re-assignment of the edges
would not affect the stretch-factor and the degree bound
significantly if the clusters are small enough, or equiva-
lently, λ is chosen large enough.

Lemma 5 (Stretch-factor) For large enough λ =
O(ε−1) and any representative assignment L the stretch-
factor of S1 would be bounded from above by 1 + ε.

Proof. The proof works in a similar way to the proof
of Lemma 3. A shortcut edge would still provide a good
path between two clusters even after its end points are
replaced by their representatives. The path from a p to
pi will be doubled at most since a representative could be
as far as a child from the center of a cluster. Therefore,
the stretch-factor of the path between p and q will be

4 · Rl′+i+1−1
R−1 + d(pi, qi)

d(pi, qi)− 4 · Rl′+i+1−1
R−1

Again, this fraction is less than 1 + ε when λ = 4(2 +
ε)ε−1R = O(ε−1). □

To construct a bounded-repetition representative as-
signment we pay attention to the neighbors of lower
level copies of a cluster. Let C = (p, l) be a cluster that
we want to find a representative for. As we mentioned
before, (p, l′) exists in the hierarchy for all l′ < l. If l′

is small enough, i.e. l′ < l − logR λ, then the neighbors
of (p, l′) will be located within a distance λ ·Rl′ = Rl of
p, making them good candidates to be a representative
of C. Therefore, having more neighbors on lower levels
means having more (potential) representatives on higher
levels. This is how we assign the representatives.

We define a chain to be a sequence of clusters with the
same center that form a path in T . We divide a chain
into blocks of length logR λ. The best way to do this so
that maintaining it dynamically is easy is to index the
clusters in a chain according to their levels and gather
the same indices in the same block. We define the block
index of a cluster in a chain to be ⌊l/ logR λ⌋, where l
is the level of the cluster. The clusters in a chain that
have the same index form a block.
The first observation is that if we are given two non-

consecutive blocks in the same chain, we can use the
neighbors of the lower level block as representatives
of the higher level block. This is the key idea to our
representative assignment, which we call next block as-
signment. In this assignment, we aim to represent higher
level points with lower level points. Let p be a point
and P1, P2, . . . , Pk be all the blocks of the chain that is
centered at p in T , ordered from top to bottom (higher
level blocks to lower level blocks). We say a block is
empty if the clusters in the block have no neighbors in
T . We say the block is non-empty otherwise. We make
a linked list L0 of all the even indexed non-empty blocks,

and a separate linked list L1 for all the odd indexed
non-empty blocks. For every element of L0 we pick an
arbitrary neighbor cluster of its block in L0 (because
the blocks are non-empty such neighbors exists), and
we assign that neighbor to be the representative of the
clusters in that element. More specifically, let Bi be a
block in L0, and let Bi+1 be the next block in L0. Let C
be an arbitrary cluster in Bi+1 that has a neighbor. This
cluster exists, since Bi+1 is a non-empty block. Let q be
the center of a neighbor of C. We assign L(C′) = q for all
C′ ∈ Bi. The same approach works for L1. This assigns
a representative to every block in the chain, except the
last block in L0 and L1. We assign p itself to be the
representative of the clusters in these blocks.

Now we show that this assignment has bounded repe-
tition. First, we show that our assignment only assigns
lower level points to be representatives of higher level
points.

Lemma 6 Let p and q be two points in the point set
and let size(p) > size(q) . In the next block assignment
q would never be represented by p.

Proof. Assume, on the contrary, that q is represented
by p. Therefore, there exists two same-parity cluster
blocks in the chain centered at q that a cluster centered
at p is connected to the lower block. Let C = (p, l)
and C′ = (q, l′) be the highest clusters centered at p
and q, respectively. Since the connection between p and
q is happening somewhere on the third block or lower
on the chain centered at q, we can say that d(p, q) <
λ · Rl′−logR λ = Rl

′
. This means that the separation

property does not hold for the lower level copy of C,
(p, l′), and C′, which is a contradiction. □

Now that we proved that points can only represent
higher level points in our assignment, we can show the
bounded repetition property.

Lemma 7 (Bounded repetition) The next block as-
signment L described above has bounded repetition.

Proof. We show that every point represents at most
a constant number of clusters. First, note that the
two bottom clusters of the two block linked lists have a
constant number of clusters in them (to be exact, 2 logR λ
clusters maximum). So we just need to show that the
number of other clusters that are from other chains and
assigned to the point are bounded by a constant. Let p
be an arbitrary point and let C = (p, l) be the highest
level cluster centered at p. According to the previous
lemma, any point q that has a cluster C′ = (q, l′) that
L(C′) = p must have a higher level than p. Therefore,
there exists a lower level copy of q on level l. Also, the
distance between p and q is bounded by λ ·Rl since p and
q are connected on a level no higher than l (remember
that we only represent our clusters with their lower level
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neighbors). Now we can use the packing lemma, since
all such points q have a cluster centered at them on level
l and therefore separated by a distance of Rl. By the
packing lemma, the number of such clusters would be
bounded by dd/2λd such points. So the repetition is at
most b = dd/2λd + 2. □

Corollary 8 The spanner S1 has bounded degree.

3.3 Maintaining the spanner

So far we showed S1 has bounded stretch and bounded
degree. Here we show that we can maintain S1 with O(1)
amortized number of updates after a point insertion and
O(log∆) amortized number of updates after a point
deletion. We know how to maintain the hierarchy from
earlier in this section. Therefore, we just explain how
to update the spanner, which includes maintaining our
representative assignments dynamically.

Point insertion. We prove the amortized bound by
assigning credits to each node, and using the credit in
the future in the case of an expensive operation. Let
Dmax be the degree bound we proved for S1. When
a new point is added to the spanner, we assign Dmax

credits to it.
We analyze the edge addition and removals that hap-

pen after the insertion of a point p in the spanner. Note
that although only one explicit cluster is added to T after
the insertion, there might be many new edges between
the implicit (lower level) copies of the new cluster and
other clusters that existed in T beforehand. We need to
show that these new edges do not cause a lot of changes
on the spanner after the representative assignment phase.

First, we analyze the effect of addition of p on points q
that size(p) > size(q). Similar to the proof of Lemma 6,
we can show that any edges between the chain centered at
p and the chain centered at q will be connected to the top
two cluster blocks of the chain centered at q. This means
that these edges will have no effect on the assignment
of other clusters in the chain centered at q, because
each non-empty block is represented by some neighbor
of the next non-empty same-parity block, and the first
two blocks, whether they are empty or not, will not
have any effect on the rest of the assignment. Therefore,
no changes will occur on the representatives of q and
therefore the edges that connect these representatives
together will remain unchanged.
The addition of p as we mentioned, would cause the

addition of some edges in the spanner S1, that we pay
for using the constant amount of credit stored on the
endpoints of those edges. Therefore, we are not spending
more than constant amount of amortized update for this
case.

Second, we analyze the effect of addition of p on points
q that size(p) ≤ size q. The outcome is different in this
case. Similar to the previous case we can argue that

any edge between the chain centered at p and the chain
centered at q must be connected to the top two blocks
of the chain centered at p, but they could be connected
to anywhere relative to the highest cluster centered at q.
This means that they could add a non-empty block in the
middle of the chain centered at q. If this happens, then
the assignment of the previous non-empty same-parity
block changes and also the new non-empty block will
have its own assignment. This translates into a constant
number of changes (edge additions and removals) on the
spanner S1 per such point q. We earlier in Lemma 7
proved that there is at most a constant number of such
clusters. This shows that there would be at most a
constant number of changes on the spanner S1 from
higher level points.

Finally, we can conclude that overall the amortized
recourse for insertion is bounded by a constant, since
in the first case we could pay for the changes using the
existing credits, and in the second case we could pay for
the changes from our pocket.

Point deletion. After a point deletion, all the clus-
ters centered at that point will be removed from the
hierarchy, and a set of replication to higher levels would
happen to some clusters to fix the hierarchy after the
removal. It is easy to see that the number of cluster
changes (including removal and replication) would be
bounded by a constant. Each cluster change would also
cause a constant number of changes on the edges of the
spanner S0. Note that a cluster removal can introduce
an empty block to at most a constant number of higher
level points and a cluster replication can also introduce
an empty block to at most a constant number of higher
level points. Therefore, the changes on the representa-
tive assignments would be bounded by a constant after
a single cluster update. Since we have at most O(log∆)
levels in the hierarchy, each of which having at most a
constant number of cluster updates, overall we would
have at most O(log∆) number of edge changes on S1.
After the removal, we assign full Dmax credit to any
node that is impacted by the removal. This would make
sure we have enough credits for the future additions.

4 Light spanner

In section 3 we discuss how we maintain our hierarchical
clustering and how we construct and maintain a sparse
spanner on top of this hierarchy so that each point
insertion makes at most O(1) changes on the spanner
and each point deletion makes at most O(log∆) changes
on the spanner.

In this section, we introduce our techniques for main-
taining a light spanner that has a constant lightness
bound on top of all the properties we had so far. In
our main result in this section we show that maintain-
ing the lightness in our case is not particularly harder
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than maintaining the sparsity, meaning that it would
not require asymptotically more changes than a sparse
spanner would.

We first analyze the effect of point insertion or deletion
on the potential functions we defined earlier in section 2.
Then we introduce our maintenance updates and we
show our bounds on the recourse of a light spanner.

4.1 Bounding the potential function

In this section we analyze the behavior of our potential
functions, after a point insertion and a point deletion.
These bounds will later help us prove the amortized
bounds on the recourse. We refer to section 2 for the
definition of the potential function.
Single edge update. We start with a simple case

of bounding the potential function after a single edge
insertion, then we consider a single edge deletion, and
finally we extend our results to point insertions and
deletions. We assume the pair that we insert to or delete
from the spanner is an arbitrary pair from the set of
potential pairs, because we only deal with potential pairs
in our light spanner.
First, we consider a single edge insertion. We divide

the analysis into two parts: the effect of the insertion
of the potential pair onto the same level potential pairs,
and the effect of the insertion onto higher level potential
pairs. Recall that the level of a pair was defined in
section 2. We show that the edges of the same level
satisfy a separation property, meaning that two edges in
the same bucket cannot have both their endpoints close
to each other.

Lemma 9 (Edge separation) Let (u,w) and (y, z) be
two potential pairs in the same bucket. Assuming that
(u,w) and (y, z) are not representing clusters from the
same pair of chains in T ,

max{d(u, y), d(w, z)} > 1

λ2 · c max{d(u,w), d(y, z)}

Proof. [Proof of Lemma 9] Note that the constraint on
not connecting the same pair of chains in the lemma is
necessary, because in our sparse spanner construction, it
is possible that two points are connected on two different
levels on two different pairs of clusters. These two edges
could potentially go into different non-empty blocks
and get assigned different representatives and cause two
parallel edges between two neighborhoods. While this is
fine with sparsity purposes as long as there is at most a
constant number of such parallel edges, we do not want
to have them in our light spanner since they will make
the analysis harder. Therefore, we assume that the edges
are not connecting clusters centered at the same pair of
points.

Next we show that these two pairs are from two cluster
levels that are not far from each other. Let (u,w) be

an edge on level l of the hierarchy and (y, z) be an edge
on level l′ of the hierarchy. Without loss of generality,
assume that l ≥ l′. We know that the potential pairs
connect same level clusters together. Therefore, the
length of (u,w) could vary between Rl and λ · Rl. A
similar inequality holds for (y, z). Thus the ratio of the
length of the two would be at least λ−1Rl−l

′
. Also, if C

is chosen large enough it is clear that the two edges must
have the same index as well, otherwise the length ratio
of C between the two edges would make their endpoints
very far from each other. Thus, the edges belong to the
same bucket and index, meaning that the length of their
ratio is at most c. So,

λ−1Rl−l
′
< c

Now, the separation property on level l′ between the
clusters that these two edges are connecting to each
other states that

max{d(u, y), d(w, z)} ≥ Rl′ > Rl

λ · c

Also according to earlier in this proof, Rl ≥ d(u,w)/λ.
Thus,

max{d(u, y), d(w, z)} > d(u,w)

λ2 · c =
1

λ2 · c max{d(u,w), d(y, z)}

□

Now using this lemma we show that the insertion of a
potential pair will not cause any violations of Invariant
2 on the same level.

Lemma 10 Let (u,w) be a potential pair that is inserted
to Si where i = index(u,w). If d∗i (u,w) > (1+ε′)d(u,w),
then the insertion of (u,w) results in no violations of
Invariant 2 on same or lower level edges, assuming that
c−1(1 + λ−2) ≥ 1 + ε′.

Proof. [Proof of Lemma 10] It is clear that (u,w) cannot
participate in a shortest-path (in S∗i ) for any of the lower
level pairs, so adding it does not affect any of those pairs.
Also adding (u,w) would not violate Invariant 2 for
the pair itself because of the assumption d∗i (u,w) >
(1 + ε′)d(u,w). Thus we only need to analyze the other
same level edges.

So let (y, z) be a same-level edge in Si. If one of (u,w)
or (y, z) use the other one in its shortest extended path
(in S∗i ), then by Lemma 9, the length of the path would
be at least

min{d(u,w), d(y, z)}+max{d(u, y), d(w, z)}

> min{d(u,w), d(y, z)}+ 1

λ2 · c max{d(u,w), d(y, z)}

10
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We also know, from the assumption, that (u,w) and (y, z)
are same-level edges in Si, so c

−1 < d(u,w)/d(y, z) < c.
Therefore, the stretch of the path would be at least

min{d(u,w), d(y, z)}+max{d(u, y), d(w, z)}
max{d(u,w), d(y, z)}

> c−1(1 + λ−2) ≥ 1 + ε′

Thus the stretch of the path is more than 1 + ε′, which
shows that this addition would not violate Invariant 2
for any of the two pairs, even though the paths of same
level edges are excluded in d∗i (u,w). □

Note that satisfying the condition in Lemma 10 is easy.
We first choose large enough λ to have a fine hierarchy,
then we choose c small enough that c < 1 + λ−2, then
we choose ε′ = c−1(1 + λ−2)− 1. Now we show that the
potential change on higher level potential pairs would
be bounded by a constant after the insertion of (u,w).

Lemma 11 Let (u,w) be a potential pair that is inserted
to Si where i = index(u,w). The insertion of (u,w)
results in at most

C3

ck − 1

potential increase on higher level potential pairs in Si,
where

C3 = ε(1 + ε)dcd+1C1

is a constant (and k is the number of buckets).

Proof. [Proof of Lemma 11] Let (y, z) be an edge of
level j′ > j in Si whose d

∗
i is decreased by the addition

of (u,w). Thus the shortest extended path between y
and z in S∗i passes through (u,w). Denote this path
by P ∗i (y, z). Before the addition of (u,w), the length of
the same path in S∗i was at most ∥P ∗i (y, z)∥+ εd(u,w).
Hence, ∆d∗i (y, z) ≥ −εd(u,w), and the potential change
of this edge would be

∆pi(y, z) =
−∆d∗i (y, z)
d(y, z)

≤ εd(u,w)

d(y, z)
≤ εck(j−j′)+1

In the next step, we bound the number of such (y, z)
pairs. Let r be the minimum length of such edge in level
j′. Both y and z must be within (1 + ε)cr Euclidean
distance of u (and w), otherwise the edge (u,w) would
be useless in (y, z)’s shortest path in S∗i . Thus, all such
pairs are located in a ball B(u, (1+ ε)cr), and according
to Lemma 2, there would be at most

C2 = (1 + ε)dcdC1

number of them.
Thus, the overall potential change on level j′ would

be upper bounded by C2εc
k(j−j′)+1. Summing this up

over j′ > j, the overall potential change on higher level
pairs would be at most

∆Φi <
∑

j′>j

εC2c
k(j−j′)+1 =

C3

ck − 1

where C3 = εC2c. □

Now we analyze the removal of a potential pair from a
bucket. The difference with the removal is that it could
cause violations of Invariant 1 on its level. Therefore,
we analyze a removal, together with some subsequent
edge insertions that fix any violations of Invariant 1 on
the same level.

Definition 6 (Edge removal process) Let (u,w) be
a potential pair that is located in Si where i =
index(u,w). We define the single edge removal pro-
cess on (u,w) to be the process that deletes (u,w) from
Si and fixes the subsequent violations of Invariant 1 on
the same level by greedily picking a violating pair, and
connecting its endpoints in Si, until no violating pair for
Invariant 1 is left.

We analyze the effect of the edge removal process in
the following two lemmas,

Lemma 12 Let (u,w) be a potential pair that does not
violate Invariant 1 (d∗i (u,w) < (1 + ε)d(u,w)) and is
deleted from Si (i = index(u,w)), using the edge removal
process. The deletion of (u,w) together with these sub-
sequent insertions results in no violations of Invariant 1
or Invariant 2 on same or lower level edges, assuming
that c−1(1 + λ−2) ≥ 1 + ε′.

Proof. [Proof of Lemma 12] It is clear that (u,w) cannot
participate in a shortest-path (in S∗i ) for any of the
lower level pairs, so deleting it does not affect any of
those pairs. Also, every same level pair that violates
Invariant 1 is fixed after the insertion of subsequent edges.
Therefore, we just need to show there are no violations
of Invariant 2 after these changes. This is also clear by
Lemma 10, because we are only inserting edges (y, z) that
that violate Invariant 1, i.e. d∗i (y, z) > (1 + ε)d(y, z) >
(1+ε′)d(y, z), meaning that the assumption of the lemma
holds in this insertion. □

We show a similar bound as edge insertion on the
effect of the edge removal process on higher level pairs.

Lemma 13 Let (u,w) be a potential pair that is deleted
from to Si where i = index(u,w). The edge removal
process on (u,w) results in at most

C5

ck − 1

potential increase on higher level potential pairs in Si,
for some constant C5 that depends on ε, ε′, and c. is a
constant.

11
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Proof. [Proof of Lemma 13] The edge removal process
can be divided into two phases. The deletion of (u,w),
and the insertion of the subsequent pairs. First, we
show that the potential increase after the edge deletion
is bounded. Let (y, z) be an edge of level j′ > j in Si
whose d∗i is increase by the deletion of (u,w). Thus the
shortest extended path between y and z in S∗i passes
through (u,w). Denote this path by P ∗i (y, z). After the
removal of (u,w), the length of the same path in S∗i is at
most ∥P ∗i (y, z)∥+εd(u,w). Hence, ∆d∗i (y, z) ≤ εd(u,w),
and the potential change of this edge would be

∆pi(y, z) =
∆d∗i (y, z)
d(y, z)

≤ εd(u,w)

d(y, z)
≤ εck(j−j′)+1

Again, the number of such (y, z) pairs is bounded by

C2 = (1 + ε)dcdC1

according to Lemma 2. Thus, the overall poten-
tial change on level j′ would be upper bounded by
C2εc

k(j−j′)+1. Summing this up over j′ > j, the overall
potential change on higher level pairs would be at most

∆Φi <
∑

j′>j

εC2c
k(j−j′)+1 =

C3

ck − 1

where C3 = εC2c.
Now, the number of subsequent edge insertions would

also bounded by a constant. Because in order for an
inserted pair (y, z) to violate Invariant 1 after the dele-
tion of (u,w), u and w must be within a distance
c(1+ε)d(u,w), otherwise the edge (u,w) would be useless
in their shortest-path. Also since they satisfy Invariant
2, we conclude from Lemma 2 that the number of such
pairs is bounded by a constant. Denote this bound by
C4. Then the potential on higher level pairs from the
insertions of C4 pairs on the same level would be at most
C3C4/(c

k − 1).
Overall, the potential increase on higher level pairs

from the edge removal process will be C5/(c
k− 1) where

C5 = C3(C4 + 1). □

Adjusted potential function. We have one last
step before analyzing the potential function after a point
insertion and a point deletion. We need to slightly
adjust the potential function to take into account future
edges that might be added between the existing points
because of a new point. As we see in section 3, a new
point can have a large degree in S0 due to its implicit
clusters in multiple levels of the hierarchy. We handled
this by assigning these edges to nearby representatives
and we proved a constant degree bound on S1. But
this still would mean adding a point could increase the
potential function by Ω(log∆) since logarithmic number
of edges could be added to the sparse spanner. We
fix this issue in our potential function by taking into

account all the future edges that can be incident to a
point. Our adjusted potential function on the whole
spanner, denoted by Φ∗, has an extra term compared to
the previous potential function Φ,

Φ∗ = Φ+
pmax
2
·
n∑

i=1

(Dmax − degS1(vi))

degS1(vi) is the degree of the i-th point (in any fixed
order, e.g. insertion order) in the sparse bounded degree
spanner S1, and

pmax = max{1 + ε, Cϕ(ε− ε′)}

is the maximum potential value a potential pair can have
in its own bucket given the fact that it does not violate
Invariant 1. Note that the first term is the maximum
of the potential of any pair if its edge is present in the
bucket and the second term is the maximum potential
of the pair if its edge is absent from the bucket and it
is not violating Invariant 1. We will later see why the
assumption that Invariant 1 holds for such pairs is fine.
But this extra term in the potential function will be
used to cover the potential pi of the extra potential pairs
added by the new point.

4.2 Maintaining the light spanner

We are finally ready to introduce our techniques for
maintaining a light spanner under a dynamic point set.
For point insertion, we select a subset of edges added
in the sparse spanner to be present in the light spanner.
We show that the potential increase on Φ∗ after inserting
the new point would be bounded by a constant. Then
we perform the same analysis for point deletion and we
show that the potential increase is bounded by O(log∆).
In the last part of this section we introduce our meth-
ods for iteratively improving the weight of the spanner
by showing an algorithm that decreases the potential
function by a constant value in each iteration. This
concludes our results on the recourse for point insertion
and point deletion.
Point insertion. Following a point insertion for a

point p, we insert p into the hierarchy and we update
our sparse spanner S1. There are at most a constant
number of pairs whose representative assignment has
changed, we update these pairs in the light spanner as
well. Meaning that if they were present in the light span-
ner, we keep them present but with the new endpoints,
and if they were absent, we keep them absent. Besides
the re-assignments, there could be some (even more than
a constant) edge insertions into the sparse spanner, but
the degree bound of Dmax would still hold on every
point. We greedily pick one new edge at a time that its
endpoints violate Invariant 1 in the light spanner, and
we add that edge to the light spanner. (Algorithm 3)

12
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Algorithm 3 Inserting a point to the light spanner.
1: procedure Insert-to-Light-Spanner(p)
2: Insert p into the hierarchy T .
3: Make the required changes on the sparse bounded degree

spanner S1.
4: for any pair (u,w) with updated representative assignment

do
5: Update the endpoints of the edge in the light spanner.

6: for any edge (u,w) added to the sparse spanner do
7: if Invariant 1 is violated for this pair on the light

spanner then
8: Add (u,w) to the light spanner (to its own bucket).

We now analyze the change in the potential function
after performing this function following a point insertion.

Lemma 14 Insert-to-Light-Spanner adds at most
a constant amount to Φ∗.

Proof. [Proof of Lemma 14] Note that at most a con-
stant number of edges will go through a representative
assignment change. Each representative change can be
divided into removing the old pair and adding the new
one. Each removal will increase the potential of at most
a constant number of pairs on any same or higher level
pairs. This would sum up to a constant amount as we
saw earlier in Lemma 12 and Lemma 13. Also, insert-
ing the updated pairs would also sum up to a constant
amount of increase in the potential function as we saw
in Lemma 10 and Lemma 11.

For the edge insertions however, we will get help from
the extra term in our potential function. Note that any
extra edge that is added between any two points that
existed before the new point will increase both of their
degrees by 1 and therefore, decrease the term

pmax ·
n∑

i=1

(Dmax − degS1(vi))

by pmax. On the other hand, the new pair will either
be added to the light spanner or will satisfy Invariant 1
if not added. Thus, its potential will be at most 1 + ε
in the first case, and at most Cϕ(ε − ε′) in the second
case. In any case, the potential of the new pair is not
more than pmax, and hence Φ∗ will not increase due to
the addition of the new pair.
Lastly, the new point will introduce a new term

pmax · (Dmax − degS1(vn+1)) in Φ∗ which would also
be bounded by a constant. Overall, the increase in Φ∗

will be bounded by a constant. □

Point deletion. Following a point deletion, we per-
form the deletion on the hierarchy and update the sparse
spanner accordingly. This would cause at most O(log∆)
potential pairs to be deleted from or inserted into the
spanner. The procedure on the light spanner is simple
in this case. We add all the inserted pairs to the light

Algorithm 4 Deleting a point from the light spanner.
1: procedure Delete-from-Light-Spanner(p)
2: Delete p from the hierarchy T .
3: Make the required changes on the sparse bounded degree

spanner S1.
4: for any pair (u,w) removed from the sparse spanner do
5: Remove (u,w) from the light spanner if present.

6: for any pair (u,w) added to the sparse spanner do
7: Add (u,w) to the light spanner.

8: for any pair (u,w) with updated representative assignment
do

9: Update (u,w) in the light spanner as well.

spanner, and we remove the removed pairs from the light
spanner if they are present.

Lemma 15 Delete-from-Light-Spanner adds at
most O(log∆) to Φ∗.

Proof. [Proof of Lemma 15] The number of edges up-
dated on every level of hierarchy after a point removal is
bounded by a constant. Therefore, the total number of
changes would be bounded by O(log∆). Each change
would cause Φ∗ to increase by at most pmax. Thus, the
total increase is bounded by O(log∆). □

4.3 Maintenance updates

Our maintenance approach is simple, as long as there
exists a potential pair on any Si that violates either of the
two invariants, we perform the corresponding procedure
to enforce that invariant for that pair. The fact that
the potential function decreases by a constant amount
after each fix is the key to our amortized analysis on the
number of maintenance updates to reach a spanner with
bounded degree and bounded lightness.

Fixing a violation of Invariant 1. In our first
lemma in this section, we show that fixing a violation of
Invariant 1 in the way that we mentioned above, would
decrease the value of the potential function on each Si.

Lemma 16 Let (v, w) be a potential pair with
index(v, w) = i that violates Invariant 1, i.e.
d∗i (v, w)/d(v, w) > 1 + ε. Also, assume that

k ≥ logc

(
1 +

C3

(Cϕ − 1)(ε− ε′)

)

Then adding the edge (v, w) to Si decreases the overall
potential Φi of Si by at least (ε− ε′).

Proof. [Proof of Lemma 16] Note that adding (v, w)
would have no effect on the potential of the lower level
or same level potential pairs, due to the definition of d∗i .
We know from Lemma 11 that adding (v, w) to Si would
increase the potential on higher level pairs by at most

13
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C3/(c
k − 1). Also, the potential of the pair itself before

the addition is

pi(v, w) = Cϕ ·
(
d∗i (v, w)
d(v, w)

− (1 + ε′)

)

On the other hand, after the addition,

pi(v, w) = (1 + ε)− d∗i (v, w)
d(v, w)

Therefore,

∆pi(v, w) = (ε− ε′) + (Cϕ + 1)

(
1 + ε′ − d∗i (v, w)

d(v, w)

)

We know by the assumption that the stretch of the
shortest extended path between v and w would be more
than 1+ε, since (v, w) is violating Invariant 1. Therefore,

1 + ε′ − d∗i (v, w)
d(v, w)

< −(ε− ε′)

Thus,

∆pi(v, w) < (ε− ε′)− (Cϕ + 1)(ε− ε′) = −Cϕ(ε− ε′)

According to this and what we mentioned earlier in the
proof,

∆Φi ≤ −Cϕ(ε− ε′) +
C3

ck − 1

and if

k ≥ logc

(
1 +

C3

(Cϕ − 1)(ε− ε′)

)

then ∆Φi ≤ −(ε− ε′), which is a negative constant. □

Fixing a violation of Invariant 2. Next, we con-
sider the second type of maintenance updates, which
is to fix the violations of Invariant 2. Whenever a pair
(v, w) that violates Invariant 2 is found, the first step
is to remove the corresponding edge from its subset Si.
Afterwards, we address the same-level violations of In-
variant 1 by greedily adding a pair that violates Invariant
1, until none is left. This is the same as performing the
edge removal process on the violating pair.

Lemma 17 Let (v, w) ∈ Si be an edge that violates
Invariant 2, i.e. d∗i (v, w)/d(v, w) ≤ 1 + ε′. Also assume
that

k ≥ logc

(
1 +

2C5

ε− ε′
)

Then performing the edge removal process on (v, w) de-
creases the overall potential Φi of Si by at least (ε− ε′).

Proof. [Proof of Lemma 17] Since all the additions and
removals in the edge removal process are happening on
the same level and also due to the definition of d∗i , there
would be no potential change on any of the same or

lower level pairs. We know from Lemma 13 that deleting
(v, w) from Si would increase the potential on higher
level pairs by at most C5/(c

k − 1). The potential of the
pair itself before the deletion is

pi(v, w) = (1 + ε)− d∗i (v, w)
d(v, w)

After the deletion,

pi(v, w) = Cϕ ·
(
d∗i (v, w)
d(v, w)

− (1 + ε′)

)

Therefore,

∆pi(v, w) = −(ε− ε′)− (Cϕ + 1)

(
1 + ε′ − d∗i (v, w)

d(v, w)

)

We know by the assumption that the stretch of the short-
est extended path between v and w would be less than
1 + ε′, since (v, w) is violating Invariant 2. Therefore,

1 + ε′ − d∗i (v, w)
d(v, w)

> 0

Thus,
∆pi(v, w) < (ε− ε′)

According to this and what we mentioned earlier in the
proof,

∆Φi ≤ −(ε− ε′) +
C5

ck − 1

and if

k ≥ logc

(
1 +

2C5

ε− ε′
)

then ∆Φi ≤ −(ε−ε′)/2, which is a negative constant. □

Bounding the number of updates. Now that we
introduced our maintenance updates and we analyzed
the change in the potential functions after each of these
updates, we can finally prove our amortized bounds. We
prove that the amortized number of edge updates in
our algorithm after a point insertion is O(1), while the
amortized number of edge updates after a point deletion
is O(log∆).

Theorem 18 Our fully-dynamic spanner construction
in d-dimensional Euclidean spaces has a stretch-factor
of 1 + ε and a lightness that is bounded by a constant.
Furthermore, this construction performs an amortized
O(1) edge updates following a point insertion, and an
amortized O(log∆) edge updates following a point dele-
tion.

Proof. [Proof of Theorem 18] The stretch factor and
the lightness immediately follow from the fact that our
spanner always satisfies the two invariants, and according
to Lemma 1 and the leapfrog property, that would be
enough for a 1 + ε stretch factor and constant lightness.
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In order to prove the amortized bounds on the num-
ber of edge updates after each operation, we recall
that by Lemma 14, the potential change ∆Φ∗ after
a point insertion is bounded by a constant, and by
Lemma 15, the potential change after a point dele-
tion is bounded by O(log∆). On the other hand, by
Lemma 16 and Lemma 17, each maintenance update
reduces the potential Φ∗ by at least (ε − ε′)/2, since
the impacted Φi reduces after the maintenance update,
Φj for j ̸= i will remain unchanged, and the extra
term pmax

2 ·∑n
i=1(Dmax − degS1(vi)) will also remain

unchanged since the sparse spanner is not affected by the
maintenance updates. Therefore, the amortized num-
ber of maintenance updates required after each point
insertion is O(1) while this number after a point dele-
tion is O(log∆). Also, the number of edge updates be-
fore the maintenance updates would be bounded by the
same amortized bounds. Thus, we can finally conclude
that the amortized number of edge updates following a
point insertion is O(1), while for a point deletion it is
O(log∆). □
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On Totally-Concave Polyominoes*

Gill Barequet� Noga Keren† Johann Peters� Neal Madras§ Adi Rivkin†

Abstract

A polyomino is an edge-connected set of cells on the
square lattice. Every row or column of a totally-concave
(TC) polyomino consists of more than one sequence of
consecutive cells of the polyomino. We show that the
minimum area (number of cells) of a TC polyomino is 21
cells. We also suggest, implement, and run an efficient
algorithm for counting TC polyominoes. Finally, we
prove that the associated sequence (κ(n)) has a finite
growth constant λκ, prove the lower bound λκ > 2.4474,
and conjecture that λκ is equal to the growth constant
of all polyominoes.

1 Introduction

A polyomino of area n is a connected set of n cells on the
square lattice Z2, where connectivity is through edges.
Two polyominoes are considered equivalent if one can
be transformed into the other by a translation.
Counting polyominoes is a long-standing problem in

discrete geometry, originating in statistical physics in
the context of percolation processes [10] and popularized
in Golomb’s pioneering book [12] and by M. Gardner’s
columns in Scientific American. The sequence A(n),
which lists the number of polyominoes, is currently
known up to n = 70 [1].
The growth constant of polyominoes has also at-

tracted much attention in the literature. Klarner [16]
showed that the limit (a.k.a. Klarner’s constant) λ :=
limn→∞ n

√
A(n) exists. The convergence of A(n +

1)/A(n) to λ, as n→∞, was proved only three decades
later by Madras [17]. The best-known lower [4] and up-
per [5] bounds on λ are 4.0025 and 4.5252, respectively.
By applying numerical methods to the known values of
A(n), it is widely believed that λ ≈ 4.06, and the cur-
rently best estimate of λ is 4.0625696± 0.0000005 [15].
(Based on the new counts of A(n) till n = 70, a better
estimate, 4.06256912(2), was provided to us by I. Jensen
in a personal communication.)

*Work on this paper by the fourth author has been supported
in part by a Discovery Grant from NSERC Canada.
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nology, Haifa 3200003, Israel, barequet@cs.technion.ac.il,
[noga.keren,adi.rivkin]@campus.technion.ac.il

�Dept. of Mathematics, Univ. of Waterloo, ON N2L 3G1,
Canada, j8peters@uwaterloo.ca

§Dept. of Mathematics and Statistics, York University,
Toronto, ON M3J 1P3, Canada, madras@yorku.ca.

In a convex polyomino, each row and column consists
of exactly one maximal continuous sequence of cells.
These polyominoes are essential in many application do-
mains, and they attracted a considerable amount of at-
tention in the literature. See, for example, a discussion
of the asymptotic number of convex polyominoes [8], a
derivation of a rather complex generating function for
the sequence that enumerates convex polyominoes [9], a
method for generating random convex polyominoes [13],
and an investigation of the relation between ordering
and convex polyominoes [11], among many other works.

However, the complement type of polyominoes was
hardly considered. In a totally-concave (TC) poly-
omino, each row and column consists of at least two
maximal continuous sequences of cells, as is shown in
Figure 1.1 It is hinted in Ref. [7, §14, p. 369, prob-
lem 14.5.4] that the minimum possible area of a TC
polyomino is 21. Let κ(n) be the number of TC polyomi-
noes of size (area) n. An algorithm for computing κ(n),
for a given n, is also sought as an open problem [7, §14,
p. 369, problem 14.5.5]. Among other results, we set-
tle the minimality conjecture and suggest an efficient
algorithm.

The paper is organized as follows. In Section 2, we
prove that there do not exist TC polyominoes of area
less than 21. In Section 3, we present a nontrivial exten-
sion of Jensen’s algorithm to counting TC polyominoes,
and report counts of these polyominoes up to size 35.
In Section 4, we prove that the sequence κ(n) has a
growth constant λκ, prove that λκ > 2.4474, and pro-
vide a motivation for the conjecture that λκ = λ. We
end in Section 5 with some concluding remarks and fu-
ture research directions.

2 Minimum Area

Theorem 1 The minimum area of a TC polyomino
is 21.

The proof of this theorem follows a necessity-
sufficiency format. Necessity is shown by deducing up-
per and lower bounds on the area of TC polyominoes
in m× ℓ bounding boxes; These bounds contradict each
other for areas less than 21. Sufficiency is evident by
example.

1Recipe for the picture in Figure 1(a.2) is available upon re-
quest.
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(a.1) Symbolic (a.2) Eatable With marked edges
(a) Area 21 (b) Area 24

Figure 1: TC polyominoes of various areas and flavors. The symbolic representation in (b) distinguishes between
hidden edges (green), inside edges (blue), and outside edges (red).

Proof. A lower bound on the area of a TC polyomino
within anm×ℓ bounding box is achieved by partitioning
the edges of such a polyomino into hidden, outside, and
inside edges, as shown in Figure 1(b). The top (resp.,
right/bottom/left) edge of a cell c is hidden if there is a
cell of the polyomino immediately above (resp., to the
right of/below/to the left of) c. An edge is outside if it
is not facing any other edge. An inside edge is an edge
facing another edge, but not immediately, that is, with
a gap of at least one cell. Consider a TC polyomino.
Denote by n its area, and by i, o, and h the number
of inside, outside, and hidden edges, respectively, of the
polyomino. For example, by these definitions, the “U-
pentomino” ( ) has i = 2, o = 10, and h = 8. For
the area-24 TC-polyomino depicted in Figure 1(b), we
have i = 26, o = 24, and h = 46. By pairing inside and
outside edges in rows and columns, we have that o =
2m+2ℓ and i ≥ 2m+2ℓ. We also have that h ≥ 2n− 2
since the polyomino is connected and, hence, it must
include at least n−1 cell adjacencies. Since h+ o+ i =
4n, we have that n ≥ 2m+ 2ℓ− 1.

For an upper bound on n, we may assume without
loss of generality that m ≤ ℓ. Then, a TC polyomino
within an m× ℓ bounding box must be missing at least
one cell from each of the ℓ columns, none of which is
in the top or bottom row (for guaranteeing concavity of
the columns), as well as at least two further cells, one
in the top and one in the bottom row (for guaranteeing
concavity of these rows). Therefore, n ≤ mℓ− ℓ− 2.

Altogether, we have that 2m+2ℓ−1 ≤ n ≤ mℓ−ℓ−2,
with m ≤ ℓ. A simple case analysis shows that the
smallest n satisfying these constraints is 21, with m = 5
and ℓ = 6.

Hence, n ≥ 21 is a necessary condition for a TC poly-
omino. On the other hand, the existence of a TC poly-
omino of area 21 is evident by Fig. 1(a). This completes
the proof. □

This result was confirmed by our TC-polyomino
counting programs (see Section 3). Figure 2 shows
representatives of the 152 TC polyominoes of area 21.

Figure 2: The 19 TC polyominoes of area 21, up to
rotation and mirroring.

(None of these polyominoes have any symmetries,
hence, the polyominoes formed by the eight orientations
of each of the 19 drawn polyominoes are distinct.)

3 An Efficient Counting Algorithm

3.1 Algorithm

We first implemented a prototype backtracking algo-
rithm for counting TC polyominoes. The program re-
cursively concatenated concave columns to a growing
polyomino. A branch of this procedure was abandoned
when the area of the polyomino grew too large or if it
was no longer possible for it to become connected with
the addition of further columns. (This happened when
a component of the polyomino became permanently de-
tached.)

We then designed a much more efficient algorithm,
based on Jensen’s algorithm for counting all poly-
ominoes [14, 15]. In a nutshell, Jensen’s algorithm
counts polyominoes within horizontal bounding strips
of height h, where 1 ≤ h ≤ ⌈n/2⌉. The algorithm con-
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siders column by column from left to right, and cell by
cell from top to bottom within each column. At each
cell, the algorithm considers either to have it occupied
(belonging to the polyomino) or empty (not belonging).
At all stages, the algorithm does not keep in memory all
polyominoes but all possible right boundaries of poly-
ominoes, that is, all combinations of the last h cells
considered. The algorithm maintains a database whose
entries have keys that are the different signatures, where
a signature consists of a boundary plus all possible con-
nections between cells on the boundary by cells found
to the left of it. In other words, the keys reflect all
possible splits of boundary cells into connected com-
ponents, where the connections are to the left of the
boundary. In addition, a signature also includes two
bits that indicate whether or not the polyominoes asso-
ciated with that entry touch the top and/or bottom of
the strip. The contents of each entry in the database is
statistics of all partially-built polyominoes (“partially”
means that polyominoes may still consist of more than
one connected component), that is, the counts of all
polyominoes parameterized by area, having that spe-
cific signature. When the currently considered cell is
chosen to be occupied, the counts of polyominoes are
updated by adding the numbers of fully-built polyomi-
noes, that is, polyominoes that consist of exactly one
connected component and touch the top and bottom of
the strip.

Our modifications. For counting TC polyominoes,
we also need to ensure that each column and each row
consists of more than one consecutive sequence of cells.
This is simple to achieve for columns: At the end of pro-
cessing a column, we discard from the database all en-
tries that correspond to columns that contain less than
two sequences of occupied cells. For rows, we enhance
the signatures by splitting each one into at most 4h

subsignatures: For each row, we keep a code as follows:
‘0’ indicates that the first sequence of occupied cells has
not been met yet; ‘1’ means that we are in the mid-
dle of the first sequence; ‘2’ states that we are between
the first and second sequences; and ‘3’ signifies that we
have already entered the second sequence. (Once we
reach ‘3,’ we do not need to update this indicator any
more.) Figure 3 shows an enhanced signature, in which
each boundary cell is associated with two numbers: The
original vertical code (left), and the additional horizon-
tal code (right). Then, we count only polyominoes with
signatures whose line indicators are all ‘3.’ Note that
the indicators of the top and bottom rows make the two
bits described above redundant.

Jensen’s algorithm is efficient in the sense that it
is the only known algorithm whose running time,
Õ(1.732n) [3], is smaller than the total number of poly-
ominoes, Θ̃(λn). (Recall that λ ≈ 4.063.) Our modifi-
cation splits every signature into at most 4n/2 = 2n sub-

Figure 3: An enhanced boundary signature in the mod-
ified version of Jensen’s algorithm.
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Figure 4: Plots of the number of signatures (while
counting TC polyominoes), all poyominoes, and TC
polyominoes.

signatures (in practice, into much less than that), thus,
the running time of the modified algorithm is Õ(3.464n),
which is still much smaller than the total number of
polyominoees. In conclusion, our version of the algo-
rithm is slower than the original algorithm, although
we eventually count fewer polyominoes, due to the ex-
ponential growth in the number of processed signatures.

Figure 4 plots in a semi-logarithmic scale the num-
ber of distinct signatures encountered by the algorithm
while computing κ(n)) (in red circles), together with
the number of TC polyominoes (cyan) and the total
number of polyominoes (blue), all as functions of n, for
21 ≤ n ≤ 31.

3.2 Results

Our prototype program, implemented in Python, com-
puted in 90 hours (elapsed time) κ(n) up to n = 26 on
a PC with a 64-bit system operating an i5-9400F Intel
Core CPU at 2.90GHz with 12GB of RAM.
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Figure 5: The concatenation of two TC polyominoes is
always a TC polyomino.

The modified version of Jensen’s algorithm was im-
plemented in C++ and run on a 12th generation Intel(R)
i9-12900KF with 128GB of RAM. Using about 41 hours
of CPU, the program computed κ(n) up to n = 35, ob-
taining the values reported in Table 1 and agreeing with
all values computed by the prototype program.

4 Growth Constant

Bender [8] showed that the number of convex polyomi-
noes of size n is asymptotically tγn, for γ ≈ 2.3091
and t ≈ 2.6756, that is, the growth constant (see
a formal definition below) of convex polyominoes is
roughly 2.3091. In this section, we investigate the
growth constant of TC polyominoes.

4.1 Existence

Definition 1 (lexicographic order) For cells c1, c2, we
say that c1 ≺ c2 if c1 lies in a column which is to the
left of the column of c2, or if c1 lies below c2 in the same
column.

Definition 2 (concatenation) Let P1, P2 be two poly-
ominoes, and let c1 (resp., c2) be the largest (resp.,
smallest) cell of P1 (resp., P2). The concatenation of P1

and P2 is the placement of P2 relative to P1, such that c2
is found immediately on top of c1.

Figure 5 shows the concatenation of two polyomi-
noes P1 and P2. The result of concatenating P1 and P2

is always a valid polyomino since the two polyominoes
touch each other but do not overlap. Moreover, if
both P1 and P2 are TC, then the result of concatenating
them is also TC.

Theorem 2 The limit λκ := lim
n→∞

n
√
κ(n) (the growth

constant of (κ(n))) exists and is finite.

Proof. We follow the proof of existence and finiteness
of Klarner’s constant λ [16]. First, the sequence κ(n) is
supermultiplicative, that is, κ(n)κ(m) ≤ κ(n + m) for
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Figure 6: Plots of known values of (4κ(n))1/n

and κ(n)/κ(n−1).

all m,n ∈ N. This is justified by a simple concatenation
argument. Indeed, all TC polyominoes of area n can
be concatenated with all TC polyominoes of area m
(see, e.g., Figure 5), yielding distinct TC polyominoes
of area n + m. Second, there exists a constant µ > 0
for which κ(n) ≤ µn for all n ∈ N. For example, µ = λ,
the growth constant of all polyominoes. (This follows
immediately from the fact that κ(n) ≤ A(n) ≤ λn.) By
a lemma of Fekete (Klarner cites Ref. [18, p. 852] for
similar results), the claim follows. □

It would be much more ambitious to prove the ex-

istence of the ratio sequence, that is, limn→∞
κ(n)
κ(n−1) .

Obviously, if it exists, it must be equal to λκ.
Remark In fact, it makes more sense (see Section 4.2)
to explore ((4κ(n))1/n) instead of ((κ(n))1/n). Fig-
ure 6 shows plots of the known values of (4κ(n))1/n

and κ(n)/κ(n − 1). Surprisingly, the ratio sequence
seems empirically to be monotone decreasing (except
some low-order fluctuations), a property rarely found in
other families of polyominoes.

4.2 Lower Bound

We now present a computer-assisted proof of a lower
bound on λκ.

Definition 3 (composition) A composition of two poly-
ominoes is a relative placement of the two polyominoes,
such that they touch (edge to edge), possibly in multiple
places, but do not overlap.

Figure 7 shows a few compositions of a pair of poly-
ominoes P,Q. Some compositions (e.g., those shown in
Figures 7(b-d)) are lexicographic, that is, compositions
in which all cells of P are lexicographically smaller than
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Table 1: Counts of TC polyominoes.
n κ(n) n κ(n) n κ(n) n κ(n)

1–20 0 24 52,306 28 119,309,768 32 88,476,873,440
21 152 25 606,636 29 641,447,812 33 435,921,253,072
22 120 26 3,376,528 30 3,403,173,276 34 2,113,011,155,472
23 15,820 27 20,204,672 31 17,634,751,456 35 10,065,872,407,536

(a) (b)

(c) (d)

Figure 7: A few compositions of a sample pair of poly-
ominoes.

all cells of Q (or vice versa), while other compositions
(see, e.g., Figure 7(a)) are not lexicographic. It is easy
to observe that a composition of two TC polyominoes is
not always a TC polyomino. However, any lexicographic
composition of two TC polyominoes is also TC.

Lemma 3 (A simplified version of Theorem 1(a) in

Ref. [2, p. 3]) Assume that the limit µ := lim
n→∞

n
√
Z(n)

exists for a sequence (Z(n)). Let c1 > 0, c2 be some
constants. Then, if c1n

c2Z2(n) ≤ Z(2n) ∀n ∈ N, then
n
√
c1(2n)c2Z(n) ≤ µ ∀n ∈ N.

Theorem 4 λκ > 2.4474.

Proof. We use a composition argument, using the
property that the extreme (rightmost and leftmost)
columns of any TC polyomino have at least two cells.
This property allows at least four lexicographic compo-
sitions of any pair of TC polyominoes P,Q that yield TC
polyominoes. It can easily be verified that the minimum
number of such compositions is obtained when both the
rightmost column of P and the leftmost column of Q

Figure 8: There are at least four lexicographic compo-
sitions of any pair of TC polyominoes.

contain exactly two cells, with the same vertical gap
between them. For such pairs of TC polyominoes, we
have the four lexicographic compositions shown in Fig-
ure 8. Indeed, if the gaps between these cells are differ-
ent (as seen in Figure 9), the two TC polyominoes P,Q
have five lexicographic compositions; and if the respec-
tive columns of P,Q have more than two occupied cells,
the number of lexicographic compositions may only in-
crease.

Consequently, we have that 4(κ(n))2 ≤ κ(2n). Then,
Lemma 3 implies that any term of the form (4κ(n))1/n

is a lower bound on λκ. Checking the known values
of κ(n), we see that n = 35 provides the best lower
bound λκ ≥ (4κ(35))1/35 > 2.4474. □

4.3 Conjectured Value

Figure 4 may suggest that the growth constant of TC
polyominoes is identical to that of all polyominoes. We
state this as a conjecture and provide for it a tentative
proof that depends on another well-known conjecture
about the average diameter of lattice animals.

Conjecture 1 λκ = λ.
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Figure 9: Five lexicographic compositions of a pair of
TC polyominoes.

It is generally believed [19, §9.2] that all standard
models of lattice animals and lattice trees (including
polyominoes) have average diameter that scales as nν

for some critical exponent ν < 1 that depends only on
the dimension of the lattice. Numerically, ν ≈ 0.64 in
two dimensions. This is borne out in several numerical
and theoretical studies in the physics literature. Here we
can define the “diameter” of a polyomino P as the max-
imum Euclidean distance between any two cells of P . In
particular, since (it is believed that, say) ν < 0.9, let Un
be the set of all polyominoes of size n whose diameter
is less than n0.9. Then, the above belief implies that
|Un| > A(n)/2 for all sufficiently-large n.
Refer to Figure 10. Let L be the L-shaped frame de-

picted in red in the figure. Its width and height are
n0.9. Let α(n) be the number of cells in L. Then,
α(n) = Θ(n0.9). For any polyomino P ∈ Un, let f(P )
be the union of L with the translation of P (colored in
green) that has the lower left corner of its bounding box
at (0,0). Then, f(P ) is a TC polyomino, and its area
is n+α(n). Since the function f(·) is clearly one-to-one,
we deduce that κ(n+ α(n)) ≥ |Un|. It follows that

λn+α(n)κ ≥ κ(n+ α(n)) ≥ A(n)/2

for all sufficiently-large n. Now take nth roots of the
above, and let n → ∞. The leftmost side converges
to λκ, and the rightmost side converges to λ. We con-
clude that λκ ≥ λ. The reverse relation is trivial, hence,
λκ = λ ≈ 4.06.

L

(0, 0)

⌊n0.9⌋

⌊n0.9⌋

P

Figure 10: The function f(P ).

To the best of our knowledge, if this conjecture were
true, then the family of TC polyominoes would be the
only nontrivial proper subset of polyominoes previously
studied in the literature that has been shown to have
the same growth constant as all polyominoes.

5 Conclusion and Future Work

In this paper, we investigate a few problems related to
TC polyominoes. We prove that the minimum possible
area of such a polyomino is 21; suggest an efficient algo-
rithm for counting TC polyominoes, and report counts
of TC polyominoes till area 35; show that (κ(n)), the
sequence of counts of TC polyominoes of area n, has a
growth constant λκ; prove that λκ > 2.4474; and finally,
conjecture that λκ = λ ≈ 4.06.
Our main future research directions are the following.

1. Prove the existence of the limit of the ratio se-
quence, that is, limn→∞

κ(n)
κ(n−1) . (As noted above,

if the limit exists, then it must be equal to λκ.)

2. Set a good upper bound on λκ. (Traditionally,
upper bounds are harder to obtain than lower
bounds).

Other future research directions include a few sub-
families of TC polyominoes.

Definition 4 (minimality) A TC polyomino P is min-
imal if no proper subset of cells of P is TC.

Duplicating any row or column of a TC polyomino
results in a TC polyomino. The opposite is also true:
Discarding all but at least one of consecutive identical
rows or columns of a TC polyomino results in a TC
polyomino. This gives rise to the following definition.
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Definition 5 (primitivity) A TC polyomino is primi-
tive if it does not contain any consecutive identical rows
or columns.

It is also worth considering TC polyominoes whose
bounding boxes are “full.”

Definition 6 (saturation) A TC polyomino P is satu-
rated if no empty cells in the bounding box of P can be
filled and added to P , such that the result is still a TC
polyomino.

Here are some more questions to explore.

3. Are there members of the above subfamilies of un-
limited size? (We found minimal, primitive, and
saturated TC polyominoes of unlimited size.)

4. Is the intersection between the above subfamilies
non-empty?

5. Do the sequences that enumerate the above sub-
families have growth constants? (For these sub-
families, we cannot apply concatenation arguments
since the concatenation of pairs of minimal or sat-
urated TC polyominoes always result in polyomi-
noes which do not belong to these subfamilies, and
the concatenation of pairs of primitive TC polyomi-
noes might result in TC polyominoes which are not
primitive.)

6. Design efficient algorithms for counting members of
the above subfamilies. (At a first glance, it seems
that extending Jensen’s algorithm for any of the
above subfamilies is unlikely since the properties
defining the subfamilies are global.)

Further research directions involve more general set-
tings of the problem.

7. Consider polyominoes in which each row and col-
umn contains at least k > 2 (say, 3) maximal se-
quences of occupied cells.

8. Explore similar problems in other planar lattices
(e.g., the triangular or hexagonal lattice).

9. Investigate similar problems for polycubes (face-
connected sets of cells on cubical lattices) in higher
dimensions. (Note the two possible different defi-
nitions of total concavity in a higher dimension d:
A “weak” total concavity would require that every
line parallel to one of the coordinate axes cross the
polycube in either 0 or at least two maximal se-
quences of cells; A “strong” total concavity would
require recursively (for d > 2) that the intersection
of every (d−1)-dimenisonal hyperplane, perpendic-
ular to one of the coordinate axes, be either empty
or a (d−1)-dimenisonal TC polycube, where total
concavity in two dimensions is as defined in this
paper.)
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Skeletal Cut Loci on Convex Polyhedra∗

Joseph O’Rourke Costin Vı̂lcu

Abstract

For a point x on a convex polyhedron P , the cut locus
C(x) is the closure of the set of points on P joined to
x by at least two geodesic segments (shortest paths) on
P . It forms a tree of geodesic segments that includes
every vertex of P . We say that P has a skeletal cut locus
if there is some x ∈ P such that C(x) ⊂ Sk(P ), where
Sk(P ) is the 1-skeleton of P . At a first glance, there
seems to be very little relation between the cut locus and
the 1-skeleton, as the first one is an intrinsic geometry
notion, and the second one specifies the combinatorics
of P .

In this paper we study skeletal cut loci, obtaining
four main results. First, given any combinatorial tree
T without degree-2 nodes, there exists a convex poly-
hedron P and a point x in P with a cut locus that lies
in Sk(P ), and whose combinatorics match T . Second,
any (non-degenerate) polyhedron P has at most a finite
number of points x for which C(x) ⊂ Sk(P ). Third, we
show that almost all polyhedra have no skeletal cut lo-
cus. Fourth, we provide a combinatorial restriction to
the existence of skeletal cut loci.

Because the source unfolding of P with respect to
x is always a non-overlapping net for P , and because
the boundary of the source unfolding is the (unfolded)
cut locus, source unfoldings of polyhedra with skeletal
cut loci are edge-unfoldings, and moreover “blooming,”
avoiding self-intersection during an unfolding process.

1 Introduction

Our focus is the cut locus C(x) on a convex polyhedron,
and the relationship of C(x) to the 1-skeleton of P—
the graph of vertices and edges—which we denote by
Sk(P ). The cut locus C(x) of x ∈ P is the closure of
the set of points on P to which there is more than one
geodesic segment (shortest path) from x. C(x) is a tree
whose leaves are vertices of P . Nodes of degree k ≥ 3 are
ramification points to which there are k distinct geodesic
segments from x. Nodes v of degree 2 in C(x) can also
occur, if v is a vertex of P . For details, see Section 2.1.

The 1-skeleton of a non-degenerate polyhedron is
a 3-connected graph by Steinitz’s theorem. We call
a doubly-covered convex polygon a degenerate convex
polyhedron, for which the 1-skeleton is a cycle. We say

∗The full version of this paper is [OV24b].

that P has a skeletal cut locus if there is some x ∈ P
such that C(x) ⊂ Sk(P ).
The edges of C(x) are known to be geodesic seg-

ments [AAOS97], so it is at least conceivable that an
edge of C(x) lies along an edge of P . Theorem 1 shows
that, for certain polyhedra P and points x ∈ P , all of
C(x) lies in the 1-skeleton of P : C(x) ⊂ Sk(P ). As a
simple example, we will see in Lemma 7 that the three
edges incident to any vertex of a tetrahedron form C(x)
for an appropriate x, and are therefore a skeletal cut
locus.

Although Theorems 6 and 8 will show that skeletal
cut loci are “rare” in senses we’ll make precise, Theo-
rem 1 and its proof establish that uncountably many
polyhedra do admit skeletal cut loci, in a sense made
quantitatively precise by Proposition 4.

Theorem 1 can also be viewed as a companion to the
main result in [OV23], that any length (ormetric) tree—
a tree with specified edge lengths—can be realized as
the cut locus on some polyhedron. Here we only match
the combinatorics of T , not its metrical properties, but
requiring additionally for T to be included in Sk(P ).

Connection to Unfolding. It has long been known
that cutting the cut locus C(x) and unfolding to the
plane leads to the non-overlapping source unfolding : If
x is not itself at a vertex, then the unfolding arrays all
the shortest paths 2π around x (because x is surrounded
by 2π of surface), with the image of the cut locus form-
ing the boundary of the unfolding [Mou85] [SS86]. If x
is a vertex, then the shortest paths from x cover a wedge
of the total surface angle at x. For the polyhedra in The-
orem 1, the source unfolding is an edge-unfolding. And
because it is known that the source unfolding can be
bloomed—unfolded continuously from R3 to R2 without
self-intersection [DDH+11]—Theorem 1 and its com-
panion Proposition 4 provide perhaps the first infinite
class of examples of blooming edge-unfoldings. It re-
mains unknown whether every non-overlapping edge-
unfolding can be bloomed.

A central open problem in our work asks for an ac-
counting of all the polyhedra P that support a skeletal
cut locus. All of these enjoy the property that source
unfoldings are also blooming edge-unfoldings.

2 Construction of Skeletal Cut Loci

Our first result is the following theorem.
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a

Figure 1: Tree T with 7 leaves.

Theorem 1 Given any combinatorial tree T without
degree-2 nodes there is a convex polyhedron P and a
point x ∈ P such that the cut locus C(x) is entirely con-
tained in Sk(P ), and the combinatorics of C(x) match
T .

We first illustrate the main idea of the construction
before addressing details. Suppose the given tree T is
the 7-leaf tree shown in Fig. 1. We select a degree-
3 node as root a, which corresponds to the apex of a
regular tetrahedron av1v2v3. We fix x at the centroid
of the base Q.

Fig. 2(a) show one possible construction of P . The
edges incident to a are clearly in C(x) with x at the
centroid of the base triangle. All three base vertices of
the tetrahedron are then truncated, with the truncation
of v1 being followed by a truncation of one of the two
base vertices created. Now T corresponds to all the
non-base edges of P .

The truncations are not arbitrary: the truncation
planes must have precise tilts in order for the edges
of each truncation to lie in C(x). Fig. 2(b) shows the
source unfolding of P , with a1, a2, a3 the three images of
a. The red bisector rays from x through the truncation
vertices on the base Q suggest that indeed any point p
on a truncation edge is equidistant from x and therefore
on C(x).

Returning to the need for precise tilts of the tuncation
planes, let z be the point on the edge av1 through which
the truncation plane passes, creating a truncation tri-
angle zt1t2. As indicated in Fig. 3, the tilt is uniquely
determined by the location of z: the placement of z
determines t1, t2, and the edge t1t2 determines z.

2.1 Cut Locus Preliminaries

For the readers convenience, we list next several basic
properties of cut loci, sometimes used implicitly in the
following.

(i) C(x) is a tree drawn on the surface of P . Its leaves
are vertices of P , and all vertices of P , excepting x

x

a

v3 v2

v1

x
v3

v2

v1

a3
a1

a2

(a) (b)

Figure 2: (a) P is created from a regular tetrahedron
by four vertex truncations. C(x) consists of all non-
base edges, and is homeomorphic to the tree in Fig. 1.
(b) Source unfolding of P from x. Bisectors shown red.

t2

t1

z

a

x

v1

Figure 3: The tilt of the truncation plane is determined
by the position of z on av1.

(if it is a vertex) are included in C(x). All points
interior to C(x) of degree 3 or more are known as
ramification points of C(x). All vertices of P in-
terior to C(x) are also considered as ramification
points, of degree at least 2; see e.g. Fig. 7.

(ii) Each point y in C(x) is joined to x by as many
geodesic segments as the number of connected com-
ponents of C(x)\y. For ramification points in C(x),
this is precisely their degree in the tree.

(iii) The edges of C(x) are geodesic segments on P .

(iv) Assume the distinct geodesic segments γ and γ′

from x to y ∈ C(x) bound a domain D of P , which
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intersects no other geodesic segment from x to y.
Then there is an arc of C(x) at y which intersects
D and bisects the angle of D at y.

(v) The tree C(x) is reduced to a path, if and only if
the polyhedron is a doubly-covered (planar) convex
polygon, with x on the rim.

Further details and references can be found in [OV24a,
Ch. 2].

2.2 Construction Details

Throughout we assume T has no degree-2 nodes. Start
with P a pyramid with apex a centered over a regular n-
gon base Q, with x the centroid of Q. Label the vertices
of Q as v1, . . . , vn.

The construction does not depend on the degree of
apex a, so it is no loss of generality to assume a has
degree-3 so that P starts as a regular tetrahedron. Let
z be a node of T adjacent to a. (We will often use a and
z and other variables to both refer to a node of T and
a corresponding vertex of P .) Let z have degree k + 2
in T . Truncation by k planes through z will create a
vertex at z of degree k + 2. E.g., if z is degree-3, k = 1
plane through z creates a vertex of degree-3, as we’ve
seen in Fig. 3.
We aim to understand how to truncate by k ≥ 1

planes through z so that the k + 1 truncation edges
from z incident to the base Q are part of C(x). We
will illustrate in detail the case k = 2 shown in Fig. 4.
Looking ahead, if we know how to construct k planes
through z, then we can apply the same logic to construct
j planes through a child y of z. The j = 1 case is
illustrated in Fig. 5, with the red truncation triangle
incident to y. Then the same construction technique
can be used to inductively create the full subtree rooted
at z. We will show later that the subtrees rooted at
the other two children of a can be arranged to avoid
interfering with one another.
We express the construction as a multi-step algo-

rithm, and later prove that the truncation edges are
in C(x). Fix k ≥ 1, and position z anywhere in the
interior of av1. The goal is to compute the truncation
chain t1, t2, . . . , tk, tk+1 on base Q, where t1 ∈ v1v3 and
tk+1 ∈ v1v2 (e.g., t1, t2, t3 in Fig. 4). Each truncation
triangle is then ztiti+1.

The construction of the truncation chain is effected by
first computing the unfolded positions zi, the images of
z in the unfolding. It is perhaps counterintuitive, but we
can calculate zi without knowing titi+1; instead we use
zi to calculate titi+1. The next construction depends
on our choice of several parameters; we’ll see later that
it provides a suitable polyhedron.

(1) z0 is the position of z after unfolding the left face
of the tetrahedron about v3v1 to the base plane. z0

can be determined by |v1z| = |v1z0|. Then zk+1 is
the reflection of z0 across xv1.

(2) Set rz = |xz0| = |xzk+1|.

(3) All the zi’s are chosen to lie on the circle Cz cen-
tered on x of radius rz.

(4) Let A be the angle z0xzk+1. Partition A into k+1
angles α. This is another choice, to maximize the
symmetry of the construction.

(5) The zi’s lie on rays from x separated by α. Together
with Cz, this determines the location of the zi’s.

(6) Set Bi to bisect the angle at x between the zi−1, zi
rays, i = 1, . . . , k + 1.

(7) We determine t1 and tk+1 using the first and last
bisector: t1 = v1v3 ∩ B1, tk+1 = v1v2 ∩ Bk+1. The
intermediate chain vertices t2, . . . , tk are not yet de-
termined.

(8) Let Πi be the mediator plane through zzi, the plane
orthogonal to zzi through its midpoint. It is these
planes that determine ti, i = 2, . . . , k.

(9) Πi intersects the xy-plane in a line Li containing
titi+1.

(10) ti = Li ∩Bi.

First note that the mediator plane construction of
titi+1 guarantees that z unfolds to zi. Second, the an-
gles between edges tizi−1 and tizi are split by Bi by
construction. So any point p on the interior of edge zti
unfolds to two images in the plane equidistant from x.

Lemma 2 Each truncation edge zti is an edge of C(x).

Proof. We first prove that zt1 lies in C(x). Throughout
refer to Fig. 6.

Before truncation, the segment zt1 lies on the face
av3v1 of the polyhedron P , which is a regular tetrahe-
dron in this case.

Fix a point p ∈ zt1. The unique shortest path γ
to p crosses edge v1v3. After truncation, γ remains a
geodesic arc. We aim to prove that it remains short-
est, and moreover there is another companion geodesic
segment γ′, establishing that p ∈ C(x).

Now we consider the situation after truncation. Let
δ be a geodesic arc from x to p, approaching p from the
other side of zt1; see Fig. 6(b). If δ crosses the edge
t1t2, then we have |γ| = |δ| by construction, and we
have found γ′ = δ.
Suppose instead that δ crosses edge titi+1 for

i ≥ 2, and then crosses the truncation triangles
ztiti+1, zti−1ti, . . . , zt1t2 (right to left, i.e., clockwise, in
Fig. 6(a)) before reaching p. To simplify the discussion,
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Figure 4: k = 2 truncation planes through z.

z
y

a

z1

y1y0

B1
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z3

z2z0

y2

Figure 5: k = 2, j = 1. The y-truncation cuts the zt2
edge in Fig. 4.

we illustrate i = 2, so δ crosses t2t3 and then triangles
zt2t3 and zt1t2. See Fig. 6(b).

Let q2 be the quasigeodesic1 xt2z on P ′; it must be
crossed by δ to reach p. There are two triangles xt2z1
and xt2z2 bounding q2 to either side, congruent by the
construction. Thus the construction has local intrinsic
symmetry about q2.

Let s be the point at which δ crosses t2t3, {s} =
δ ∩ t2t3. First assume that s lies in the triangle xt2z2.
Then δ remains in xt2z2 until it crosses q2. Then there
must be another geodesic arc δ′ symmetric with δ about
q2, as illustrated in (b). So δ and δ′ meet at a point of
q2. Because δ and δ′ have the same length, neither can
be a shortest path beyond that point of intersection.
Therefore δ cannot reach p as a geodesic segment.

Second, if s instead lies in the triangle xt3z2, then
it is clear from the planar image in (a) of the figure
that δ cannot cross the segment xz2 clockwise, which
it must to reach p from the right in the figures. So δ
must head counterclockwise, crossing q3 = xt3z. Then

1A quasigeodesic is a path with at most π surface to either side
of every point.

z

x

t1

v3

γ

δδʹ

p

t3 t4t2

za

x

t1

p

t4

t2

z1

z2

z3t3
v3

(a)

(b)

Figure 6: Proof that p ∈ zt1 is on C(x). (a) Quasi-
geodesic q2 = xt2z shown purple and congruent trian-
gles xt2z1 and xt2z2 shaded green. (b) Abstract picture
depicting geodesic segments γ, δ, δ′.

the same argument applies, based this time on the local
intrinsic symmetry about q3, and shows that δ cannot
be a shortest path beyond q3.

We have established that every point p on zt1 is on
C(x), and so zt1 ⊂ C(x). The same argument applies to
ztk+1, the rightmost truncation edge in the figures.
So now we know that two geodesic segments from x

to z cross t1t2 and tktk+1. These two segments deter-
mine a digon D within which the remaining segments of
C(x) lie. But within D we have local intrinsic symmetry
with respect to the quasigeodesics qi = xtiz, because qi
is surrounded by the congruent triangles xtizi−1 and
xtizi. Therefore, the previous argument shows that all
the edges zti are included on C(x). □

We now return to the claim that the three subtrees
descendant from a do not interfere with one another.

Lemma 3 The truncations for one subtree descendant
of apex a do not interfere with another subtree descen-
dant.

Proof. First, as k → ∞, t1 approaches the line xz0.
Thus the leftmost truncation triangle stays to the v1-
side of the midpoint of v1v3, say by ε. Second, subse-
quent truncations to all but the extreme edges zt1 and
ztk+1 stay inside the t1, . . . , tk chain. The only concern
would be that truncation of the zt1 edge crossed the
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midpoint of v1v3 (and so possibly interfering with trun-
cations of av3). However, as is evident in the earlier
Fig. 3, the position of t1 moves monotonically toward
v1 as z moves down av1. Thus we can widen ε to ac-
commodate a truncation of zt1 (or of ztk+1). So the
entire subtree rooted at z stays between the midpoints
of v1v3 and v1v2. □

Further examples are shown in [OV24b].

Lemmas 2 and 3 together establish Theorem 1:
C(x) ⊂ Sk(P ) matches the given T .

3 Theorem 1 Discussion

We mentioned in Section 1 that Theorem 1 leads to an
uncountable number of skeletal polyhedra. This follows
immediately from the freedom to place z at any point in-
terior to av1 in the construction detailed in Section 2.2.
We can be more quantitatively precise, as follows.

Assume that T is a cubic tree without degree-2 nodes,
so it has n leaves and n − 2 ramification points. Aside
from one ramification point, which is chosen as the apex
of the starting tetrahedron, all others are free to vary on
their respective edges in our construction, which implies
n − 3 free parameters. Because C(x) is skeletal, each
ramification point of T is a vertex of P , so P has V =
2n− 2 vertices, and n = V/2 + 1. The space PV of all
convex polyhedra with V vertices, up to isometries, has
dimension 3V − 6 (see for example [LP22]), hence the
starting tetrahedron provides another 6 free parameters
and we have the next result.

Proposition 4 The set of convex polyhedra admitting
skeletal cut loci—and hence blooming edge-unfoldings—
contains a subset of dimension ≥ V/2+4 in the (3V−6)-
dimensional space of all convex polyhedra with V ver-
tices, up to isometries.

Recall we restricted Theorem 1 to trees T without
degree-2 nodes. Our construction can be viewed as real-
izing degree-2 nodes of T with flat “vertices” on Sk(P )—
points interior to edges of P . We are currently extend-
ing the construction to match degree-2 nodes of T with
non-flat vertices of P .
Our construction for Theorem 1 results in a dome, a

convex polyhedron P with a distinguished base face Q,
with every other face sharing an edge with Q. It was
already known that domes have edge-unfoldings [DO07,
p. 325], although the proof of non-overlapping for our
domes is almost trivial—the source unfolding does not
overlap.
Although our previous construction results in domes,

there are many other polyhedra with skeletal cut loci,
see e.g. Fig. 7 and Theorem 9. Which leaves us with this
central open problem: Characterize all convex polyhedra

x

Figure 7: P : pentagonal dipyramid. C(x): red and blue
edges of Sk(P ).

P which admit skeletal cut loci. The remainder of the
paper addresses and partially answers this problem.

Several natural questions now suggest themselves:

(1) For a fixed P , how many distinct points x can lead
to skeletal cut loci? (Theorem 6).

(2) Can all of Sk(P ) for a given P be covered by skeletal
cut loci? (Proposition 5).

(3) How common / rare are skeletal cut loci in the
space of all convex polyhedra? (Theorem 8).

(4) Are there restrictions for the existence of skeletal
cut loci? (Proposition 5, Theorems 6 and 10).

Due to space limitations, we cite next lemmas and
theorems often without motivations or proofs, all of
which may be found in [OV24b].

4 Existence of Several Skeletal Cut Loci

In the first two questions in the list above, degenerate
P play a special role:

Proposition 5

(a) There exists infinitely many points x with C(x) ⊂
Sk(P ) if and only if P is degenerate.

(b) There exists two points x1, x2 on P whose cut loci
together cover Sk(P ) if and only if P is degenerate.

Example 1 Consider a regular dipyramid P over a
convex 2m + 1-gon; see Fig. 7. One can see that, for
every midpoint x of a “base edge” e, C(x) is included
in Sk(P ). More precisely, C(x) contains all base edges
other than e, and the two “lateral edges” opposite to
x. In particular, this provides 2m + 1 such points, for
V = 2m+ 3 vertices.

Theorem 6 For any non-degenerate convex polyhedron
P with E edges, there are at most 2

(
E
2

)
flat points x of

P such that C(x) ⊂ Sk(P ).
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5 Absence of Skeletal Cut Loci

Lemma 7 Every tetrahedron T has four points x ∈ T
such that C(x) ⊂ Sk(T ).

Proof. For each vertex vi, denote by xi the ramification
point of C(vi). It follows, from cut locus Property (ii),
that vi is the ramification point of C(xi). Then, by (i)
and (iii), C(xi) consists of the three edges incident to
vi. □

Theorem 8 For almost all 2 convex polyhedra P with
V > 4 vertices, there exists no point x ∈ P with C(x) ⊂
Sk(P ).

Proof. Notice first that almost all convex polyhedra P
are non-degenerate.

Assume, for the simplicity of the exposition, that ev-
ery face of P is a triangle and Sk(P ) is a cubic graph.

Case 1. Assume there exists a flat point x interior to
some face F of P , such that C(x) ⊂ Sk(P ).

Repeating the notation in Theorem 6, denote by vi,
i = 1, 2, 3, the vertices of F , and by ei the edges of
P incident to vi and not included in F . Moreover,
denote by γi the geodesic segment from x to vi.

As in Theorem 6, it follows that ei ⊂ C(x) so,
together, γi and ei bisect the complete angle at vi.
In other words, the straight extensions Ei into F
by all the ei are concurrent: they all intersect at
the same point.

Now we perturb the vertices of P to destroy this
concurrence. If P were a tetrahedron, then per-
turbing the apex would simultaneously move the
edges incident to it. But the assumption that V > 4
means that there are at least two vertices outside
the 3-vertex face F containing x. Perturbing these
two vertices independently moves the edges inci-
dent to F independently, breaking the concurrence
at x.

Because there are at most finitely many such points
x by Theorem 6, the conclusion follows in this case.

Case 2. Assume there exists a flat point x interior to
some edge e of P , such that C(x) ⊂ Sk(P ). Denote
by vi, i = 1, 2, the vertices of e, and by ei the edges
of P incident to vi included in C(x). As above, it
follows that the straight extensions of e1, e2 coin-
cide with e. Now, small perturbations of the ver-
tices of P destroy this coincidence. Note that if
e, e1, e2 form a triangle, then e1, e2 will move to-
gether. But still, perturbations at other vertices of
P (not v1, v2, e1 ∩ e2) will destroy the concurrence.

2I.e., polyhedra in an open and dense subset of PV .

Case 3. Assume finally there exists a vertex v of P ,
such that C(v) ⊂ Sk(P ). Here we obtain again
that the straight extensions of two edges contain
(other) edge-pair extensions, and small perturba-
tions of the vertices of P destroy this coincidence.

□

6 Every Vertex a Skeletal Source

Theorem 9 Assume that every vertex of P has a skele-
tal cut locus. Then the following statements hold.

1. Every face of P is a triangle.

2. Every vertex of P has even degree in Sk(P ).

3. The edges at every vertex v split the complete angle
at v into evenly many sub-angles, every two oppo-
site such angles being congruent.

4. If, moreover, every vertex of P has degree 4 in
Sk(P ) then P is an octahedron:

• with three planar symmetries, and

• all faces of which are acute congruent (but not
necessarily equilateral) triangles.

Example 2 Suitable dipyramids over convex 2m-gons,
similar to Example 1, provide non-octahedron polyhedra
whose the cut loci of the vertices cover the 1-skeleton.

7 A Combinatorial Restriction

Already mentioned in the Abstract, at a first glance
there seems to be very little relation between the cut
locus and the 1-skeleton, as the first one is an in-
trinsic geometry notion, and the second one specifies
the combinatorics of P . A background connection be-
tween the two notions can however be established in two
steps: Alexandrov’s Gluing Theorem connects the in-
trinsic and the extrinsic geometry of P , while Steinitz’s
Theorem relates the combinatorics to the extrinsic ge-
ometry.

In this section we provide an easy combinatorial re-
striction to the existence of skeletal cut loci, comple-
menting the first part of Theorem 9.

Lemma 2.8 in [OV24a] shows that, at a vertex v of
P of degree-3 in Sk(P ), the sum of any two face angles
incident to v is strictly larger than the third angle. We
now argue that such a v cannot be a degree-2 node in a
cut locus. Assume otherwise. Then there are precisely
two geodesic segments from x to v, and they form two
angles around v. By (iv), each of the two edge-branches
of C(x) starting at v will bisect one of those angles.
Then the angles at v to the left and to the right of C(x)
are equal, impossible by the mentioned Lemma 2.8.
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In the literature, a spanning tree without degree-2
nodes is called a HIST.3 So every spanning tree of a
HIST-free graph has a degree-2 node. Because a degree-
3 vertex cannot be a degree-2 node in a cut locus, we
have the following combinatorial restriction.

Theorem 10 A HIST-free cubic polyhedral graph can-
not be realized with skeletal cut loci.

One can check straightforwardly that, among the Pla-
tonic solids, the cube and the dodecahedron graphs are
HIST-free, hence these polyhedra do not admit skeletal
cut loci.

Acknowledgements. We benefited from the sugges-
tions of three reviewers, and we thank Joseph Malke-
vitch for information on HISTs.

3HIST abbreviates “homeomorphically irreducible spanning
tree.” See, e.g., [GNRZ24] and the references therein.
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Dispersive Vertex Guarding for Simple and Non-Simple Polygons∗

Sándor P. Fekete† Joseph S. B. Mitchell‡ Christian Rieck§ Christian Scheffer¶ Christiane Schmidt‖

Abstract

We study the Dispersive Art Gallery Problem
with vertex guards: Given a polygon P, with pairwise
geodesic Euclidean vertex distance of at least 1, and a
rational number ℓ; decide whether there is a set of ver-
tex guards such that P is guarded, and the minimum
geodesic Euclidean distance between any two guards
(the so-called dispersion distance) is at least ℓ.

We show that it is NP-complete to decide whether
a polygon with holes has a set of vertex guards with
dispersion distance 2. On the other hand, we provide an
algorithm that places vertex guards in simple polygons
at dispersion distance at least 2. This result is tight, as
there are simple polygons in which any vertex guard set
has a dispersion distance of at most 2.

1 Introduction

The Art Gallery Problem is one of the fundamen-
tal challenges in computational geometry. It was first
introduced by Klee in 1973 and can be stated as follows:
Given a polygon P with n vertices and an integer k; de-
cide whether there is a set of at most k many guards,
such that these guards see all of P, where a guard sees
a point if the line segment connecting them is fully con-
tained in the polygon.
Chvátal [4] and Fisk [8] established tight worst-case

bounds by showing that ⌊n/3⌋ many guards are some-
times necessary and always sufficient. On the algorith-
mic side, Lee and Lin [11] proved NP-hardness; more
recently, Abrahamsen, Adamaszek, and Miltzow [1]
showed ∃R-completeness, even for simple polygons.
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In this paper, we investigate the Dispersive AGP
in polygons with vertex guards: Given a polygon P and
a rational number ℓ, find a set of vertex guards such
that P is guarded and the minimum pairwise geodesic
Euclidean distance between each pair of guards is at
least ℓ. (Note that the cardinality of the guard set does
not come into play.)

1.1 Our Contributions

We give the following results for the Dispersive Art
Gallery Problem in polygons with vertex guards.

• For polygons with holes, we show NP-completeness
of deciding whether a pairwise geodesic Euclidean
distance between any two guards of at least 2 can
be guaranteed.

• For simple polygons, we provide an algorithm for
computing a set of vertex guards of minimum pair-
wise geodesic distance of at least 2.

• We show that a dispersion distance of 2 is worst-
case optimal for simple polygons.

1.2 Previous Work

Many variations of the classic Art Gallery Problem
have been investigated [13, 15, 16]. This includes vari-
ants in which the number of guards does not play a role,
such as the Chromatic AGP [6, 7, 10] as well as the
Conflict-Free Chromatic AGP [2, 3, 9].

The Dispersive AGP was first introduced by
Mitchell [12], and studied for the special case of poly-
ominoes by Rieck and Scheffer [14]. They gave a method
for computing worst-case optimal solutions with disper-
sion distance at least 3 for simple polyominoes, and
showed NP-completeness of deciding whether a poly-
omino with holes allows a set of vertex guards with dis-
persion distance of 5.

1.3 Preliminaries

Given a polygon P (possibly with holes), we say that
two points p, q ∈ P see each other, if the connecting
line segment pq is fully contained in P. A (finite) set of
points G ⊂ P is called a guard set for P, if all points
of P are seen by at least one point of G. If G is a subset
of the vertices of P, we are dealing with vertex guards.

33



36th Canadian Conference on Computational Geometry, 2024

Distances between two points p, q ∈ P are measured
according to the Euclidean geodesic metric, i.e., that is
the length of a shortest path between p and q that stays
fully inside of P, and are denoted by δ(p, q). The small-
est distance between any two guards within a guard set
is called its dispersion distance.

2 First Observations

We start with two easy observations; the second resolves
an open problem by Rieck and Scheffer [14], who raised
the question about the ratio of the cardinalities of guard
sets in optimal solutions for the Dispersive AGP and
the classical AGP.

2.1 Shortest Polygon Edges Are Insufficient as
Lower Bounds

To see that an optimal dispersion distance may be con-
siderably shorter than the shortest polygon edge, con-
sider Figure 1. Every edge in the polygon has similar
length (say, between 1 and 1+ ε). To guard the colored
regions, one of each of the same colored vertices needs
to be in the guard set. This results in two guards that
are arbitrarily close to each other.

Figure 1: A polygon in which edges have similar length.

This motivates our assumption that the geodesic dis-
tance between any pair of vertices is at least 1.

2.2 Optimal Solutions May Contain Many Guards

Even for a polygon that can be covered by a small num-
ber of guards, an optimal solution for the Dispersive
AGP may contain arbitrarily many guards; see Fig-
ure 2. An optimal solution for the classical AGP con-
sists of 2 guards placed at both ends of the central edge
of length ε. On the other hand, we can maximize the
dispersion distance in a vertex guard set by placing one
guard at the tip of each of the (n−2)/2 spikes. These two
sets have a dispersion distance of ε and 2ζ, respectively,
and the ratio 2ζ/ε can be arbitrarily large.

ε

ζ

Figure 2: A polygon for which the optimal guard num-
bers for AGP and Dispersive AGP differ considerably.

3 NP-Completeness for Polygons with Holes

We now study the computational complexity of theDis-
persive AGP for vertex guards in non-simple polygons.

Theorem 1 It is NP-complete to decide whether a poly-
gon with holes and geodesic vertex distance of at least 1
allows a set of vertex guards with dispersion distance 2.

We first observe that the problem is in NP. For a po-
tential guard set G, we can check the geodesic distance
between any pair of vertices g1, g2 ∈ G as follows. Be-
cause any two polygon vertices have mutual distance of
at least 1, a shortest geodesic path between g1 and g2
consisting of at least two edges has a length of at least 2.
This leaves checking the length of geodesic paths con-
sisting of a single edge, which is straightforward.

3.1 Overview and Gadgets

For showing NP-hardness, we utilize the NP-complete
problem Planar Monotone 3Sat [5], which asks for
the satisfiability of a Boolean 3-CNF formula, for which
the literals in each clause are either all negated or all
unnegated, and the corresponding variable-clause inci-
dence graph is planar.

To this end, we construct gadgets to represent (i) vari-
ables, (ii) clauses, (iii) a gadget that splits the respective
assignment, and (iv) gadgets that connect subpolygons
while maintaining the given truth assignment.

Variable Gadget. A variable gadget is shown in Fig-
ure 3. Its four vertices v1, v2, v3, v4 are placed on the
vertices of a rhombus (shown in grey) formed by two ad-
jacent equilateral triangles of side length 1. We add two
sharp spikes by connecting two additional vertices (v5
and v6) to the two pairs v1, v3 and v2, v4, respectively;
the edges {v3, v5}, {v2, v6} have unit-length. (The func-
tion of these spikes is to impose an upper bound of 2
on the achievable distance.) We also attach two narrow
polygonal corridors to two other pairs of vertices, indi-
cated in green for the pair v1, v2, and in red for v3, v4.
These corridors have appropriate width, up to 1, at the
other end, to attach them to other gadgets.
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v1

v2

v3

v4

v5

v6

Figure 3: A variable gadget.

Lemma 2 Exactly four vertex guard sets realize a
dispersion distance of 2 to guard the subpolygon
Pv = (v1, v2, v6, v4, v3, v5, v1) of a variable gadget.

Proof. As shown in Figure 3, at least one guard has to
be placed on one of {v1, v2, v3, v4} to guard the rhombus
that represents the variable. Conversely, it is easy to see
that the dispersion distance is less than 2 if more than
one guard is chosen from {v1, v2, v3, v4}. Furthermore,
if we choose v1 or v3, the spike at v5 is guarded, and
we can choose v6 (which has distance 2 from both v1
and v3) to guard the other spike; conversely, a guard at
v2 or v4 covers the spike at v6 and allows a guard at v5.

Now a guard from {v1, v2} also covers the green por-
tion of the polygon; this will correspond to setting the
variable to true. On the other hand, a guard from
{v3, v4} also covers the red portion of the polygon, cor-
responding to setting the variable to false. □

Clause Gadget. A clause gadget is depicted in Fig-
ure 4. Its three vertices lie on the vertices of an equi-
lateral triangle of side length 1; attached are narrow
polygonal corridors, which are nearly parallel to the tri-
angle edges, each using two of the triangle vertices as
end points. These corridors have appropriate width, up
to 1, at the other end, to attach them to other gadgets.

v1

v3
v2

Figure 4: A clause gadget.

Observation 1 As the vertices {v1, v2, v3} have a pair-
wise distance of 1, only a single guard can be placed
within a clause gadget, if the guard set have to realize a
dispersion distance of at least 2. A direct consequence
is that no more than two of the incident corridors can
be guarded by a guard placed on these vertices; hence,
at least one corridor needs to be seen from somewhere
else, which in turn corresponds to satisfying the clause.

Split Gadget. A split gadget is illustrated in Figure 5.
It has one incoming horizontal polygonal corridor, end-
ing at two vertices (v1 and v2) within vertical distance 1.
These vertices form an equilateral triangle with a third
vertex, v4, where the polygon splits into two further cor-
ridors, emanating horizontally from vertices v3, v6, and
v5, v7, respectively. For the upper corridor, the vertices
v1, v3, v4, v6 form slightly distorted adjacent equilateral
unit triangles: We move v3 and v6 slightly upwards,
such that the edges {v1, v3} and {v4, v6} as well as the
distances between v1 and v4 and between v3 and v6 re-
main 1, but the distance between v3 and v4 increases to
1 + ε. An analogous construction yields the lower out-
going horizontal corridor. Both of these corridors start
with a height smaller than 1, but can end with a height
of 1 or a very small height.

v1

v2

v3

v4

v5

v6

v7

Figure 5: A split gadget.

Lemma 3 The split gadget correctly forwards the re-
spective variable assignment.

Proof. We refer to Figure 5 and distinguish two cases.
First, assume that the variable adjacent to the left is
set to true, implying that the connecting corridor is
already guarded. Therefore, two guards placed on v6
and v7 guard the whole subpolygon, and in particular
both corridors to the right.

Now assume that the variable is set to false, im-
plying that the corridor to the left is not fully guarded
yet. Because this corridor is constructed long enough
to contain the intersection of the (dotted) lines through
v1, v6 and v2, v7, we need to place a guard at one of the
vertices in {v1, v2, v4}. Then no further guard can be
placed in a distance of at least 2, and the corridors to
the right are not guarded, as claimed. □

Connector Gadget. The connector gadget is depicted
in Figure 6. The distance between all pairs of vertices
is at least 1 and less than 2. Furthermore, a guard on
either v1 or v2 cannot see the horizontal corridor, while
a guard on v3 or v4 does not see the vertical one.

Observation 2 The gadget is designed such that only
a single guard can be placed on its vertices while main-
taining a distance of at least 2. If a previously placed
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v1

v4

v2

v3

Figure 6: A connector gadget.

guard already sees the vertical corridor, we can place an-
other one to see the horizontal corridor as well. On the
other hand, no guard sees both corridors simultaneously.
Thus, we propagate a truth assignment.

3.2 Construction and Proof

We now describe the construction of the polygon for the
reduction, and complete the proof.

Theorem 1 It is NP-complete to decide whether a poly-
gon with holes and geodesic vertex distance of at least 1
allows a set of vertex guards with dispersion distance 2.

Proof. To show NP-hardness, we reduce from Planar
Monotone 3Sat. For any given Boolean formula φ,
we construct a polygon Pφ as an instance of Dispersive
AGP as follows. Consider a planar embedding of the
variable-clause incidence graph of φ, place the variable
gadgets in a row, and clause gadgets that only consist of
unnegated literals or entirely of negated literals to the
top or to the bottom of that row, respectively, as illus-
trated in Figure 7. Furthermore, connect variables to
clauses via a couple of connector gadgets, and introduce
split gadgets where necessary.

x1 x2 x3 x4 x5 x6

x1 ∨ x2 ∨ x3 x3 ∨ x5

x1 ∨ x3 ∨ x5

x1 ∨ x5 ∨ x6

¬x1 ∨ ¬x4 ∨ ¬x6

¬x2 ∨ ¬x4

Figure 7: Rectilinear embedding of a Planar Mono-
tone 3Sat instance.

Claim 1 If φ is satisfiable, then Pφ has a vertex guard
set with dispersion distance 2.

Proof. Given a satisfying assignment, we construct a
set of vertex guards with a dispersion distance of 2:

For every variable that is set to true, we place guards
on {v1, v6}, and for every variable that is set to false,
we place guards on {v4, v5} within the respective vari-
able gadget. Furthermore, we place guards for split and
connector gadgets to maintain the given assignments.
As we have a satisfying assignment, each clause is sat-
isfied by at least one literal, i.e., at least one corridor
incident to the clause gadget is already guarded. There-
fore, we can place one guard in each clause gadget. This
yields a guard set with a dispersion distance of 2. ■

Claim 2 If Pφ has a vertex guard set with dispersion
distance 2, then φ is satisfiable.

Proof. As we have a set of vertex guards with a disper-
sion distance of 2, there is only a single guard placed
within each clause gadget. Furthermore, no guard set
can have larger dispersion distance within a variable
gadget. As argued before, there is no guard set with a
dispersion distance larger than 2 in the split and connec-
tor gadgets. Therefore, the vertex guards placed within
the variable gadgets provide a suitable variable assign-
ment for φ. ■

Given that the problem is in NP, these two claims
complete the proof. □

4 Worst-Case Optimality for Simple Polygons

In this section we prove that a guard set realizing a
dispersion distance of 2 is worst-case optimal for simple
polygons. In particular, we describe an algorithm that
constructs such guard sets for any simple polygon.

First, we observe that there are polygons for which
there is no guard set with a larger dispersion distance.

Observation 3 There are simple polygons with
geodesic vertex distance at least 1 for which every guard
set has a dispersion distance of at most 2.

Refer to Figure 8. Bold edges have length 1. One of
the three vertices (with pairwise distance 1) incident to
the gray triangle ∆ must be picked to guard ∆, so no
guard set can have a dispersion distance larger that 2.

Figure 8: Godfried’s favorite polygon.

From this, we can easily obtain polygons with any
number of vertices of dispersion distance at most 2: Sim-
ply modify the polygon at the end of each spike.
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In the remainder of this section, we provide a
polynomial-time algorithm that constructs a guard set
with dispersion distance of at least 2.

We start with a useful lemma that provides some
structural properties for the analysis. Refer to Figure 9
for visual reference.

Lemma 4 Let P = (v1, v2, . . . , v7) be a simple polygon
with seven vertices labeled in counterclockwise order.
Assume that the pairwise (geodesic) distance between
all pairs of vertices is at least 1 and further that the
following properties are satisfied:

1. The distance between v1 and v5 is δ(v1, v5) < 2.

2. v2, v4, and v7 are reflex, i.e., the interior angle at
these vertices is strictly larger than 180◦.

Then the geodesic distance between the two vertices v3
and v6 is δ(v3, v6) ≥ 2.

v4
v2

v3

L

S

v1
v7

v6

v5

Figure 9: Schematic layout of P.

Proof. Throughout the proof, we will frequently make
use of the assumption that δ(vi, vj) ≥ 1 for any i ̸= j.
As a first step, we argue that v1 and v5 must be mutu-

ally visible (along line segment S), as shown in Figure 9:
Otherwise, a shortest geodesic path from v1 to v5 must
visit one of the reflex vertices v2, v4, or v7, implying the
contradiction δ(v1, v5) ≥ 2.
By a similar argument, we claim that v3 and v6 are

mutually visible (say, along segment L); otherwise we
can conclude that δ(v3, v6) ≥ 2, and we are done.
In the following, we prove that L has length at least 2,

by establishing the following two auxiliary claims.

(a) The geodesic distance from v6 to S is at least
√
3/2.

(b) The geodesic distance from v3 to S is at least
2−

√
3/2 = 1.13397 . . ..

To this end, assume that the cord S lies horizon-
tally, with v1 = (0, 0) and v5 = (x5, 0), and par-
titions P into two subpolygons: (a) the quadrangle
P ′ := (v1, v5, v6, v7) above S, and (b) the pentagon
P ′′ := (v1, v2, v3, v4, v5) below S. Because v7 is reflex, it
must lie inside the convex hull of P ′, which is spanned
by the three remaining vertices v1, v5, v6. Analogously,

v1

v7

v6

v5
S

11

1

(a)

v4

v2

v3

S
v1 v5

h

(b)

Figure 10: Subpolygons for the proof of the two aux-
iliary claims: (a) The quadrangle P ′ = (v1, v5, v6, v7).
(b) The pentagon P ′′ = (v1, v2, v3, v4, v5).

v2 and v4 must lie inside the convex hull of P ′′, which
is spanned by the three remaining vertices v1, v3, v5.

For the auxiliary claim (a), refer to Figure 10(a).
If v6 = (x6, y6) lies outside the vertical strip defined
by 0 ≤ x ≤ x5, then its closest point on S is v5 (for
x6 > x5) or a point q for which the geodesic to S runs
via v7 (for x6 < 0), so the minimum distance of v6
is δ(v1, v6) ≥ 1, (or δ(v5, v6) ≥ 1, respectively). There-
fore, the convex hull of P ′ must lie within the strip,
including v7. Furthermore, v6 must have the largest
vertical distance from S, so v7 must lie within the axis-
aligned rectangle R′ of height

√
3/2 above S. Consider

the three circles C1, C5, and C7 of unit radius around
v1, v5, and v7. It is straightforward to verify that R′ is
completely covered by C1, C5, and C7, implying that v6
cannot lie inside R′, and the first claim follows.

For the auxiliary claim (b), refer to Figure 10(b).
Without loss of generality, assume that the vertical dis-
tance −y2 of v2 from S is not smaller than the vertical
distance −y4 of v4. Consider the horizontal positions
x2, x3, x4 of v2, v3, v4. Because v2 lies inside the convex
hull of P ′′, the assumption x2 < 0 (which differs from
the figure) implies that x3 ≤ x2 < 0; then the shortest
distance from v2 to S is δ(v2, v1) ≥ 1, and (because v2
is reflex), a shortest geodesic path from v3 to S passes
through v2, so δ(v3, v1) = δ(v3, v2)+δ(v2, v1) ≥ 2. Anal-
ogously, we can assume that x4 ≤ x5. Furthermore,
the assumption on the relative vertical positions of v2
and v4 implies that v4 must also lie to the right of v1,
i.e., x4 ≥ 0.
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Consider x2 ≥ s and refer to Figure 11.

v4 = (x4, y4)

v3 = (x3, y3)

S
v1 = (0, 0)

v5 = (x5, 0)
q = (xq, yq)

v2 = (x2, y2)y = −
√
3/2

≤ 5/4 3/4 1/2

−y2 <
√
3/2

1

Figure 11: Estimating δ(v2, v4).

Then the assumption −y2 ≤
√
3/2 (together with

δ(v2, v5) ≥ 1) implies that x2 ≥ x5 + 1/2. Furthermore,
v4 must lie above the edge (v1, v2).
We now consider the point q = (x5 − 3/4, yq). Be-

cause x5 < 2, we conclude −yq ≤ −y2/2 ≤
√
3/4. There-

fore, δ(q, v5) ≤
√

( 43 )
2 + (

√
3
4 )2 = 0.96824 . . . < 1. Be-

cause v4 must lie outside of the circle with radius 1
around v5, we conclude that x4 < x5−3/4, implying that
δ(v2, v4) ≥ 5/4 = 1.25. Furthermore, v2 cannot lie on the
convex hull of P ′′, thus, x3 > x2 and y3 < y2, implying
δ(v3, v4) > δ(v2, v4). As the geodesically shortest path
from v3 to S passes through v4, we conclude that the
length of this path, δ(v3, v4)− y4 ≥ δ(v3, v4) ≥ δ(v2, v4)
is bounded from below by 1.25. Thus, we can assume
that −x2 ≥

√
3/2 in this case.

Alternatively, consider x2 ≤ x5. Then an argument
for v1, v2, v4, v5 analogous to the one from claim (a) for
v1, v5, v6, v7 also implies that −x2 ≥

√
3/2.

Consider the vertical distance h := −y3 + y2 between
v3 and v2, and refer to Figure 12.

v1 = (0, 0) v5 = (x5, 0)

v3 = (x3, y3)

v2 = (x2, y2)

−y2 ≥
√
3
2

h

ϕ1

ϕ3

S

Figure 12: Angles and vertical distances at v1 and v3.

To this end, note that the angle ϕ1 at v1 between
(v1, v2) and S satisfies tanϕ1 = −y2/x2 ≥

√
3/4 = η be-

cause of −y2 ≥
√
3/2 and x2 ≤ x5 < 2. Because v2 is

reflex, the angle ϕ3 between (v3, v2) and a horizontal line
at v3 satisfies ϕ3 > ϕ1; moreover, sinϕ3 = h

δ(v2,v3)
, with

δ(v2, v3) ≥ 1, so h ≥ sin arctan η = η√
1+η2

= 0.3973 . . ..

This implies that the vertical distance −y3 of v3
to S (and thus the distance of v3 to S) is at least√
3/2 + 0.3973 = 1.26338 . . . > 1.13397 . . . = 2 −

√
3/2,

as claimed. □

We now show the main result of this section.

Theorem 5 For every simple polygon P with pairwise
geodesic distance between vertices at least 1, there exists
a guard set that has dispersion distance at least 2.

Proof. Refer to Figures 13 and 14 for visual orienta-
tion. By triangulating P, we obtain a triangulation T
whose dual graph is a tree T ′. We consider a path Π
between two leaves (say, t1 and tk) in T ′, and obtain
a caterpillar C ′ by adding as feet all vertices adjacent
to Π; let C be the corresponding set of triangles (shown
in dark cyan in Figure 13).

Now the idea is to place guards on vertices of C
(that is a subset of the vertices of P), aiming to see
all of C. We then consider a recursive subdivision of P
into caterpillars, by proceeding from foot triangles of
covered caterpillars to ears, until all of P is covered; this
corresponds to the colored subdivision in Figure 13.

t1

tk

Figure 13: Polygon P in black, triangulation T in gray,
and a partition into (colored) caterpillars.

To cover C, we start by placing a guard on a ver-
tex v0 of an ear triangle (say, t1). If C ′ is a path (i.e.,
a caterpillar without foot triangles), we can proceed in
a straightforward manner: Either the next triangles on
the path are visible from the guard on v0, or there is
a reflex vertex vr obstructing the view to a triangle ti.
In the latter case, we can place the next guard on an
unseen vertex vj of ti, i.e., vj is not seen by any of the
previously placed guards; by assumption, the distance
of v0 and vr is at least 1, as is the distance of vr and vj .
Because vr is reflex, a shortest path from v0 to vj has
length at least 2 by triangle inequality.

This leaves the case in which we have foot triangles,
which is analyzed in the following. Assume that we al-
ready placed a guard on a vertex incident to the path
of the caterpillar. We argue how we proceed even if all
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path triangles have incident foot triangles, that is, we
show that we can place a set of guards that together
monitor all caterpillar triangles, while ensuring a dis-
tance of at least 2 between any pair of guards. Further-
more, whenever we place a guard in a foot triangle, then
this guard is never needed to cover any path triangles,
hence, even if not all path triangles have incident foot
triangles, we yield a feasible guard placement.

c

d e

f

h

1
6

a

b 2

3 i

5
7 g

4 8

Figure 14: Vertices and triangular faces of a caterpillar
for the proof of Theorem 5.

In the recursive call, we also take into account what
previously placed guards see; note that unseen vertices
are feasible guard locations with a distance of at least 2
to all previously placed guards.

To indicate that a vertex v is reflex in the polygonal
chain u, v, w, we say that v is reflex w.r.t. u − w; note
that the polygonal chain u, v, w must not be the poly-
gon boundary. The line segment uv contained in P is
denoted by uv; it is either a diagonal or a polygon edge.

Now we consider the situation in Figure 14 and as-
sume that a guard on a has been placed to monitor the
triangle to the left of ab. We aim to monitor triangles
1, 2, . . . , 8. The guard on a sees the triangles 2, 3 and 4.
If a sees c, then a sees triangle 1 as well. If a does not
see c, we place a guard on c (in this case either b or d is
reflex w.r.t. a− c, thus, c has distance at least 2 to a).

We now provide a case distinction on the next place-
ment(s) of guards. In case we placed a guard on c in
addition to the guard on a, whenever we consider a see-
ing vertices, this also includes vertex c.

1. If i is reflex w.r.t. a − g, we place a guard on g;
together these guards see triangles 5, 7, and 8.

(a) If a or g see e, then they also see triangle 6.

(b) Otherwise, we place another guard on e (which
has distance of at least 2 to all guards placed
before), which then monitors triangle 6.

2. Otherwise, i.e., i is not reflex w.r.t. a− g:

(a) If d is reflex w.r.t. a− e:

i. If δ(a, f) ≥ 2, we place a guard on f to see
triangles 5, 6, and 7. If h is seen by a or f ,
then also triangle 8 is seen. Otherwise, we
place a guard on h to see triangle 8.

ii. Else if δ(a, g) ≥ 2, we place a guard on g,
then a and g also see triangles 5, 7, and 8.
If e is seen by a or g, then also triangle 6
is seen. Otherwise, we place a guard on e
to see triangle 6.

In the remaining cases iii.– vi., we have δ(a, f) < 2,
δ(a, g) < 2, thus, a sees both f and g.

iii. Else if e does not see either g or h (which
implies δ(e, h) > 2, δ(e, g) > 2):
If a does not see h, we place a guard on h,
which covers triangle 8. Moreover, we also
place a guard on e (which is neither seen
from a or h), and the guards then also
cover triangles 5, 6, and 7. Otherwise, i.e.,
a sees h, we place a guard on e to guaran-
tee that triangles 5, 6, 7, and 8 are seen.

iv. Else if e sees g, but does not see h:
If a does not see h, we place two guards
on e and h, the guards together then
guard triangles 5, 6, 7, and 8. Otherwise,
a sees d, f, g, h, i and with that also tri-
angles 5, 7, and 8; we place a guard on e,
which sees triangle 6.

v. Else if e sees h, but does not see g:
If δ(e, h) > 2, we place a guard on each e
and h, and thereby cover triangles 5, 6, 7,
and 8. If δ(e, h) < 2, Lemma 4 yields a
contradiction to δ(a, g) < 2 with v1 = e,
v2 = d, v3 = a, v4 = i, v5 = h, v6 = g,
and v7 = f .

vi. Else if e sees g and h:
If a sees h, we place a guard on e, and
the guards then cover triangles 5, 6, 7,
and 8. Otherwise, we place a guard on h,
and if h sees f , triangles 5, . . . , 8 are
seen. If not, we place a guard on e if
δ(e, h) > 2 and cover triangles 5, . . . , 8;
otherwise, Lemma 4 yields a contradic-
tion to δ(e, h) < 2 with v1 = a, v2 = i,
v3 = h, v4 = g, v5 = f, v6 = e, and v7 = d.

(b) Otherwise, a also sees f , hence, triangles 5, 6,
and 7 are covered.

i. If a sees h, it also sees triangle 8.

ii. If a does not see h, we place a guard on h,
which then sees triangle 8.

The guards we place in foot triangles are never needed
to cover path triangles, hence, if some of the foot tri-
angles did not exist, we can simply proceed along the
caterpillar path (and place a guard there if a triangle is
not (completely) seen). □
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5 Conclusions and Future Work

We considered the Dispersive Art Gallery Prob-
lem with vertex guards, both in simple polygons and
in polygons with holes, where we measure distance in
terms of geodesics between any two vertices. We es-
tablished NP-completeness of the problem of deciding
whether there exists a vertex guard set with a disper-
sion distance of 2 for polygons with holes. For sim-
ple polygons, we presented a method for placing vertex
guards with dispersion distance of at least 2. While we
do not show NP-completeness of the problem in simple
polygons, we conjecture the following.

Conjecture 1 For a sufficiently large dispersion dis-
tance ℓ > 2, it is NP-complete to decide whether a sim-
ple polygon allows a set of vertex guards with a disper-
sion distance of at least ℓ.

Another open problem is to construct constant-factor
approximation algorithms. This hinges on good lower
bounds for the optimum.

Both our work and the paper by Rieck and Schef-
fer [14] consider vertex guards. This leaves the problem
for point guards (with positions not necessarily at poly-
gon vertices) wide open. Given that the classical AGP
for point guards is ∃R-complete [1], these may be sig-
nificantly more difficult to resolve.
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[2] A. Bärtschi, S. K. Ghosh, M. Mihalák, T. Tschager,
and P. Widmayer. Improved bounds for the conflict-
free chromatic art gallery problem. In Symposium on
Computational Geometry (SoCG), pages 144–153, 2014.
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Journal of Combinatorial Theory, 24(3):374, 1978.

[9] F. Hoffmann, K. Kriegel, S. Suri, K. Verbeek, and
M. Willert. Tight bounds for conflict-free chromatic
guarding of orthogonal art galleries. Computational Ge-
ometry, 73:24–34, 2018.

[10] C. Iwamoto and T. Ibusuki. Computational complex-
ity of the chromatic art gallery problem for orthogonal
polygons. In Conference and Workshops on Algorithms
and Computation (WALCOM), pages 146–157, 2020.

[11] D. T. Lee and A. K. Lin. Computational complexity of
art gallery problems. IEEE Transactions on Informa-
tion Theory, 32(2):276–282, 1986.

[12] J. S. B. Mitchell. Private communication, 2018.

[13] J. O’Rourke. Art gallery theorems and algorithms. Ox-
ford New York, NY, USA, 1987.

[14] C. Rieck and C. Scheffer. The dispersive art gallery
problem. Computational Geometry: Theory and Appli-
cations, 117:102054, 2024.

[15] T. C. Shermer. Recent results in art galleries (geome-
try). Proceedings of the IEEE, 80(9):1384–1399, 1992.

[16] J. Urrutia. Art gallery and illumination problems. In
Handbook of Computational Geometry, pages 973–1027,
2000.

40



CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

Guarding Points on a Terrain by Watchtowers ∗

Byeonguk Kang† Junhyeok Choi‡ Jeesun Han† Hee-Kap Ahn§

Abstract

We study the problem of guarding points on an x-
monotone polygonal chain, called a terrain, using k
watchtowers. A watchtower is a vertical segment whose
bottom endpoint lies on the terrain. A point on the
terrain is visible from a watchtower if the line segment
connecting the point and the top endpoint of the watch-
tower does not cross the terrain. Given a sequence of
point sites lying on a terrain, we aim to partition the
sequence into k contiguous subsequences and place k
watchtowers on the terrain such that every point site in
a subsequence is visible from the same watchtower and
the maximum length of the watchtowers is minimized.
We present efficient algorithms for two variants of the
problem.

1 Introduction

A terrain is a graph of a piecewise linear function
f : A ⊂ R → R that assigns a height f(p) to every
point p in the domain A of the terrain. In other words,
a terrain is an x-monotone polygonal chain in the plane.
A watchtower is a vertical segment whose bottom end-
point lies on the terrain. A point on the terrain is visible
from a watchtower if the line segment connecting the
point and the top endpoint of the watchtower does not
cross the terrain. If a point is visible from a watchtower,
we say that the point is guarded by the watchtower. We
say that a set of points is guarded by a watchtower if
every point in the set is guarded by the watchtower.

In this paper, we study the following problem of
guarding point sites on a terrain using k watchtowers:
Given a sequence of point sites on a terrain, partition
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it into k subsequences and place k watchtowers on the
terrain such that every point site in a subsequence is
guarded by the same watchtower and the maximum
length of the watchtowers is minimized. We call it the
contiguous k-watchtower problem for point sites on a
terrain. We also consider the problem with an addi-
tional condition on the placement of watchtowers: a
watchtower guarding a subsequence of point sites must
be placed in the x-range xmin ⩽ xw ⩽ xmax of the point
sites in the subsequence, where xw is the x-coordinate
of the watchtower and xmin (resp. xmax) is the mini-
mum (resp. maximum) x-coordinates of the point sites
in the subsequence. This is the in-place version of the
contiguous k-watchtower problem for point sites on a
terrain. For both problems, we call those k watchtowers
satisfying the conditions and minimizing the maximum
length the optimal k watchtowers. See Figure 1 for an
illustration for the problems.

p1

p2

p3

(a) (b)

p1

p2

p3

p4 p4

Figure 1: (a) Optimal watchtowers for the contiguous
2-watchtower problem. The red tower guards p1 and
p2, and the blue tower guards p3 and p4. (b) Optimal
watchtowers for the in-place version. The red watch-
tower guards p1 and p2, and it is placed in the x-range
of p1 and p2. The blue watchtower guards p3 and p4,
and it is placed in the x-range of p3 and p4. To guard
point sites including both p2 and p3 using one watch-
tower, the watchtower must be at least as long as the
gray watchtower.

The k-watchtower problems we consider have applica-
tions in several domains, including geographic informa-
tion system, communication tower locations, and mili-
tary surveillance [4].

1.1 Related works

A fair amount of work has been done on minimizing the
number of guards in various settings. The art gallery
problem [10] asks for the minimum number of point
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guards that together guard the whole art gallery, repre-
sented by a simple polygon. The art gallery problem was
first posed by Klee in 1973 [10]. Chvátal and Fisk [5, 8]
gave an upper bound ⌊n/3⌋ on the minimum number of
point guards for a simple polygon with n vertices.
The terrain guarding problem [9] asks for the mini-

mum number of point guards lying on the terrain that
together guard the terrain. Cole and Sharir [6] showed
that finding the minimum number of guards for a poly-
hedral terrain in 3-dimensional space is NP-complete.
Later, Chen et al. [3] showed that the same problem for
a terrain in 2-dimensional space is also NP-complete.

The k-watchtower problem for a terrain with n ver-
tices in 2-dimensional space is to minimize the maxi-
mum length of k watchtowers that together guard the
whole terrain. The 2-watchtower problem was first stud-
ied by Bespamyatnikh et al. [2]. They presented an
O(n3 log2 n)-time algorithm for the variant, called the
discrete version, in which every watchtower must be
placed at a vertex of the terrain. They also gave an
O(n4 log2 n)-time algorithm for the continuous version
in which the two watchtowers can be placed anywhere
in the terrain. Agarwal et al. [1] improved the results
by an O(n2 log4 n)-time algorithm for the discrete ver-
sion and by an O(n3α(n) log3 n)-time algorithm for the
continuous version.

There are also a few results for the k-watchtower
problem for a 2-dimensional terrain with n vertices
in 3-dimensional space. Agarwal et al. [1] presented
an O(n11/3polylog(n))-time algorithm for the discrete
version of the 2-watchtower problem. Recently, Tri-
pathi et al. [12] gave an algorithm for the discrete
version of the k-watchtower problem that runs in
O(nk+3k2α2(n) log2 n+ n7α3(n) log n) time.
To the best of our knowledge, little is known about

guarding a finite set of input points lying on a terrain,
not the whole terrain, except the one by Agarwal et
al. [1]. They considered the 2-watchtower problem for
guarding a finite set of m point sites on a terrain with
n vertices in 2-dimensional space where every point site
must be guarded by at least one of the two watchtowers.
The watchtowers can be placed anywhere in the terrain.
They presented an O(mn log4 n)-time algorithm for the
problem. One may wonder if this algorithm extends to
the k-watchtower problem for k ⩾ 3. It seems to us that
it does, but the running time becomes exponential in k
for m point sites lying on a terrain with n vertices.

1.1.1 Our results.

We consider the contiguous k-watchtower problem and
the in-place contiguous k-watchtower problem for m
point sites lying on a terrain with n vertices in the
plane. For ease of the description, we may call the
in-place contiguous k-watchtower problem the in-place
k-watchtower problem. If k ⩾ m (resp. k ⩾ n), we

place one watchtower with zero length on every point
site (resp. on every vertex of the terrain). Considering
the cost of watchtowers, it is desirable to use a small
number of watchtowers for point sites. Therefore, we
assume that k ≪ min{n,m}.
For k = 1, we present an algorithm with running time

O(m+ n) for both problems. Observe that the running
time is linear to the complexity of the input. This is an
improvement upon the previously best algorithm with
running time O(mn) [1].

For the contiguous k-watchtower problem, the watch-
towers can be placed anywhere in the terrain. We show
a monotonicity on the minimum length of a watch-
tower, and present an O((m+ n) logm)-time algorithm
for k = 2. For k ⩾ 3, we can solve the problem in
O(k(n + m) log⌈log2 k⌉m) time. Our algorithm runs in

O((m+ n) log⌈log2 k⌉m) time for any fixed k.
For the in-place k-watchtower problem, a watchtower

guarding a contiguous subsequence of point sites must
be placed in the x-range of the subsequence. We ob-
serve that the monotonicity shown for the contiguous
k-watchtower problem does not hold for this problem.
We present an O((m + n) log(m + n))-time algorithm
for k = 2 and an O(km2 + (mn + m2) log(m + n))-
time algorithm for k ⩾ 3. Our algorithm runs in
O((mn+m2) log(m+ n)) time for any fixed k ⩾ 3.

1.1.2 Sketch of our algorithms.

We devise an efficient algorithm for the contiguous k-
watchtower problem for k = 1 that runs in O(m + n)
time. The visibility region of a point site is the set
of points visible from the point site. To find an opti-
mal watchtower, we need to compute the intersection of
the visibility regions of point sites. The previous algo-
rithm takes O(mn) time in computing visibility regions
of point sites and their intersection [1]. To do this ef-
ficiently, we define a region W (p, q) for a pair of point
sites (p, q) such that W (p, q) contains the intersection
of the visibility regions of p and q. We show that the
intersection of visibility regions of all point sites can be
computed in O(m + n) time using the intersection of
W (p, q)’s for all pairs of point sites (p, q). From this, we
can compute an optimal watchtower for m point sites
lying on a terrain with n vertices in O(m+ n) time.

For k ⩾ 2, we show a monotonicity stating that the
length of an optimal watchtower for a subsequence P1

of point sites is at least the length of an optimal watch-
tower for any subsequence of P1. Based on the mono-
tonicity, our algorithm for the contiguous k-watchtower
problem uses binary search to find an optimal partition
of the point site set that minimizes the maximum length
of the watchtowers. In each step of the binary search,
we partition the point site sequence into two contiguous
subsequences. Then, we compute the optimal length of
the watchtowers for each subsequence using half of the
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watchtowers. If the optimal length of the watchtowers
for the left subsequence is larger than the right subse-
quence’s, then we find an optimal partition index in the
left half of indices of the point site set. When the num-
ber of the watchtower is one, we can compute the opti-
mal length of the half of the watchtowers in O(m + n)
time by using the algorithm for one watchtower.

In the in-place k-watchtower problem, the mono-
tonicity used for our algorithm for the contiguous k-
watchtower problem does not hold. So we consider ev-
ery possible partition of the sequence into k contiguous
subsequences. For k = 2, there are O(m) different par-
titions. A näıve approach is to compute the optimal
tower-length for every partition in O(m2 + mn) total
time by applying the algorithm for the contiguous 1-
watchtower problem. We compute optimal watchtowers
efficiently as follows. For every prefix of the input se-
quence of point sites, we compute the intersection of
W (p, q)’s for every pair of point sites (p, q) in the pre-
fix. We compute those intersections incrementally in
the length of the prefixes in O((m+n) log(m+n)) total
time. Using those intersections, we can compute opti-
mal two watchtowers in O((m+ n) log(m+ n)) time.

For k ⩾ 3, a näıve approach is to consider
O(mk−1) different partitions, compute their optimal
tower-lengths, and then return the minimum one among
them. To compute optimal k watchtowers efficiently, we
compute the minimum length of one watchtower for ev-
ery contiguous subsequence incrementally in O((m2 +
mn) log(m+ n)) total time in the preprocessing. Then
we find an optimal partition by dynamic programming
that has O(km2) subproblems.

Most proofs are omitted and they will be given in a
full version.

2 Preliminaries

For a point p in the plane, we use x(p) and y(p) to denote
the x- and y-coordinates of p. For two distinct points
p and q in the plane, let pq denote the line segment
connecting p and q, and let pq denote the line passing
through both p and q. For a nonvertical line L, we use
L+ to denote the set of points in R2 that lie on or above
L, and L− to denote the set of points in R2 that lie on
or below L.

A region A is x-monotone if for every line L per-
pendicular to the x-axis, A ∩ L is connected. A region
A is unbounded vertically upwards if any vertically up-
ward ray emanating from a point in A is contained in
A. A polygonal chain B is x-monotone if for every line
L perpendicular to the x-axis, either B ∩ L = ∅ or it
is a point. We use T = ⟨v1, . . . , vn⟩, a sequence of
vertices with x(vi) < x(vj) for any 1 ⩽ i < j ⩽ n,
to denote an x-monotone polygonal chain which we
call a terrain in 2-dimensional space. Without loss

of generality, we assume n ⩾ 2. For any two points
p, q ∈ T with x(p) ⩽ x(q), let T (p, q) denote the sub-
chain of T from p to q, and let T+(p, q) denote the set
of points z ∈ R2 such that x(p) ⩽ x(z) ⩽ x(q) and
y(z) ⩾ y(z′), where z′ is a point in T with x(z) = x(z′).
We simply use T+ to denote T+(v1, vn). We denote by
P = ⟨p1, . . . , pm⟩ a sequence of m point sites lying on
T such that x(pi) < x(pj) for 1 ⩽ i < j ⩽ m. We de-
note by P (i, j) the contiguous subsequence ⟨pi, . . . , pj⟩
of P for 1 ⩽ i < j ⩽ m. For ease of description, we as-
sume that m ⩾ 2, and let p0 = v1 and pm+1 = vn. We
use T (i, j) to denote T (pi, pj), and T+(i, j) to denote
T+(pi, pj).

A point p ∈ R2 is visible from a point q ∈ R2 if
and only if pq is contained in T+. For a point q ∈ T ,
let V (q) denote the visibility region of q, which consists
of the points in T+ visible from q. For a point site
pi ∈ P , we use V (i) to denote V (pi). Observe that
V (i) is connected and unbounded vertically upwards.
Let V(i, j) =

⋂
i⩽ℓ⩽j V (pℓ). The following observation

is straightforward.

Observation 1 The point sites in P (i, j) are visible
from a watchtower if and only if the top endpoint of
the watchtower is contained in V(i, j).

For any two real values a, b with a ⩽ b, we use S(a, b)
to denote the vertical slab between the lines x = a and
x = b. In other words, it is the set of points z ∈ R2

such that a ⩽ x(z) ⩽ b. For any two points p, q ∈ R2

with x(p) ⩽ x(q), we abuse the notation so that S(p, q)
denotes S(x(p), x(q)). We use S(i, j) to denote S(pi, pj).
For a set A ⊂ R2, we use S(A) to denote the smallest
vertical slab containing A.

For any two sets A and B of points, let dy(A,B) de-
note the minimum vertical distance between A and B,
that is, dy(A,B) = minpA∈A,pB∈B |y(pA) − y(pB)| sub-
ject to x(pA) = x(pB). If there are no two points pA ∈ A
and pB ∈ B with x(pA) = x(pB), we set dy(A,B) =∞.
We say that A lies left to B if the rightmost point p of
A and the leftmost point of q of B satisfy x(p) ⩽ x(q).

3 Contiguous k watchtowers

In this section, we present an O(k(n+m) log⌈log2 k⌉m)-
time algorithm for the contiguous k-watchtower prob-
lem for point sites P on a terrain T . In Section 3.1,
we present an O(m + n)-time algorithm for comput-
ing an optimal watchtower for P = ⟨p1, . . . , pm⟩. We
use the algorithm for one watchtower together with bi-
nary search in computing the optimal k watchtowers for
k ⩾ 2 in Sections 3.2 and 3.3. For any constant k, the
algorithm runs in near-linear time: O((m + n) logm)

time for k = 2, and O((m + n) log⌈log2 k⌉m) time for
any fixed k.
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3.1 An optimal watchtower for a site sequence

We consider the problem of placing a shortest watch-
tower that guards all point sites of P . Let F (1,m) de-
note the minimum length of a watchtower that guards
all point sites in P . By Observation 1, any watchtower
guarding point sites in P must have its top endpoint
contained in V(1,m). Thus, F (1,m) = dy(T,V(1,m)).

A straightforward way to compute an optimal watch-
tower for the sequence is to compute V (ℓ) for all ℓ =
1, . . . ,m, compute their intersection V(1,m), and then
compute F (1,m). Observe that it already takes O(mn)
time for computing V (ℓ) for all ℓ = 1, . . . ,m [11].

We show how to compute V(1,m) =
⋂

1⩽ℓ⩽m V (ℓ)
efficiently, in O(m + n) time. Before showing this, we
need to define a region R(1,m) for P (1,m). Let L be
line p1pm if pm is visible from p1. If pm is not visible
from p1, let L be line uv, where uv is the edge of V (1)
with x(u) < x(pm) ⩽ x(v). If pm lies on a vertex of
T , let R(1,m) be the set of points z ∈ L+ satisfying
x(z) ⩾ x(pm). If pm is contained in the interior of an
edge e of T , let R(1,m) be the set of points z ∈ L+∩e+
satisfying x(z) ⩾ x(pm). See Figure 2 for an illustration
for four possible cases. We define the region R(m, 1)
symmetrically.

(a)

p1

pm

(b)

pm

(d)

pmp1

p1

T T

T

u

v

u

v

(c)

pm

p1

T

x = x(pm) x = x(pm)

x = x(pm) x = x(pm)

p1pm

p1pm

p1u

p1u
e e

Figure 2: R(1,m) in gray region. (a) pm lying on a
vertex of T and visible from p1. (b) pm lying on a vertex
of T and not visible from p1. (c) pm lying in the interior
of an edge e of T and visible from p1. (d) pm lying in
the interior of an edge e of T and not visible from p1.

By definition, R(1,m) is the intersection of two or
three closed half-planes. Thus, R(1,m) is convex. More-
over, it is unbounded vertically upwards.

Combining R(1,m), R(m, 1), and V (1) ∩ V (m) re-
stricted to S(1,m), we define W (1,m) as follows. See

p1
pm

R(m, 1)

R(1,m)

V (1) ∩ V (m) ∩ S(1,m)

Figure 3: The purple region is V (1) ∩ V (m) ∩ S(1,m).
W (1,m) is the union of the purple region and the right
gray region from R(1,m) and the left gray region from
R(m, 1).

Figure 3 for an illustration.

W (1,m) = R(1,m)∪R(m, 1)∪
(
V (1)∩V (m)∩S(1,m)

)
.

By definition, W (1,m) is connected and unbounded
vertically upwards.

Observation 2 The followings hold by the definition of
W (1,m).

(a) W (1,m) ∩ S(1,m) = V (1) ∩ V (m) ∩ S(1,m).
(b) W (1,m) ∩ S(0, 1) = R(m, 1) ∩ S(0, 1).
(c) W (1,m) ∩ S(m,m+ 1) = R(1,m) ∩ S(m,m+ 1).
(d) For q ∈ {p1, pm}, y(q) ⩽ y(z) for all z ∈ W (1,m)

with x(z) = x(q).

Based on Observation 2, we can compute W (1,m)
efficiently.

Lemma 1 We can compute W (1,m) in time linear to
the complexity of T (1,m).

By Lemma 1, W (ℓ, ℓ + 1) can be computed in time
linear to the complexity of T (ℓ, ℓ + 1). Thus, we can
compute W (ℓ, ℓ + 1) for all ℓ = 1, . . . ,m in O(m + n)
time. We show a few properties useful for computing
V(1,m) efficiently.

Lemma 2 V(1,m) =
⋂

1<ℓ⩽mW (ℓ− 1, ℓ) ∩ V (1) ∩
V (m).

LetX1 =
⋂

1<ℓ⩽r R(ℓ−1, ℓ),X2 =
⋂
r<ℓ⩽mR(ℓ, ℓ−1),

X3 = V (r)∩V (r+1)∩V (1)∩V (m), andX4 = S(r, r+1).
By Lemma 2 and Observation 2(c),

V(1,m) ∩ S(r, r + 1) = X1 ∩X2 ∩X3 ∩X4. (1)

We need the following lemma to show that V(1,m)
can be computed in O(m+ n) time.

Lemma 3 We can compute
⋂

1<ℓ⩽r R(ℓ−1, ℓ)∩S(r, r+
1) for all r = 2, . . . ,m in O(m+ n) time.
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Theorem 4 We can compute a minimum-length
watchtower that guards m point sites lying on an x-
monotone polygonal chain with n vertices in O(m + n)
time.

Proof. Note that F (1,m) = dy(T,V(1,m)). First, we
show how to compute V(1,m) in O(m + n) time. We
can get V(1,m) by gluing V(1,m) ∩ S(0, 2), V(1,m) ∩
S(2,m− 1), and V(1,m) ∩ S(m− 1,m+ 1).
We compute V(1,m)∩S(r, r+1) for all r = 2, . . . ,m−

1 which is defined in Equation 1. By Lemma 3, we
can compute

⋂
1<ℓ⩽r R(ℓ− 1, ℓ) ∩ S(r, r+ 1) for all r =

2, . . . ,m−1 in O(m+n) time. Their total complexity is
O(m+ n). Similarly, we can compute

⋂
r<ℓ⩽mR(ℓ, ℓ−

1)∩S(r, r+1) for all r = 2, . . . ,m−1 in O(m+n) time.
Their total complexity is O(m + n). By Lemma 1, we
can compute V (r) ∩ V (r + 1) ∩ S(r, r + 1) for all r =
2, . . . ,m− 1 in O(m+ n) time. Their total complexity
is O(m + n). Recall that we can compute V (1) and
V (m) in O(n) time [11]. Observe that every region that
we compute is x-monotone. Thus, we can compute the
intersections V(1,m)∩S(r, r+1) of those regions for all
r = 2, . . . ,m− 1 in time linear to their total complexity
O(m+n) by linear scan. Similarly, V(1,m)∩S(0, 2) and
V(1,m)∩S(m−1,m+1) can be computed in O(m+n)
time.
We glue V(1,m)∩S(0, 2), V(1,m)∩S(2,m− 1), and

V(1,m) ∩ S(m − 1,m + 1) together and get V(1,m).
Since the complexity of V(1,m) is O(m + n), we can
compute F (1,m) = dy(T,V(1,m)) in O(m + n) time
by linear scan. We compute the location of an optimal
watchtower during the scan. □

3.2 Two watchtowers

We consider the contiguous k-watchtower problem for
k = 2: Partition P into 2 subsequences and place 2
watchtowers on T such that every point site in a sub-
sequence is guarded by the same watchtower and the
maximum length of the watchtowers is minimized.
Recall that P (i, j) denotes the contiguous subse-

quence ⟨pi, . . . , pj⟩ of P = ⟨p1, . . . , pm⟩ for 1 ⩽ i < j ⩽
m. Let F (i, j) denote the minimum length of a watch-
tower that guards point sites in P (i, j) lying on T . We
have the following lemma stating the monotonicity on
F (i, j) obtained by V(i′, j′) ⊆ V(i, j).

Lemma 5 For indices i′, i, j and j′ satisfying 1 ⩽ i′ ⩽
i ⩽ j ⩽ j′ ⩽ m, F (i, j) ⩽ F (i′, j′).

For an index i with 1 ⩽ i < m, let F1(i) = F (1, i)
and F2(i) = F (i + 1,m). Then the minimum length
for two watchtowers is min1⩽i<m{max{F1(i), F2(i)}}.
By Lemma 5, F1(i) increases monotonically and F2(i)
decreases monotonically as i increases from 1 to m− 1.
Therefore, we find the index that achieves the minimum
length by binary search. Since P consists of m point

sites, the number of binary search steps is O(logm). By
Theorem 4, the comparison in each step can be done
in O(m + n) time. In other words, we can compute
both F1(i) and F2(i) for any index i = 1, . . . ,m − 1 in
O(m + n) time. Also, we can compute the location of
an optimal watchtower for P (i, j) for any index 1 ⩽ i ⩽
j ⩽ m in O(m + n) time by Theorem 4. Therefore, we
can compute the optimal two watchtowers in O((m +
n) logm) time.

Theorem 6 We can compute optimal two watchtowers
for the contiguous 2-watchtower problem with m point
sites lying on an x-monotone polygonal chain with n
vertices in O((m+ n) logm) time.

3.3 k watchtowers

In this section, we present an O(k(n+m) log⌈log2 k⌉m)-
time algorithm for computing the contiguous k watch-
towers of minimum length for k ⩾ 3. Roughly speaking,
we partition P into two contiguous subsequences and
compute the minimum tower-length for one subsequence
using ⌊k/2⌋ watchtowers and the minimum tower-length
for the other subsequence using ⌈k/2⌉ watchtowers. We
repeat this recursively.

For indices 1 ⩽ i ⩽ j ⩽ m, let opt(i, j, k′) de-
note the minimum tower-length for P (i, j) using k′

watchtowers with k′ ⩾ 1. Obviously, opt(i, j, k′) ⩾
opt(i, j, k′ + 1). Observe that opt(i, j, 1) = F (i, j). For
k′ ⩾ 2, opt(i, j, k′) equals to

min
i⩽ℓ<j

{max{opt(i, ℓ, ⌊k′/2⌋), opt(ℓ+ 1, j, ⌈k′/2⌉)}}.

Lemma 7 opt(1, i, k′) ⩽ opt(1, j, k′) for 1 ⩽ i ⩽ j ⩽ m
and k′ ⩾ 1.

The minimum tower-length for P (1,m) using k
watchtowers is opt(1,m, k). By Lemma 7, we can find an
index ℓ = argmin1⩽ℓ<mmax{opt(1, ℓ, ⌊k′/2⌋), opt(ℓ +
1,m, ⌈k′/2⌉)} by binary search. Therefore, we conclude
this section with Theorem 8.

Theorem 8 We can compute optimal k watchtowers
for the contiguous k-watchtower problem with m point
sites lying on an x-monotone polygonal chain with n
vertices in O(k(n+m) log⌈log2 k⌉m) time.

4 In-place contiguous k watchtowers

In this section, we present algorithms for the in-place k-
watchtower problem for P lying on T . In this problem,
a watchtower that guards a subsequence P (i, j) must be
placed in T (i, j). By the problem definition, no watch-
tower cannot be placed on T (0, 1)∪T (m,m+1). Thus,
for ease of discussion, we assume that p1 lies on v1 and
pm lies on vn.
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In Section 4.1, we present an O((m+ n) log(m+ n))-
time algorithm for k = 2. The algorithm works in
incremental fashion in computing an optimal solution
using a balanced binary search tree based on the seg-
ment tree [7]. In Section 4.2, we present an O(km2 +
(mn +m2) log(m + n))-time algorithm for k ⩾ 3. The
algorithm uses dynamic programming in computing an
optimal solution, using the O((m+ n) log(m+ n))-time
algorithm for k = 2 for the base case.

p1 p2

p3

p4

Figure 4: The vertical red line segments, left to right,
are the shortest watchtowers for P (1, 2), P (1, 3), and
P (1, 4). We have F1(2) > F1(3) and F1(3) < F1(4).

4.1 Two watchtowers

Let F (i, j) denote the minimum length of one watch-
tower placed on T (i, j) for P (i, j) with 1 ⩽ i ⩽ j ⩽ m.
Let F1(i) = F (1, i) and F2(i) = F (i + 1,m). Then our
goal is to compute min1⩽i<m{max{F1(i), F2(i)}}.

Observe that the monotonicity in Lemma 5 does
not hold for the in-place k-watchtower problem due
to the in-place requirement. For two indices i, j with
1 ⩽ i < j ⩽ m, the watchtower for P (1, j) can be
placed anywhere in T (1, j) = T (1, i) ∪ T (i, j) while the
watchtower for P (1, i) must be placed in T (1, i). So it
is possible that F1(i) > F1(j). See Figure 4.
We use an incremental algorithm for computing F1(i)

and F2(i) for all i = 1, . . . ,m − 1 that runs in O((m +
n) log(m+n)) time. Recall that we can compute W (i−
1, i) for all i = 2, . . . ,m in O(m+ n) time by Lemma 1.
Thus, we compute their intersection incrementally.

LetW(i) =
⋂

1<ℓ⩽iW (ℓ−1, ℓ). Recall thatW (ℓ−1, ℓ)
is connected and unbounded vertically upwards. Thus,
W(i) is connected and unbounded vertically upwards.

Lemma 9 V(1, i) ∩ S(1, i) = W(i) ∩ S(1, i).

Corollary 10 dy(T (1, i),V(1, i)) = dy(T (1, i),W(i)).

By Observation 1, Lemma 9, and Corollary 10,
F1(i) = dy(T (1, i),W(i)). Our algorithm starts with
trivial base case F1(1) = 0 and computes F1(i) for all
i = 2, . . . ,m− 1 one by one incrementally.
First, we show that W(i) for all i = 2, . . . ,m can be

computed in O((m + n) log(m + n)) time in total. We

can compute W(2) = W (1, 2) in O(m + n) time. We
show how to compute W(i + 1) = W(i) ∩ W (i, i + 1)
from W(i) efficiently. To do this, we show that the
boundary of W (i, i+1) intersects the boundary of W(i)
in O(|T (i, i + 1)|) connected components. In specific,
each edge of W (i, i+1) intersects the boundary of W(i)
at most twice.

Lemma 11 We can compute F1(i) and F2(i) for all
i = 1, . . . ,m− 1 in O((m+ n) log(m+ n)) time.

Recall that the minimum tower-length is
min1⩽i<m{max{F1(i), F2(i)}}. By Lemma 11, we
can compute F1(i) and F2(i) in O((m+ n) log(m+ n))
time for all i = 1, . . . ,m − 1. Then, we can find
min1⩽i<m{max{F1(i), F2(i)}} in O(m) time. Recall
that we can compute an optimal watchtower that
guards P (i, j) in O(m + n) time by Theorem 4. In
conclusion, we can compute the minimum tower-length
and the locations of the optimal watchtowers in
O((m+ n) log(m+ n)) time.

Theorem 12 We can compute optimal two watchtow-
ers for the in-place contiguous 2-watchtower problem
with m point sites lying on an x-monotone polygonal
chain with n vertices in O((m+ n) log(m+ n)) time.

4.2 k watchtowers

Now we consider the in-place contiguous k watchtower
problem for k ⩾ 3. By the definition of the problem,
the minimum tower-length is

min
1⩽i1<...<ik−1<m

{max{F (1, i1), . . . , F (ik−1 + 1,m)}}.

A näıve approach is to consider all combinations of k−1
point sites with indices 1 ⩽ i1 < . . . < ik−1 < m among
m point sites, compute their maximum tower-lengths
max{F (1, i1), F (i1+1, i2), . . . , F (ik−1+1,m)}, and then
return the minimum one among the tower-lengths. This
takes O(mk−1(m+ n)) time.
We can improve the running time using dynamic

programming as follows. For an index 1 ⩽ i ⩽ m,
let opt(i, k′) denote the minimum tower-length for the
in-place k′-watchtower problem for P (1, i). Then (1)
opt(i, 1) = F (1, i), (2) opt(i, k′) = 0 if k′ > 1 and i ⩽ k′,
and (3) opt(i, k′) = min1⩽j<i{max{opt(j, k′ − 1), F (j +
1, i)}} if k′ > 1 and i > k′.
The optimal length is opt(m, k) and the number of

subproblems isO(km2). To obtain opt(m, k), we need to
compute F (i, j) for all 1 ⩽ i ⩽ j ⩽ m. By Theorem 12,
for a fixed index 1 ⩽ i ⩽ m, we can compute F (i, j) for
all i ⩽ j ⩽ m in O((m+n) log(m+n)) time. Therefore,
we have the following lemma.

Lemma 13 We can compute F (i, j) for every 1 ⩽ i ⩽
j ⩽ m in O((mn+m2) log(m+ n)) time.
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After O((mn+m2) log(m+n))-time preprocessing by
Lemma 13, we can compute the minimum tower-length
in O(km2) time using dynamic programming.

Theorem 14 We can compute optimal k watchtowers
for the in-place contiguous k-watchtower problem with
m point sites lying on an x-monotone polygonal chain
with n vertices in O(km2+(mn+m2) log(m+n)) time.

We would like to mention that the algorithm pre-
sented in this paper also work with little modification
and without increasing the running time for minimizing
the sum of the tower-lengths for k watchtowers.
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Multirobot Watchman Routes in a Simple Polygon

Joseph S. B. Mitchell∗ Linh Nguyen†

Abstract

The well-known Watchman Route problem seeks a

shortest route in a polygonal domain from which every

point of the domain can be seen. In this paper, we study

the cooperative variant of the problem, namely the k-

Watchmen Routes problem, in a simple polygon P .

We look at both the version in which the k watchmen

must collectively see all of P , and the quota version in

which they must see a predetermined fraction of P ’s

area.

We give an exact pseudopolynomial time algorithm

for the k-Watchmen Routes problem in a simple or-

thogonal polygon P with the constraint that watchmen

must move on axis-parallel segments, and there is a

given common starting point on the boundary. Fur-

ther, we give a fully polynomial-time approximation

scheme and a constant-factor approximation for uncon-

strained movement. For the quota version, we give a

constant-factor approximation in a simple polygon, uti-

lizing the solution to the (single) Quota Watchman

Route problem.

1 Introduction

In 1973, Victor Klee introduced the Art Gallery

problem: given an art gallery with n walls (a poly-

gon P ), determine the minimum number of stationary

guards at points within P such that every point of P can

be seen by at least one guard point. The Art Gallery

problem and its many variants have since been the sub-

ject of a large body of research in computational geom-

etry and algorithms.

When guards are mobile, a single guard suffices to see

a connected domain; thus, we are interested in finding

routes for one or more guards that optimize some as-

pects of the guard(s)’ movement (e.g., path lengths, the

number of turns, etc). The problem of minimizing the

∗Department of Applied Mathematics and Statistics, Stony

Brook University, joseph.mitchell@stonybrook.edu
†Department of Applied Mathematics and Statistics, Stony

Brook University, linh.nguyen.1@stonybrook.edu

distance that one guard must travel to see the entire

polygon is the Watchman Route problem (WRP).

Chin and Ntafos [3] introduced the WRP, proved NP-

hardness in polygons with holes (see [6]) and gave an

O(n) algorithm for simple orthogonal polygons. In

(general) simple polygons, there are exact polynomial-

time algorithms; the current best running times are

O(n3 log n) for the anchored version (a starting point

s which the route must pass through is given) and

O(n4 log n) for the floating version (no starting point

is given) [5].

In some settings, complete coverage might not be fea-

sible or necessary, thus we are also interested in comput-

ing a shortest route that sees at least an area of A ≥ 0

within P . This is known as the Quota Watchman

Route problem (QWRP), introduced in [8]. In contrast

to the tractable WRP, the QWRP is (weakly) NP-hard,

but a fully polynomial-time approximation scheme (FP-

TAS) is known. Any results about the QWRP can be

adapted to the WRP by simply letting A be equal to

the area of P .

We consider the generalization to multiple agents

of both the WRP and the QWRP, namely the

k-Watchmen Routes problem (k-WRP) and the

Quota k-Watchmen Routes problem (Qk-WRP),

with the objective of minimizing the length of the

longest path traveled by any one watchman. Even in

a simple polygon, when no starting points are specified

(so, we are to determine the best starting locations),

both problems are NP-hard to approximate within any

multiplicative factor [12].

We thus focus on the (boundary) anchored version, in

which a team of robots or searchers enter a domain P

through a door on its boundary to search for a station-

ary target, which may be randomly distributed within

the domain; the objective is to plan for an optimal col-

lective effort to guarantee at least a certain probability

of detection (1 in the k-WRP and some p ∈ [0, 1] in

the Qk-WRP). We consider the number, k, of robots

to be fixed and relatively small, as in most practical

situations it is infeasible to employ arbitrarily many
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watchmen/robots/agents. We present, for any fixed k,

a pseudopolynomial-time (polynomial in the number n

of vertices of P and the length of the longest edge of

P ) exact algorithm to solve the anchored k-WRP in a

simple orthogonal (integral coordinate) polygon P un-

der L1 distance. The pseudopolynomial-time exact al-

gorithm is the basis for the FPTAS for L1 distance and

the (
√

2+ε)-approximation for L2 distance. For the Qk-

WRP, we give polynomial-time constant-factor approxi-

mations in a simple polygon. While we restrict ourselves

to the anchored version, we achieve better approxima-

tion factors for any (fixed) k than the ones Nilsson and

Packer proposed for the case k = 2 in [11].

2 Preliminaries

Let P be a simple polygon, i.e. a simply connected sub-

set of R2. Denote by ∂P the boundary of P , a polygonal

chain that does not self-intersect consisting of n vertices

v1, v2, . . . , vn, which we assume to have integer coordi-

nates. A simple polygon is orthogonal if the internal

angle at every vertex is either 90 (convex vertex) or 270

degrees (reflex vertex).

For a point x ∈ P , its visibility region, denoted by

V (x), is the set of all points y such that the segment

xy does not intersect with the exterior of P : we say x

and y and see each other. For an arbitrary set X ⊆ P ,

the visibility region of X, V (X), is the set of all points

that are seen by some point in X. When X is either

a point or a line segment, V (X) is necessarily a simple

subpolygon of P with at most n vertices and can be

computed in O(n) time [7, 13]. We use | · | to denote

Euclidean measure of geometric objects (e.g., length or

area).

The first problem we investigate is the anchored k-

WRP, where the polygon P is orthogonal and move-

ments of the watchmen are rectilinear (L1 distance).

Given a simple orthogonal polygon P and a starting

point s ∈ ∂P , we compute k tours {γi} within P con-

sisting of horizontal and vertical segments, all starting

from s such that
⋃

i=1,...,k

V (γi) = P and max
i=1,...,k

|γi| is

minimized. We also assume that the coordinates of

the vertices of P are integers. It is known that even

for k = 2, the general k-WRP in a simple polygon is

(weakly) NP-hard via a simple reduction from Parti-

tion [10]. The reduction can be easily modified to show

that our version is also NP-hard. The second problem,

Qk-WRP, generalizes the first to

∣∣∣∣∣
⋃

i=1,...,k

V (γi)

∣∣∣∣∣ ≥ A for

some 0 ≤ A ≤ |P |. The fraction of area seen, A
|P | , can

be interpreted as the probability that the watchmen de-

tect a target uniformly distributed in P . We consider

the Qk-WRP in a simple polygon, where the watchmen

have unrestricted movement (not limited to horizontal

and vertical).

3 k-Watchmen in a Simple Orthogonal Polygon

Dynamic programming exact algorithm A visibility

cut ci with respect to the starting point s is a chord

obtained from extending the edge e incident on a reflex

vertex, vi, where e is the edge whose extension creates

a convex vertex at vi in the subpolygon containing s.

The other subpolygon (not containing s) is the pocket

induced by ci. Not all reflex vertices induce a visibility

cut. An essential cut is a visibility cut whose pocket

does not fully contain any other pocket (Figure 1). In

general, essential cuts may intersect with each other.

s
c1

c2
c3

c4

Figure 1: The essential cuts (dashed).

Lemma 1
⋃

i=1,...,k

V (γi) = P if and only if {γi} collec-

tively visit all essential cuts of P .

Proof. The lemma is simply an extension of the well

known fact: a single tour sees all of P if and only if it

visits all essential cuts [2, 4, 5]. �

Denote by Ci the set of essential cuts visited by γi.

Corollary 2 There exists an optimal solution {γi}
such that for any i, γi is the shortest route to visit

all cuts in Ci and s in the order in which they appear

around ∂P .

Consider the decomposition of P into rectangular

cells by the maximal (within P ) extensions of all edges,

as well as a horizontal and vertical line through s; this

is known as the Hanan grid (Figure 2).

Lemma 3 There exists an optimal solution {γi} within

the Hanan grid.
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s

Figure 2: The Hanan grid formed by extensions of all

edges in P .

Proof. Given an optimal solution {γi}, let Ci =

{ci1, . . . , cij} (in order around ∂P ) and pi1, . . . , pij be

the point where γi first makes contact with ci1, . . . , cij .

Denote by L1P (x, y) a geodesic L1 shortest path be-

tween x and y, a rectilinear shortest path constrained

to stay within P . (For an overview of geodesic shortest

paths in both L1 and L2 metrics, see [9].)

First, note that for every i, we may replace γi with

a concatenation of geodesic L1 shortest paths, namely

γi := L1p(s, pi1)∪L1P (pi1, pi2)∪ . . .∪L1P (pij , s) with-

out increasing max
i=1,...,k

{|γi|} while maintaining visibility

coverage of P .

We argue that L1p(s, pi1) is a geodesic L1 short-

est path from s to ci1. Suppose to the con-

trary, that geodesic L1 shortest paths from s to

ci1 make contact with ci1 at p′i1 6= pi1 (all

geodesic L1 shortest paths from a point to a seg-

ment have the same endpoint). Due to orthogonal-

ity |L1P (s, p′i1)| + |p′i1pi1| = |L1P (s, pi1)|, which means

|L1P (s, pi1)|+ |L1P (pi1, pi2)| = |L1P (s, p′i1)|+ |p′i1pi1|+
|L1P (pi1, pi2)| ≥ |L1P (s, p′i1)|+|L1P (p′i1, pi2)|. This im-

plies γi should take a geodesic L1 shortest path from s

to ci1, and it suffices to find such a path within the

Hanan grid. By a straightforward inductive argument,

we can show the same for any portion of γi between any

two essential cuts. �

Corollary 2 and Lemma 3 allow us to reduce the prob-

lem to that of finding a set of grid points on the es-

sential cuts for which each route is responsible. Then,

each route is simply the concatenation of L1 short-

est paths between those points. Let {c1, c2, . . . , cm}
be the set of essential cuts in order around ∂P (s

lies between c1 and cm). We define each subproblem

(cj , p1, l1, . . . , pk, lk) by an essential cut cj , k Hanan grid

points p1, . . . , pk on essential cuts c1, . . . , cj (and s) and

k integers l1, . . . , lk. Refer to Figure 3 for an illustra-

tion. Subproblem (cj , p1, l1, . . . , pk, lk) = TRUE if and

only if there exists a collection of k paths Γ1, . . . ,Γk col-

lectively visiting all essential cuts from c1 up to cj such

that

• Γi starts at s, ends at pi,

• |Γi| = li.

s

p1 p2

|Γ1| = l1

|Γ2| = l2

c3

c1

c2

c4

Figure 3: An example subproblem (c3, p1, l1, p2, l2).

The recursion is as follows. For each Hanan grid point

p ∈ cj and i = 1, . . . , k

(cj , p1, l1, . . . , pi := p, li, . . . , pk, lk)

=
∨

p′

(cj−1, p1, l1, . . . , pi := p′, li − |L1P (p, p′)|, . . . , pk, lk)

(1)

where p′ is taken from the set of all Hanan grid points

on the cuts c1, . . . , cj−1 such that geodesic L1 shortest

paths from p′ to cj make contact with cj at p (Lemma 3).

The base case is simply (s, s, 0, . . . , s, 0) = TRUE. Af-

ter tabulating all subproblems, we take the subproblem

(cm, p1, l1, . . . , pk, lk) (such that (cm, p1, l1, . . . , pk, lk) =

TRUE) with the minimum max
i=1,...,k

{li+ |L1P (pi, s)|} and

return the tours {γi := Γi ∪ L1P (pi, s)}.

Proof of correctness Our proof of correctness relies

on two arguments:

• Since the paths associated with subproblem

(cj−1, p1, l1, . . . , pi := p′, li−|L1P (p, p′)|, . . . , pk, lk)

visit all essential cuts up to cj−1, the paths

associated with subproblem (cj , p1, l1, . . . , pi :=

p, li, . . . , pk, lk) also visit all essential cuts up to

cj since p ∈ cj . By induction, the tours returned

hence visit all essential cuts.

• γi consists of geodesic L1 shortest paths be-

tween contact points with essential cuts (proof of

Lemma 3). If we identify two consecutive contact
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points on γi, say p′ and p in that order, then the

length of the portion of γi from s to p is li if and

only if the length of the portion of γi from s to p′

is li − |L1P (p, p′)|.

Analysis of running time There are O(n) essential

cuts, O(n) Hanan grid points on each cut. Each tour

γi must be no longer than nD, where D is the length

of the longest edge of P , therefore li is bounded by nD.

In total, there are O[n ·n2k · (nD)k] = O(n3k+1Dk) sub-

problems. We pre-compute geodesic L1 shortest paths

between Hanan grid points, as well as between Hanan

grid points and essential cuts, which equates to solving

the All Pairs Shortest Path problem in the embed-

ded graph of the Hanan grid. Then, we can solve each

subproblem by iterating through at most O(n2) previ-

ously solved subproblems. Thus, the total running time

is O(n3k+3Dk), which is pseudopolynomial for fixed k.

This is in congruence with the weak NP-hardness from

Partition, for which there exists a pseudopolynomial

(polynomial in the number of input integers and the

largest input integer) time algorithm. A tighter time

bound is O(n2k+3Lk), where L is the length of a shortest

single orthogonal watchman route of P , which is com-

putable in O(n) time if P is simple and orthogonal [3].

Clearly L ≤ |∂P | ≤ nD and max
i=1,...,k

|γi| ≤ L (one short-

est single watchman route and k−1 routes of length 0 is

a feasible solution to the k-WRP). In addition, we need

not consider any L1P (p, p′) whose length is greater than

L for recursion (1) of the dynamic programming.

Fully polynomial-time approximation scheme To

achieve fully polynomial running time for fixed k, we

bound the number of subproblems by “bucketing” the

lengths of paths in P . Let {γi} be an optimal collection

of k routes. Consider that L ≤ ∑
i=1,...,k

|γi| (the con-

catenation of {γi} can be considered a single watchman

route) hence

L

k
≤ max
i=1,...,k

|γi| ≤ L. (2)

Given any ε > 0, we divide L into dnkε e uniform inter-

vals, each no longer than εL
nk . The length of any geodesic

L1 shortest path we take into consideration for recur-

sion (1) must fall into one of the intervals, we round

it down to the nearest interval endpoint. Then, ap-

ply the dynamic programming algorithm to the new in-

stance with subproblems defined instead by intervals’

endpoints. Let the solution returned be {γ′i}. For clar-

ity, we denote by d(.) distance/length in the “rounded

down” instance. Then

max
i=1,...,k

|γi| ≥ max
i=1,...,k

d(γi) ≥ max
i=1,...,k

d(γ′i). (3)

The first inequality follows simply from the fact that

we round down any distance from the original instance,

the second inequality is by definition, since {γ′i} is an

optimal solution of the new instance. Now, any route

in {γ′i} must consist of at most n geodesic L1 short-

est paths between Hanan grid points on essential cuts,

the length of each differs by no more than εL
nk between

the original instance and the “rounded down” instance.

Thus, for any i

|γ′i| − d(γ′i) ≤ n ·
εL

nk

therefore

max
i=1,...,k

d(γ′i) +
εL

k
≥ max
i=1,...,k

|γ′i|. (4)

Combining all three inequalities (2), (3), (4), we get

(1 + ε) max
i=1,...,k

|γi| ≥ max
i=1,...,k

|γ′i|

with a running time of O
(
n2k+3

(
nk
ε

)k)
.

Remark The FPTAS for orthogonal movement

(L1 distance) gives a polynomial time (
√

2 + ε)-

approximation to unrestricted movement (L2 distance).

Theorem 4 For any fixed k, the anchored k-WRP in

a simple orthogonal polygon has an FPTAS for the L1

metric and a polynomial-time (
√

2 + ε)-approximation

for the L2 metric.

4 Quota k-Watchmen in a Simple Polygon

In this section, we assume P is a general simple polygon

and the watchmen can move in any direction within P .

Constant factor polynomial-time approximation Let

{γi} be an optimal collection of quota k-watchman

routes to achieve the visibility area quota of A and let

OPT = max
i=1,...,k

|γi|. Denote by Cg(r) the geodesic disk

of radius r centered at s, i.e. the locus of all points

within geodesic distance (length of the geodesic short-

est path) of r from s. Let r = rmin, where rmin is

the smallest value of r such that |V (Cg(r))| ≥ A; rmin
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can be computed in O(n2 log n) time using the “visibil-

ity wave” methods in [1]. Clearly, rmin ≤ OPT
2 , since

Cg
(
OPT

2

)
encloses {γi} and must see an area no smaller

than A. If we repeatedly multiply r by 2, at some

point we must have r
2 ≤ OPT

2 ≤ r, suppose we have

reached this point. Then, Cg(r) contains {γi}. Let γ be

a shortest single route contained within Cg(r) such that

|V (γ)| ≥ A (note that γ is not necessarily the shortest

single quota watchman route overall in P ).

Lemma 5 |γ|
k ≤ OPT ≤ |γ|.

Proof. Recall that in Section 3, we proved two sim-

ilar inequalities for watchman routes with orthogonal

movement seeing the whole polygon. The same holds

here since orthogonality and quota did not play a part

in the argument. �

We show how to approximate γ (it is NP-hard to exactly

compute γ), and that the number of times we multiply

r by 2 is polynomial in n.

Lemma 6 [8, Section 3] Given a budget B ≥ 0 and any

ε > 0, there exists an O
(
n5

ε6

)
algorithm that computes

a route of length at most (1 + ε)B seeing as much area

as any route of length B within Cg(r).

We briefly describe the algorithm, and refer the readers

to [8] for more details. First, triangulate P , including

s as a vertex of the triangulation. Then, overlay onto

the triangulation a regular square grid of side lengths

δ = O
(
εB
n

)
within an axis aligned square of size B-

by-B centered at s. We consider the set of (convex)

cells that overlap (both fully and partially) with Cg(r)

and their vertices, Sδ,r. Let γB be the B-length route

within Cg(r) that achieves the most area of visibility.

There exists a route of length at most (1 + ε)B with

vertices coming from Sδ,r enclosing γB , i.e. the bound-

ary of the relative convex hull (the minimum-perimeter

connected superset within P , see [8, 9]) of the cells con-

taining vertices of γB , thus seeing at least as much area

as γB (Figure 4). If |γ| ≤ B ≤ α|γ| for some α ≥ 1,

using dynamic programming, the algorithm in [8, Sec-

tion 3] computes a route γ′ of length no longer than

α(1 + ε)|γ| with vertices in Sδ,r that sees the most area,

which must be no smaller than |V (γB)| ≥ |V (γ)| ≥ A.

Using Lemma 7, we acquire a polynomial-sized set of

values from which we can search for an appropriate B.

Lemma 7 rmin ≤ |γ| ≤ 6nrmin.

s

δ

s

∂P ∂P

Sδ,r

Cg(r)

Figure 4: Left: γB (red) is a tour no longer than B

within Cg(r) (blue) that sees the most area. Right:

enclosing γB with a tour whose vertices are in Sδ,r seeing

everything γB sees (green).

Proof. The first inequality is straightforward, rmin ≤
OPT ≤ |γ|.

For the second inequality, first note that if a single

watchman travels from s to ∂Cg(rmin), follows along the

whole of ∂Cg(rmin) then goes back to s, he sees an area

of A, thus |∂Cg(rmin)|+2rmin is an upper bound on |γ|.
We show that |∂Cg(rmin)| + 2rmin ≤ 6nrmin. Observe

that ∂Cg(rmin) consists of polygonal chains that are

portions of ∂P and circular arcs; the circular arcs have

total length no greater than 2πrmin. Each segment in

the polygonal part of ∂Cg(rmin) has length bounded

by the sum of geodesic distances from its endpoints to

s (triangle inequality), which is no more than 2rmin.

There are at most n segments in the polygonal portions

of ∂Cg(rmin), therefore their total length is no greater

than 2nrmin, implying |∂Cg(rmin)|+ 2rmin = 2nrmin +

2πrmin + 2rmin ≤ 6nrmin. �

We divide 6nrmin into d 6nε e uniform intervals so that

each is no longer than εrmin: the smallest interval

endpoint that is no smaller than |γ| must also be no

larger than (1 + ε)|γ|, and hence is the value of B that

we desire. We perform a binary search on the values{
0, 6nrmin

d 6nε e
, . . . , 6nrmin

}
as the input budget for the al-

gorithm in Lemma 6, and seek out the smallest value

for which the output route γ′ sees an area no smaller

than A. Clearly, |γ′| ≤ (1 + ε)2|γ|.
Lemma 7 also implies that the number of times

we double r is polynomially bounded, in particular,

O(log n), since rmin ≤ OPT ≤ 6nrmin.

We are now ready to describe the approximation al-

gorithm for the Qk-WRP as follows:
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• Step 1: Set r := rmin.

• Step 2: Compute γ′, a (1+ε)2-approximation to γ.

• Step 3: Divide γ′ into k subpaths of equal length,

each of which is bounded by ai, ai+1 ∈ γ′ (a1 ≡ s ≡
ak+1) and denoted by γ′aiai+1

.

• Step 4: For each i, we obtain γ′i by traversing the

geodesic shortest path from s to ai, γ
′
aiai+1

and the

geodesic shortest path from ai+1 back to s.

• Step 5: Set r := 2r, then repeat from Step 2, until

r > 6nrmin.

Finally, we return the collection of routes {γ′i} that min-

imizes max
i=1,...,k

|γ′i| out of all collections from all values of

r in the doubling search.

Analysis of running time For each choice of B, we ex-

ecute the O
(
n5

ε6

)
algorithm, thus computing an approx-

imation to γ′ for each value of r takes O
(
n5

ε6 log
(
n
ε

))

time. This step dominates both computing rmin and

deriving the collection {γ′i}. Since there are O(log n) it-

erations of the doubling search for r, the overall running

time is O
(
n5

ε6 log
(
n
ε

)
log n

)
.

Theorem 8 The algorithm described above has an ap-

proximation factor of 3 + ε.

Proof. Since all our choices for B are no larger than

6nrmin, we can choose an appropriate δ = O
(
εB
n

)
so

that the geodesic distance from any point on γ′ to s is no

longer than r+εr. Thus, when r
2 ≤ OPT

2 ≤ r, any one of

the k routes returned by the algorithm is no longer than
|γ′|
k + 2r+ 2εr ≤ [(1 + ε)2 + 2 + 2ε]OPT = (3 + ε′)OPT ,

where ε′ = 4ε + ε2. Note that 1
ε = Θ

(
1
ε′
)

as ε and ε′

approach 0, so the running time is in the same order

when written in terms of ε′. �

Improving the approximation factor In the approx-

imation algorithm earlier, we gradually expand Cg(r)

until Cg(r) contains an optimal {γi}. If in each itera-

tion, we instead multiply r by a smaller factor, namely

(1 + ε), then at some point r
(1+ε) ≤ OPT

2 ≤ r. The

distance from each point on γ′ to s is then no greater

than r+ εr ≤ (1 + ε)2OPT2 . Hence, the length of any of

the k routes returned by the approximation algorithm

is bounded by |γ′|
k + (1 + ε)2OPT2 + (1 + ε)2OPT2 ≤

(2 + ε′)OPT , where ε′ = 4ε+ 2ε2.

There is however, a trade-off between the approxima-

tion factor and the number of iterations of the multi-

plicative search for r. If we multiply r by (1 + ε) each

time, the search requires O(log1+ε n) iterations. Note

that

log1+ε n = log n
ln 2

ln(1 + ε)
= log nO

(
1

ε

)
.

In summary, we can achieve an approximation ratio

of (2+ε′) with a running time of O
(
n5

ε7 log
(
n
ε

)
log n

)
=

O
(
n5

ε′7 log
(
n
ε′
)

log n
)

(since 1
ε = Θ

(
1
ε′
)
).
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An Improved Algorithm for Shortest Paths in Weighted Unit-Disk Graphs∗

Bruce W. Brewer† Haitao Wang‡

Abstract

Let V be a set of n points in the plane. The unit-disk
graph G = (V,E) has vertex set V and an edge euv ∈ E
between vertices u, v ∈ V if the Euclidean distance be-
tween u and v is at most 1. The weight of each edge euv
is the Euclidean distance between u and v. Given V and
a source point s ∈ V , we consider the problem of com-
puting shortest paths in G from s to all other vertices.
The previously best algorithm for this problem runs in
O(n log2 n) time [Wang and Xue, SoCG’19]. The prob-
lem has an Ω(n log n) lower bound under the algebraic
decision tree model. In this paper, we present an im-
proved algorithm of O(n log2 n/ log log n) time (under
the standard real RAM model). Furthermore, we show
that the problem can be solved using O(n log n) compar-
isons under the algebraic decision tree model, matching
the Ω(n log n) lower bound.

1 Introduction

Let V be a set of n points in the plane. The unit-
disk graph G = (V,E) has vertex set V and an edge
euv ∈ E between vertices u, v ∈ V if the Euclidean
distance between u and v is at most 1. Alternatively, G
can be seen as the intersection graph of disks with radius
1
2 centered at the points in V (i.e., two disks have an
edge in the graph if they intersect). In the weighted
graph, the weight of each edge euv ∈ E is the Euclidean
distance between u and v. In the unweighted graph, all
edges have the same weight.

Given V and a source point s ∈ V , we study the sin-
gle source shortest path (SSSP) problem where the goal
is to compute shortest paths from s to all other vertices
in G. Like in general graphs, the algorithm usually re-
turns a shortest path tree rooted at s. The problem
in the unweighted graph has an Ω(n log n) lower bound
in the algebraic decision tree model since even deciding
if G is connected requires that much time by a reduc-
tion from the max-gap [2]. The unweighted problem has
been solved optimally in O(n log n) time by Cabello and
Jejčič [2], or in O(n) time by Chan and Skrepetos [4] if

∗This research was supported in part by NSF under Grant
CCF-2005323.

†Kahlert School of Computing, University of Utah, Salt Lake
City, UT 84112, USA. bruce.brewer@utah.edu

‡Kahlert School of Computing, University of Utah, Salt Lake
City, UT 84112, USA. haitao.wang@utah.edu

the points of V are pre-sorted (by both the x- and y-
coordinates). Several algorithms for the weighted case
are also known [2, 8, 11, 13, 15]. Roditty and Segal [13]
first solved the problem in (n4/3+δ) time, where δ > 0 is
an arbitrarily small constant. Cabello and Jejčič [2] im-
proved it to O(n1+δ) time. Subsequent improvements
were made by Kaplan, Mulzer, Roditty, Seiferth, and
Sharir [8] and also by Liu [11] by developing more effi-
cient dynamic bichromatic closest pair data structures
and plugging them into the algorithm of [2]. Wang and
Xue [15] proposed a new method that solves the prob-
lem in O(n log2 n) time without using dynamic bichro-
matic closest pair data structures. It is currently the
best algorithm for the problem.

1.1 Our result

We present a new algorithm of O(n log2 n/ log log n)
time for the weighted case and, therefore, slightly im-
prove the result of [15]. Our algorithm follows the
framework of Wang and Xue [15] but provides a more
efficient solution to a bottleneck subproblem in their
algorithm, called the offline insertion-only additively-
weighted nearest neighbor problem with a separating line
(or IOAWNN-SL for short). Specifically, we are given
a sequence of n operations of the following two types:
(1) Insertion: Insert a weighted point to P (which is
∅ initially); (2) Query: given a query point q, find the
additively-weighted nearest neighbor of q in P , where
the distance between q to any point p ∈ P is defined to
be their Euclidean distance plus the weight of p. The
points of P and all the query points are required to be
separated by a given line (say the x-axis). The goal of
the problem is to answer all queries.

Wang and Xue [15] solved the IOAWNN-SL prob-
lem in O(n log2 n) time using the traditional logarith-
mic method of Bentley [1]. This is the bottleneck of
their overall shortest path algorithm; all other parts
of the algorithm take O(n log n) time. We derive a
more efficient algorithm that solves IOAWNN-SL in
O(n log2 n/ log log n) time (see Theorem 1 for details).
Plugging this result into the algorithm framework of
Wang and Xue [15] solves the shortest path problem in
O(n log2 n/ log log n) time.

Theorem 1 Let P be an initially empty set of n
weighted points in the plane such that all points of P lie
below the x-axis ℓ. There exists a data structure D(P )
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of O(n) space supporting the following operations:

1. Insertion: Insert a weighted point p below ℓ to P in
amortized O(log2 n/ log log n) time.

2. Query: Given a query point q above ℓ, find the
additively-weighted nearest neighbor to q in P in
worst-case O(log2 n/ log log n) time.

Our algorithm for Theorem 1 needs to solve a sub-
problem about merging two additively weighted Voronoi
diagrams. Specifically, let Sa and Sb each be a subset
of n weighted points in the plane such that all points
of Sa ∪ Sb are below the x-axis ℓ. Let VD(Sa) de-
note the additively-weighted Voronoi diagram of Sa, and
VD+(Sa) denote the portion of VD(Sa) above ℓ. Sim-
ilarly, define VD(Sb) and VD+(Sb) for Sb, and define
VD(Sa ∪ Sb) and VD+(Sa ∪ Sb) for Sa ∪ Sb. Given
VD+(Sa) and VD+(Sb), our problem is to compute
VD+(Sa ∪ Sb). We solve the problem in O(n) time by
modifying Kirkpatrick’s algorithm for merging two stan-
dard Voronoi diagrams [9] and by making use of the
property that VD+(Sa ∪ Sb) and all points of Sa ∪ Sb
are separated by ℓ. Note that directly applying Kirk-
patrick’s algorithm does not work (see Section 3 for
more details). It would be more interesting to have a
linear time algorithm to compute the complete diagram
VD(Sa ∪Sb) by merging VD(Sa) and VD(Sb). Our tech-
nique, however, does not immediately work because it
relies on the separating line ℓ. Nevertheless, we hope
our result will serve as a stepping stone towards achiev-
ing that goal. We summarize our result in the following
theorem.

Theorem 2 Let Sa and Sb each be a set of n weighted
points in the plane such that all the points of Sa ∪ Sb
are below the x-axis ℓ. Given VD+(Sa) and VD+(Sb),
VD+(Sa ∪ Sb) can be constructed in O(n) time.

Algebraic decision tree model. The above result holds
for the standard real RAM model. Under the algebraic
decision tree model in which we only count comparisons
toward the time complexity, using a technique recently
developed by Chan and Zheng [5], we show that the
problem IOAWNN-SL can be solved using O(n log n)
comparisons. This leads to an O(n log n) time algo-
rithm for the shortest path problem in weighted unit-
disk graphs under the algebraic decision tree model,
matching the Ω(n log n) lower bound [2].

Outline. The rest of the paper is organized as follows.
We describe the shortest path algorithm framework in
Section 2, mainly by reviewing Wang and Xue’s algo-
rithm [15]. In Section 3, we introduce our data struc-
ture for IOAWNN-SL and thus prove Theorem 1. Sec-
tion 4 presents our Voronoi diagram merging algorithm
for Theorem 2. We describe the algebraic decision tree
algorithm in Section 5.

a

Figure 1: Illustrating □a (the central highlighted
square) and ⊞a (the gray area).

2 The shortest path algorithm

In this section, we describe the shortest path algorithm.
We begin with reviewing Wang and Xue’s algorithm [15]
and explain why the IOAWNN-SL problem is a bottle-
neck (we only state their algorithm and refer the in-
terested reader to their paper [15] for the correctness
analysis). We will show how our solution to IOAWNN-
SL in Theorem 1 can lead to an O(n log2 n/ log log n)
time algorithm for the shortest path problem.

Given a set V of n points in R2 and a source point
s ∈ V , we wish to compute shortest paths from s to
all vertices in the weighted unit-disk graph G = (V,E).
We use euv ∈ E to denote the edge between two points
u, v ∈ V and w(euv) to denote the weight of the edge.
Recall that w(euv) = ||u−v|| ≤ 1, where ||u−v|| denotes
the Euclidean distance between u and v. The algorithm
will compute a table dist[·] such that after the algorithm
finishes, dist[v] is the length of a shortest path from s
to v for all v ∈ V . Using a predecessor table, we could
also maintain a shortest path tree, but we will omit the
discussion about it.

We overlay the plane with a grid Γ of square cells with
side lengths 1/2. For any point a ∈ R2, denote by □a
the cell of Γ such that a ∈ □a, and ⊞a the 5× 5 patch
of cells in Γ centered around □a (see Figure 1). For a
set of points A ⊆ R2 and a ∈ A, we use A□a

= A ∩□a
and A⊞a

= A ∩ ⊞a. The algorithm makes use of the
following properties: (1) For any two points a, b in the
same cell of Γ, ||a − b|| ≤ 1 holds; (2) if ||a − b|| ≤ 1,
then b is in ⊞a and a is in ⊞b.
Wang and Xue’s algorithm is summarized in Algo-

rithm 1. It can be understood by contrasting with Di-
jkstra’s algorithm, which we write in Algorithm 2 us-
ing similar notation. In particular, a subroutine Up-
date(A,B) is used to “push” the current candidate
shortest path information from A to B where A,B ⊆ V .
Specifically, for each point b ∈ B, we find:

pb = argmin
{a∈A:eab∈E}

dist[a] + w(eab). (1)

We then update dist[b] to min{dist[b],dist[pb]+w(epbb)}.
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Algorithm 1: Wang and Xue’s algorithm [15]

1 dist[a]←∞ for all a ∈ V
2 dist[s]← 0
3 A← V
4 while A ̸= ∅ do
5 c← argmina∈A{dist[a]}
6 Update(A⊞c

, A□c
) // First Update

7 Update(A□c
, A⊞c

) // Second Update

8 A← A \A□c

9 return dist[·]

Algorithm 2: Dijkstra’s algorithm

1 dist[a]←∞ for all a ∈ V
2 dist[s]← 0
3 A← V
4 while A ̸= ∅ do
5 c← argmina∈A{dist[a]}
6 Update({c}, A)
7 A← A \ {c}
8 return dist[·]

The main difference between Wang and Xue’s algo-
rithm and Dijkstra’s is that instead of operating on sin-
gle vertices, Wang and Xue’s algorithm operates on cells
of Γ. Generally speaking, the first update (Line 6) in Al-
gorithm 1 is to update the shortest path information for
the points in A□c

using the shortest path information of
their neighbors. The second update is to use the short-
est path information for the points in V□c

to update the
shortest path information of their neighbors. Wang and
Xue prove that after the first update, the shortest path
information for all points of V□c

is correctly computed.
Wang and Xue give an O(n log2 n) time solution for

the second update, i.e., Line 7. The rest of Algorithm 1
takes O(n log n) time. We will improve the runtime for
the second update to O(n log2 n/ log log n) using Theo-
rem 1, which improves the runtime for Algorithm 1 to
O(n log2 n/ log log n). The details are discussed in the
following.

2.1 The second update

To implement the second update Update(A□c
, A⊞c

),
since A⊞c

has O(1) cells, it suffices to perform Up-
date(A□c

, A□) for each cell □ ∈ ⊞c individually.
If □ is □c, then A□c

= A□. Since the distance be-
tween two points in □c is at most 1, Update(A□c

, A□)
can be performed in O(|A□c

| log |A□c
|) time (and

O(|A□c
|) space) by constructing the additively-weighted

Voronoi diagram for A□c
[7].

If □ is not □c, a useful property is that □ and □c
are separated by an axis-parallel line. To perform Up-
date(A□c

, A□), Wang and Xue [15] proposed Algo-

rithm 3 below.

Algorithm 3: Update(A,B) from [15]

1 dist′[a]← dist[a] for a ∈ A
2 Sort the points in A = {a1, . . . , a|A|} so that

dist′[a1] ≤ . . . ≤ dist′[a|A|]
3 for i = 1, . . . , |A| do
4 Bi ← {b ∈ B : eaib ∈ E and eajb /∈

E for all j < i}
5 U ← ∅
6 for i = |A|, . . . , 1 do
7 U ← U ∪ {ai}
8 for b ∈ Bi do
9 p = argminu∈U{dist′[u] + w(eub)}

10 dist[b]← min{dist[b],dist′[p] + w(epb)}

The correctness of Algorithm 3 hinges on the fact that
p found by Line 9 is the same as pb in Equation (1). This
is seen by arguing that pb ∈ U and epb ∈ E.

We now analyze the runtime of Algorithm 3. Sorting
A takes O(|A| log |A|) time. Computing the subsets Bi,
1 ≤ i ≤ |A|, can be done in O((|A|+ |B|) log(|A|+ |B|))
time (and O(|A|+ |B|) space) [15]. The for loop (Lines
6–10) is an instance of the IOAWNN-SL problem intro-
duced in Section 1. Indeed, if we assign each point u in
U a weight equal to dist′[u], then p in Line 9 is essen-
tially the additively-weighted nearest neighbor of b in
U . The set U is dynamically changed with point inser-
tions in Line 7. As such, by Theorem 1, the for loop can
be implemented in O(k log2 k/ log log k) time (and O(k)
space) with k = |A|+|B|. Therefore, Update(A□c

, A□)
can be performed in O(k log2 k/ log log k) time and O(k)
space, with k = |A□c

|+ |A□|.
In summary, since A⊞c

has O(1) cells, the sec-
ond update Update(A□c

, A⊞c
) can be implemented

in O(|A⊞c
| log2 |A⊞c

|/ log log |A⊞c
|) time and O(|A⊞c

|)
space as A□c

⊆ A⊞c
. As analyzed in [15], the total sum

of |A⊞c
| in the entire Algorithm 1 is O(n). This leads

to the following result.

Theorem 3 Given a set V of n points in the plane and
a source point s, shortest paths from s to all other ver-
tices in the weighted unit-disk graph G = (V,E) can be
computed in O(n log2 n/ log log n) time and O(n) space.

3 The offline insertion-only additively-weighted
nearest neighbor problem with a separating line
(IOAWNN-SL)

In this section, we prove Theorem 1. We follow the no-
tation in Section 1. In particular, for any subset P ′ ⊆ P ,
VD+(P

′) denotes the portion of the additively-weighted
Voronoi diagram of P ′ above the x-axis ℓ.
Our data structure D(P ) for Theorem 1 consists of

two components: D(P ′) and VD+(P \ P ′) for some
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subset P ′ ⊆ P ; we maintain the invariant |P ′| ≤
|P |/ log |P |. We also build a point location data struc-
ture on VD+(P \ P ′) so that, given a query point, the
cell of VD+(P \ P ′) containing the point can be found
in O(log |P \P ′|) time [6, 10]. As such, D(P ) is a recur-
sive structure: D(P ) is defined in terms of D(P ′) which
in turn is defined in terms of D(P ′′) and so on. As the
base case, if |P | ≤ c for some constant c, then we simply
let D(P ) = VD+(P ). Similar recursive data structures
have been used before in the literature, e.g., [3, 12].

In the following, we discuss how to handle the two
operations: insertions and queries.

Queries. Given a query point q above ℓ, we first find
the nearest neighbor of q in P \ P ′ using a point loca-
tion query on VD+(P \ P ′). Then, we find the nearest
neighbor of q in P ′ using D(P ′) recursively. Among the
two “candidate” neighbors, we return the one nearer
to q as the answer. For the query time, since a point
location query on VD+(P \ P ′) takes O(log |P \ P ′|)
time, the query time Q(n) satisfies the following recur-
rence: Q(n) = Q(n/ log n) + O(log n), which solves to
Q(n) = O(log2 n/ log log n). Therefore, each query op-
eration takes worst-case O(log2 n/ log logn) time.

Insertions. To insert a point p below ℓ to P , we first
insert p to P ′ recursively. We then check if the invari-
ant |P ′| ≤ |P |/ log |P | still holds. If not, we set P ′ = ∅,
and then construct VD+(P ) as follows. First, we con-
struct VD+(P

′) recursively. Recall that VD+(P \ P ′)
is already available. We compute VD+(P ) by merging
VD+(P

′) and VD+(P \ P ′), which takes O(|P |) time by
Theorem 2. Finally, we construct a point location data
structure on VD+(P ) in O(|P |) time [6, 10]. This fin-
ishes the insertion operation.

We now analyze the insertion time. First, suppose
that we need to construct VD+(P ) due to the insertion
of p. Then, the construction time T (n) for VD+(P )
satisfies the following recurrence: T (n) = T (n/ log n) +
O(n), which solves to T (n) = O(n).

Since P ′ = ∅ once VD+(P ) is constructed, we only
need to construct VD+(P ) every Θ(n/ log n) insertions.
As constructing VD+(P ) takes O(|P |) time, the amor-
tized time for constructing VD+(P ) per insertion is
O(log n). As such, if I(n) is the amortized time
for each insertion, we have the following recurrence:
I(n) = I(n/ log n) + O(log n). The recurrence solves
to I(n) = O(log2 n/ log log n). We conclude that each
insertion takes O(log2 n/ log log n) amortized time.

Note that the space S(n) of D(P ) satisfies the follow-
ing recurrence: S(n) = S(n/ log n)+O(n), which solves
to S(n) = O(n). This proves Theorem 1.

Figure 2: Illustrating an additively-weighted Voronoi
diagram. The dashed horizontal line is the x-axis ℓ.

4 Merging two additively-weighted Voronoi dia-
grams

In this section, we prove Theorem 2. For completeness,
we first introduce the formal definition of additively-
weighted Voronoi diagrams and then present our merg-
ing algorithm.

4.1 Additively-weighted Voronoi diagrams

Let S = {s1, s2, . . . , sn} be a set of n points in the plane
such that each point si has a weight wi that can be
positive, zero, or negative. Following the literature, we
refer to points of S as sites. We define the additively-
weighted Euclidean distance (or weighted distance for
short) of a point p ∈ R2 to a site si as d(si, p) = ||si −
p||+ wi.
The additively-weighted Voronoi diagram of S, de-

noted by VD(S), partitions the plane into Voronoi re-
gions, Voronoi edges, and Voronoi vertices; see Figure 2.
Each Voronoi region Ri is associated with a site si and is
defined to be the set of points that are closer to si than
to any other site measured by the weighted distances:

Ri = {p ∈ R2 : d(si, p) < d(sj , p),∀j ̸= i}.

Each Voronoi edge Eij is associated with two distinct
sites si and sj and is defined to be the set of points that
are equidistant to si and sj and closer to these sites
than any other sites:

Eij = {p ∈ R2 : d(si, p) = d(sj , p) < d(sk, p),∀k ̸= i, j}.

Each Voronoi vertex is associated with three or more
distinct sites and is defined to be the point that is
equidistant to these sites and closer to these sites than
any other site.

We will also talk about the bisector between two sites,
which is defined to be the set of points in the plane that
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Figure 3: Illustrating the contour between two sets of
points. The dashed horizontal line is the x-axis ℓ.

are equidistant to the two sites:

B(si, sj) = {p ∈ R2 : d(si, p) = d(sj , p)}.

B(si, sj) is a hyperbolic arc whose foci are si and sj .
Note that a Voronoi edge associated with two sites is a
subset of their bisector.
Observation 1 states some properties about VD(S)

that are well known in the literature; we will use these
properties in our algorithm.

Observation 1 ([7])

1. Every Voronoi region of VD(S) must contain its as-
sociated site.

2. Each Voronoi region Ri of VD(S) is star-shaped
with respect to its site si, that is, the line segment
sip is inside Ri for any point p ∈ Ri.

3. The combinatorial size of VD(S) is O(|S|).

4.2 Merging algorithm for Theorem 2

We follow the notation introduced in Section 1, e.g., ℓ,
n, Sa, Sb, VD(Sa), VD(Sb), VD+(Sa), VD+(Sb), etc. Let
S = Sa∪Sb. Given VD+(Sa) and VD+(Sb), our goal is to
compute VD+(S) in O(n) time. For ease of exposition,
we make a general position assumption that no point in
the plane is equidistant to four points of S.
Our strategy is to identify the contour which con-

sists of edges in the complete Voronoi diagram VD(S)
that are associated with a site in Sa and a site in Sb;
see Figure 3. Note that the contour may have multi-
ple connected components. The contour partitions the
plane into regions CRi such that VD(S)∩CRi is either
VD(Sa) ∩ CRi or VD(Sb) ∩ CRi (we show in Lemma 4
later that each contour component has the topology of
a line or a circle). As such, once we have identified the

Figure 4: Illustrating the additively-weighted Voronoi
diagram of four points {p1, p2, p3, p4} for Observation 2.

contour, computing VD(S) is straightforward. To com-
pute the contour, the idea is to first find a point on
each contour component and then trace the component
by traversing VD(Sa) and VD(Sb) simultaneously. This
strategy follows Kirkpatrick’s algorithm [9] for merg-
ing two standard Voronoi diagrams. However, we can-
not directly apply Kirkpatrick’s algorithm because his
method for finding a point in each contour component is
not applicable to the weighted case. More specifically,
his method relies on the property that the Euclidean
minimum spanning tree of a point set in the plane must
be a subgraph of the dual graph of its standard Voronoi
diagram. However, this is not true anymore for the
additively-weighted Voronoi diagrams. We make it for-
mally as an observation below.

Observation 2 The Euclidean minimum spanning tree
of a set of points in the plane is not necessarily a
subgraph of the dual graph of the additively-weighted
Voronoi diagram of the point set.

Proof. Figure 4 gives an example for the observation
with S = {p1, p2, p3, p4}. It is obtained by setting p1 =
(0, 4), p2 = (3, 0), p3 = (0,−4), and p4 = (−3, 0) with
weights w1 = −4, w2 = 0, w3 = −4, and w4 = 0.
Since (p2, p4) is the closest pair among the four points
of S, p2p4 must be an edge in the Euclidean minimum
spanning tree of S. However, there is no edge between
p2 and p4 in the dual graph of the additively-weighted
Voronoi diagram of S because their Voronoi regions are
not adjacent. □

In our problem, we are interested in merging VD+(Sa)
and VD+(Sb) into VD+(S), so it suffices to compute the
portions of the contour above ℓ. With the help of ℓ, it is
relatively easy to find a point on each contour compo-
nent using the following property proved in Lemma 5:
Every contour component above ℓ must intersect ℓ.
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At a high level, our algorithm has two main proce-
dures. The first one is to identify the intersections be-
tween the contour and ℓ. The second procedure is to
start at these intersection points and trace each compo-
nent of the contour above ℓ.

The first main procedure: Finding intersections be-
tween the contour and ℓ. By definition, ℓ is divided
into segments by its intersections with VD+(Sa), which
we call ℓ-edges of VD+(Sa); similarly, we define ℓ-edges
for VD+(Sb). We sweep ℓ from left to right, looking for
places where the contour intersects ℓ. We start with
the leftmost ℓ-edge of VD+(Sa) and the leftmost ℓ-edge
of VD+(Sb). At each step, we are on some ℓ-edge ea of
VD+(Sa) and some ℓ-edge eb of VD+(Sb). Let sa ∈ Sa be
the site associated with the cell of VD+(Sa) containing
ea; define sb ∈ Sb similarly. We compute the bisector
B(sa, sb) and determine where it intersects ℓ. The bi-
sector is a hyperbolic arc and ℓ is a straight line, so they
have at most two intersections p1 and p2. If pi ∈ ea∩eb,
then pi is a point of intersection between the contour
and ℓ. In this way, we can compute all intersections be-
tween ℓ and the contour. Since the combinatorial sizes
of VD+(Sa) and VD+(Sb) are O(n), this procedure com-
putes O(n) intersections between ℓ and the contour in
O(n) time.

The second main procedure: Tracing the contour.
We trace the contour components from the intersection
points computed above. Specifically, for each intersec-
tion p, we trace the contour component containing p as
follows. Suppose that p is on an ℓ-edge ea of VD+(Sa)
and an ℓ-edge eb of ℓ in VD+(Sb). These edges are asso-
ciated with sites sa ∈ Sa and sb ∈ Sb. Our trace begins
at p and continues above ℓ along the bisector B(sa, sb).
This bisector enters a Voronoi region Ra of VD+(Sa) and
a region Rb of VD+(Sb). We find which edge of Ra or Rb
the bisector intersects first. If no intersection exists or
the bisector first intersects ℓ, then we finish the trace by
reporting that the portion of B(sa, sb) past p is an edge
of the contour. Otherwise, assume that we intersect an
edge e′a of Ra before an edge of Rb (the case where we
intersect an edge of Rb first is handled the same way)
and denote this point of intersection by p′. We rule out
the case where B(sa, sb) intersects a vertex instead of
an edge because if we were to intersect a vertex, this
vertex would be equidistant to three sites in Sa and one
site in Sb, which would contradict our general position
assumption that no point is equidistant to four sites of
S = Sa ∪ Sb. We report that the portion of B(sa, sb)
between p and p′ is an edge of the contour. Then, we
rename Ra to be the Voronoi region of VD+(Sa) on the
other side of e′a and update p ← p′. We then continue
the tracing from p following the same process as above.

Our tracing algorithm is similar to the well-known

Figure 5: The dotted segments are spokes. Our algo-
rithm only uses the portions of these spokes above ℓ,
the dashed line.

algorithm for merging the standard Voronoi diagrams
of two sets of points separated by a line [14]. One
difficulty with our algorithm is efficiently determining
which edges of Ra and Rb the contour intersects first.
This may not be a constant time operation since Ra
and Rb may have many edges. The merge algorithm
by Shamos and Hoey [14] takes advantage of the fact
that the contour in their problem is monotone so that
they can find all contour edges in a region by a single
scan of the boundary of that region. In our problem,
the contour may not be monotone. To resolve the is-
sue, we follow the same technique used by Kirkpatrick
[9] for merging standard Voronoi diagrams of two arbi-
trary sets of points. Specifically, before our tracing al-
gorithm, we subdivide Voronoi regions of VD+(Sa) and
VD+(Sb) each into sub-regions of at most four edges by
drawing segments between each site and each vertex of
the Voronoi region of the site (see Figure 5; we can do
this because each Voronoi region is star-shaped by Ob-
servation 1); as in [9], we refer to these segments as
spokes. Because each sub-region only has at most four
edges, finding where a bisector intersects a sub-region
can be done in O(1) time. We then apply our above
tracing algorithm using these subdivisions of VD+(Sa)
and VD+(Sb). Each tracing step now finds an intersec-
tion between the contour and either a spoke or a Voronoi
edge in constant time. As such, the total time of the
tracing procedure is linear in the number of such inter-
sections. By Lemma 6, the number of such intersections,
and hence the runtime of the tracing procedure, is O(n).
Therefore, the total time of the algorithm for merging
VD+(Sa) and VD+(Sb) is O(n). This proves Theorem 2.

4.3 Useful lemmas

Our algorithm relies on Lemmas 4, 5 and 6. These are
stated below.
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Recall that the contour also includes its portions be-
low ℓ, i.e., it is defined with respect to the complete
Voronoi diagram VD(S). We first have the following
lemma, which is also needed in the proof of Lemma 5;
a similar result on the standard Voronoi diagrams is
already used in [9].

Lemma 4 Each contour component never terminates
or splits; that is, it has the topology of an infinite line
or a circle.

Proof. A contour component is made up of edges in
VD(S), so if it were to terminate or split, it would be at
a Voronoi vertex of VD(S). Due to our general position
assumption that no point is equidistant to four sites,
each Voronoi vertex in VD(S) is adjacent to three sites
in S. If the contour hits a Voronoi vertex v, then at
least one of these sites must be in Sa and at least one
must be in Sb. Without loss of generality, let these sites
be s1, s2, and s3 with s1, s2 ∈ Sa and s3 ∈ Sb. The
Voronoi edge between s1 and s3 and the Voronoi edge
between s2 and s3 will be on the contour, so the contour
will not terminate at v. The edge between s1 and s2 will
not be on the contour, so the contour will not split at
v. □

Lemma 5 If a contour component contains a point
above ℓ, then the contour component must intersect ℓ.

Proof. Lemma 4 establishes that a contour component
divides the plane into two regions, called contour re-
gions. Notice that because a contour component is made
up of edges in VD(S), each contour region must contain
at least one Voronoi region of VD(S) and thus contains
at least one site of S by Observation 1.

Now assume to the contrary that a contour compo-
nent C contains a point above ℓ but C does not intersect
ℓ. Then, the entire C is above ℓ. As such, one of the
contour regions divided by C must be entirely in the
halfplane above ℓ; let R be the region. This implies
that the sites of S contained in R must be above ℓ, but
this contradicts the fact that all sites of S are below
ℓ. □

Lemma 6

1. The total number of intersections between the con-
tour and the Voronoi edges of the complete Voronoi
diagrams VD(Sa) and VD(Sb) is at most O(n).

2. The total number of intersections between the con-
tour and the spokes of the complete Voronoi dia-
grams VD(Sa) and VD(Sb) is at most O(n).

Proof. We adapt the proof from [9] for a similar lemma
on standard Voronoi diagrams.

Notice that the intersection between the contour and
a Voronoi edge in VD(Sa) or VD(Sb) is a vertex in VD(S).

There are O(n) vertices in VD(S), so the total number of
intersections between the contour and the Voronoi edges
of VD(Sa) and VD(Sb) is at most O(n). This proves the
first lemma statement.

To prove the second lemma statement, we show that
the contour can intersect each spoke at most once. We
exploit the fact that Voronoi regions are star-shaped
(Observation 1). If the contour intersects a spoke of
the Voronoi region for site s in VD(Sa) or VD(Sb), then
the open segment between s and this intersection will
lie in the Voronoi region of s in VD(S). Because this
segment is in the Voronoi region for s in VD(S), the
contour cannot intersect this segment.

Now, assume for the sake of contradiction that the
contour were to intersect a spoke twice. This would
mean the closer to s of the two intersections would lie on
the segment between s and the further of the two inter-
sections, which we have shown above to be impossible.
Therefore, the contour can only intersect each spoke at
most once, and there are O(n) spokes in VD(Sa) and
VD(Sb), so the total number of intersections between
the contour and the spokes is at most O(n). □

5 Algebraic decision tree algorithm

Under the algebraic decision tree model, where the time
complexity is measured only by the number of compar-
isons, we show that the IOAWNN-SL problem can be
solved using O(n log n) comparisons. Consequently, we
can solve the shortest path problem in weighted unit-
disk graphs in O(n log n) time under the algebraic de-
cision tree model. In the following, we first describe an
O(n log2 n) time algorithm under the conventional com-
putational model and then show how to improve it to
O(n log n) time under the algebraic decision tree model.

Let p1, p2, . . . , pn be the points to be inserted in this
order; each point has a weight. Let P denote the set of
all these points. Let Q be a set of O(n) query points,
such that all points of P are above the x-axis ℓ while all
points of Q are below ℓ. For each query point q ∈ Q,
we know the timer when the query is conducted, i.e.,
we know the index i such that the query looks for the
nearest neighbor of q among the first i points of P . Our
goal is to answer all queries for the points of Q.

We construct a complete binary tree T whose leaves
from left to right correspond to points p1, p2, . . . , pn in
this order. For each node v ∈ T , let Pv denote the set
of points that are in the leaves of the subtree rooted at
v. Let VD(Pv) be the additively-weighted Voronoi dia-
gram for the weighted points of Pv; let VD+(Pv) be the
portion of VD(Pv) above ℓ. We construct VD+(Pv). If
we construct VD+(Pv) for all nodes v of T in a bottom-
up manner and use our linear time merge algorithm in
Theorem 2, constructing the diagrams VD+(Pv) for all
nodes v ∈ T can be done in O(n log n) time. In ad-
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dition, we construct Kirkpatrick’s point location data
structure [10] on VD+(Pv) for each node v ∈ T , which
takes O(|Pv|) time. 1 Note that we use Kirkpatrick’s
point location data structure instead of others such as
the one in [6] because we will need to apply a technique
from [5] that requires Kirkpatrick’s data structure. Con-
structing the point location data structures for all nodes
of T takes O(n log n) time.

Consider a query point q ∈ Q. Suppose we are looking
for the nearest neighbor of q among the first i points
p1, p2, . . . , pi of P . Let vi be the leaf of T corresponding
to pi. Following the path in T from the root to vi, we
can find a set Vq of nodes of T such that the union of
Pv for all v ∈ Vq is exactly {p1, p2, . . . , pi}. As such, the
query can be answered after performing O(log n) point
location queries on VD+(Pv) for all v ∈ Vq. As each
point location query takes O(log n) time, answering the
nearest neighbor query for q can be done in O(log2 n)
time. Therefore, the total time for answering the queries
for all points of Q is O(n log2 n).

The above solves the problem in O(n log2 n) time.
To improve the time to O(n log n), the bottleneck is to
solve all O(n log n) point location queries. For this, we
resort to a technique recently developed by Chan and
Zheng [5] under the algebraic decision tree model. We
can simply apply [5, Theorem 7.2] to solve all our point
location queries using O(n log n) comparisons (specif-
ically, following the notation in [5, Theorem 7.2], we
have t = O(n), L = O(n log n), M = O(n log n),
and N = O(n) in our problem; according to the the-
orem, all point location queries can be solved using
O(L+M +N logN) comparisons, which is O(n log n)).
Note that the theorem statement requires the input pla-
nar subdivisions to be triangulated. The triangulation
is mainly used to construct Kirkpatrick’s point location
data structure [10] on each planar subdivision. Since we
already have Kirkpatrick’s point location data structure
for each VD+(Pv) as discussed above, we can simply fol-
low the same algorithm of the theorem.

1Note that Kirkpatrick’s data structure is originally for pla-
nar subdivisions in which each edge is a straight line segment.
However, as discussed in [10], the algorithm also works for ad-
ditively weighted Voronoi diagrams (and other types of Voronoi
diagrams) since each cell of the diagram is star-shaped. A sub-
tle issue in our problem is that VD+(Pv) is only the portion of
the complete diagram VD(Pv) above ℓ, and each cell of VD+(Pv)
does not contain its site. To circumvent the issue, we can enlarge
each cell of VD+(Pv) by including its site, as follows. For each
cell R ∈ VD+(Pv), if ab is a maximal segment of R ∩ ℓ, then we
add the triangle △pab to R, where p is the site of R. Note that
△pab must be inside the cell of p in VD(Pv), denoted by R′. As
such, the enlarged region R is still star-shaped, contains its site p,
and is a subset of R′. We can then construct Kirkpatrick’s point
location data structure on the subdivision of all these enlarged
regions R.
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Grid-edge unfolding orthostacks with rectangular slabs∗

Klára Pernicová†

a) b) c)

Figure 1: a) A part of a net with an overlapping edge.
b) A part of a net with an overlapping vertex. c) A net
resulting from a simple unfolding. There is enough
space for glue regions.

Abstract

An orthostack with rectangular slabs is an orthogonal
polyhedron obtained by stacking axis-parallel boxes on
top of each other.
A grid-edge unfolding of an orthogonal polyhedron is

obtained by cutting the surface of the polyhedron along
segments in the intersection of axis-parallel planes pass-
ing through the vertices of the polyhedron and mapping
the cut surface isometrically into the plane with no in-
terior overlap.

We prove that orthostacks with rectangular slabs can
be grid-edge unfolded into a simple polygon so that no
faces, edges, or vertices overlap.

1 Introduction

A polyhedron is an orthogonal polyhedron if each face is
parallel to an xy, yz, or xz plane.

Let P ⊆ R3 be an orthogonal polyhedron. Let
z0, z1, . . . , zn be all distinct z-coordinates of its vertices
and assume that z0 < z1 < z2 < · · · < zn. The slab Si is
the part of the polyhedron with z-coordinates between
zi and zi+1, the bottom face of Si is the subset of points
of Si with z-coordinate zi, the top face of Si is the subset
of points of Si with z-coordinate zi+1. The orthogonal
polyhedron P is called an orthostack if each slab is a
prism whose base is a simple polygon. In this paper, we
focus on orthostacks whose slabs are axis-parallel boxes
and call them orthostacks with rectangular slabs.

∗This work is supported by Project 23-04949X of the Czech
Science Foundation (GAČR).

†Faculty of Mathematics and Physics, Charles University,
klapernicova@gmail.com

We aim to obtain a special form of a planar net of
a given orthostack P . We cut the surface of P along
a subset of segments that are intersections of the sur-
face of P with axis-parallel planes passing through the
vertices of P . Then a grid-edge unfolding of P is an iso-
metric mapping of the cut surface into the plane with
no interior overlap. The image of the unfolding is called
a net. A grid-edge unfolding is simple if no vertices (and
therefore no edges) overlap; in other words, the images
of the cutting segments form a simple closed curve after
flattening to the net; see Figure 1. A net created by a
simple unfolding is called a simple net. Simple nets are
more practical for constructing polyhedra from paper as
they leave some space for regions that can be used to
add glue.

Our main result is the following.

Theorem 1 Every orthostack with rectangular slabs
has a simple grid-edge unfolding.

To prove Theorem 1 we provide an algorithm for the
unfolding in Section 3 and prove its correctness in Sec-
tion 4.

1.1 Related results

A long-standing open question by Dürer asks whether
every convex polyhedron can be edge-unfolded into a
single simple polygon, where the cuts are allowed only
along the edges of the polyhedron. The edge-unfolding
does not exist for some non-convex orthogonal poly-
hedra, for example, a cube with a small hole in the
middle of one face. We refer to survey papers by
O’Rourke [10, 11, 12] for a broader overview.

The following three papers, which study grid-edge un-
folding of orthostacks, are most related to our result.

Biedl et al. [1] proved that orthostacks could be un-
folded allowing the cuts along segments from grid-edge
unfolding and also along segments in horizontal planes
with z-coordinates (zi + zi+1)/2.
Damian and Meijer [7] studied orthostacks with or-

thogonally convex slabs. They found an algorithm for
grid-edge unfolding of such orthostacks with an addi-
tional restriction stating that the boundary of each face
within the top boundary of the slab Si has two orthogo-
nally incident edges that belong to the bottom boundary
of the slab Si+1; see Figure 2.

Chambers, Sykes, and Traub [2] showed that a grid-
edge unfolding exists for a special class of orthostacks
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a) b)

Figure 2: a) An orthostack with orthogonally convex
slabs considered by Damian and Meijer [7]. b) Or-
thostacks with rectangular slabs that do not satisfy the
requirements of Damian and Meijer [7].

a)

b)

c)

Figure 3: a) A top view of an orthostack satisfying both
restrictions 1) and 2) considered by Chambers, Sykes,
and Traub [2]. b) An orthostack violating restriction
2); the blue line highlights an edge that partially lies
in the side boundary of the top slab and partially in
the side boundary of the bottom slab. c) Top views of
orthostacks with rectangular slabs violating restriction
1).

Figure 4: The new definition of faces for the purpose of
grid-edge unfolding.

satisfying the following conditions; see Figure 3: 1) All
top and bottom faces, except the top face of the top-
most slab and the bottom face of the bottommost slab,
are rectangles. 2) Every edge of every rectangular hori-
zontal face lies completely within a side boundary (left,
front, right, or back) of an adjacent slab.

If we allow arbitrary cuts on the surface of the poly-
hedron, then an unfolding exists for all convex polyhe-
dra [9, Theorem 24.1.2].

Let P be an orthogonal polyhedron. As it is common
in the literature we redefine the notion of a face as fol-
lows. We subdivide the surface of P with axis-parallel
planes passing through the vertices of P . We will call
the parts of the subdivision the faces of P . Note that in
this definition each face of P is a rectangle. See Figure 4
for an illustration.

One could further subdivide each face of the polyhe-
dron using an a× b orthogonal grid, allowing cuts along
these grid lines. This process is termed a refinement and
is characterized by the parameters a and b, which may
also depend on the number of vertices of the polyhedron
P . It has been demonstrated that all orthostacks can
be unfolded using 1 × 2 refinement [1] and all genus-0
orthogonal polyhedra can be unfolded using various lev-
els of refinement: exponential refinement [6], quadratic
refinement [4], and linear refinement [3]. More recently,
Damian, Demaine, Flatland, and O’Rourke have devel-
oped an unfolding method for all genus-2 orthogonal
polyhedra using only linear refinement [5].

2 Notation

Faces parallel to the xy plane are called horizontal, faces
parallel to the xz plane are called front-back, and faces
parallel to the yz plane are called left-right.

Since each slab Si is an axis-parallel box, we can ex-
press it as a Cartesian product

Si = [xi,1, xi,2]× [yi,1, yi,2]× [zi, zi+1] .

Let Ei be the union of all the horizontal faces of P
with z-coordinate zi (it consists of the top faces of the
slab Si−1 and the bottom faces of the slab Si). Let Li be
the union of the left-right faces in Si with x-coordinate
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Ei,B

Ei,F

Ei,L Ei,R

Ei,B

Ei,L Ei,R

Ei,F

Ei,B

Ei,L Ei,R

Ei,F

Ei,B

Ei,R

Ei,F

Figure 5: The rectangles are the projections to the xy
plane of two adjacent slabs; the pictures do not distin-
guish which slab is above the other one. Dotted lines
show the subdivision of Ei into Ei,F , Ei,R, Ei,B , Ei,L
and are the only places where we cut across an original
face of the polyhedron. Pictures show only some cases
of how two consecutive slabs can interact.

xi,1 (it is the left rectangular boundary of Si). Similarly,
let Ri be the union of the left-right faces in Si with x-
coordinate xi,2, let Fi be the union of the front-back
faces in Si with y-coordinate yi,1, and let Bi be the
union of the front-back faces in Si with y-coordinate
yi,2. The surface of P is exactly the union of Ei for
0 ≤ i ≤ n and of Li, Ri, Fi and Bi for 0 ≤ i < n.

We subdivide Ei for i ∈ {1, 2, . . . , n−1}, only E0 and
En remain untouched. We denote by Ei,L the following
subset of Ei (see Figure 5):

Ei,L = {(x, y, zi) ∈ Ei;
x ∈ [min(xi−1,1, xi,1),max(xi−1,1, xi,1)]

∧ y ∈ [yi−1,1, yi−1,2] ∩ [yi,1, yi,2]}.
Similarly we define Ei,R, Ei,F and Ei,B :

Ei,R = {(x, y, zi) ∈ Ei;
x ∈ [min(xi−1,2, xi,2),max(xi−1,2, xi,2)]

∧ y ∈ [yi−1,1, yi−1,2] ∩ [yi,1, yi,2]},

Ei,F = {(x, y, zi) ∈ Ei;
y ∈ [min(yi−1,1, yi,1),max(yi−1,1, yi,1)]},

Ei,B = {(x, y, zi) ∈ Ei;
y ∈ [min(yi−1,2, yi,2),max(yi−1,2, yi,2)]}.

Note that Ei,L, Ei,R, Ei,F , Ei,B are pairwise internally
disjoint. Observe that each of these sets is either empty
or a rectangle contained either in the top boundary of
Si−1 or in the bottom boundary of Si. The lines between
Ei,L, Ei,R, Ei,F , Ei,B are the only places where we cut
across an original face of the polyhedron.

a)

b) c) d)

Figure 6: a) An orthostack with three rectangular slabs.
b) All the faces unfolded during the back phase. c) All
the faces unfolded during the right-left phase. d) All
the faces unfolded during the front phase.
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Figure 7: An orthostack with three rectangular slabs
and its net resulting from the unfolding algorithm.

3 Unfolding algorithm

Let P be an orthostack with rectangular slabs. For a
given subset A of the surface of P , we will denote by A′

the corresponding subset in the constructed planar net.

We divide the algorithm into three phases, see Fig-
ure 6 for the division of faces into phases. We start
with projecting E0 orthogonally to the xy-plane. Each
phase unfolds a part of the orthostack. See Figure 7 for
the resulting net. The cutting segments will be clear
from the process and described in detail in Section 4.
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3.1 Right-left phase

In this phase we unfold all the rectangles Ri, Ei,R, Li,
Ei,L and En. Let RE be the union of all the rectangles
Ri and Ei,R, and let LE be the union of En and all the
rectangles Li and Ei,L.
We start with placing all rectangles from RE. We

place R0 to the right of E′0, then E1,R to the right of R′0,
then R1 to the right of E′1,R, and we continue placing Ri
and Ei,R, for i = 2, 3, . . . , n − 1, always to the right of
the previous one. We then place to the right the whole
rectangle En.
We continue placing the remaining rectangles from

LE. We place Ln−1, En−1,L, Ln−2, En−2,L, . . . , L0 in
this order, always to the right. Clearly, in the resulting
net no vertices, edges, or faces overlap so far.

Note that the y-coordinates of the rectangles are pre-
served in this phase; they are the same in the orthostack
and the net.

3.2 Back phase and front phase

Now we describe the second and the third phases. We
denote the union of all the rectangles Bi and Ei,B by
BE and the union of all the rectangles Fi and Ei,F by
FE.

In the second phase, the back phase, we will be plac-
ing the rectangles of BE in the direction of increasing
y-coordinate. We place B0 above E′0. Then we pro-
ceed with E1,B , B1, E2,B , B2, . . . , En−1,B , Bn−1 in this
order, placing each rectangle always above the previous
one. The rectangle En has already been placed in the
right-left phase.

In the third phase, the front phase, we will be plac-
ing the rectangles of FE in the direction of decreasing
y-coordinate. We place F0 below E′0. Then we pro-
ceed with E1,F , F1, E2,F , F2, ..., En−1,F , Fn−1 in this or-
der, placing each rectangle always below the previous
one.

In the second and third phases, the x-coordinates of
the rectangles are preserved.

4 Proof of non-overlap

Each phase on its own creates a simple non-overlapping
polygon because of the continuous one-directional pro-
cess. For a similar reason, rectangles from the back
phase and the front phase cannot overlap. We will prove
that no rectangle from the back phase can overlap or
touch with a rectangle from the right-left phase. The
proof for the rectangles from the front phase and the
right-left phase would be analogous.

We will define a piecewise linear curve C formed
by a subset of the cutting segments on the surface
of P , which will partially separate rectangles from
the right-left phase and the back phase, see Figure 8.
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Figure 8: Orthostacks with a clear view of the right
and the back part, the cut C and its images Q and R.
In both pictures red lines separate Bi from Ri in the z
direction and blue lines separate Bi∪Ei+1,B∪Bi+1 from
Ri ∪ Ei+1,R ∪ Ri+1 in the x and y directions. a) Blue
lines separate E1,B from R0 in the y direction, E1,B

from E1,R in the x direction, and then separate E2,B

from R1 in the y direction and B2 from E2,R in the x
direction. b) Blue lines separate E1,B from E1,R in the
x direction, E1,B from R1 in the y direction, and then
separate B1 from E2,R in the x direction and E2,B from
R2 in the y direction.
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The curve C starts at (x0,2, y0,2, z0), which is the bot-
tom right back corner of S0, continues in the z di-
rection to (x0,2, y0,2, z1), which is the top right back
corner of S0, then separates B0 ∪ E1,B ∪ B1 from
R0 ∪ E1,R ∪ R1 in the x and y directions, reaching
the point (x1,2, y1,2, z1), which is the bottom right back
corner of S1. The curve proceeds analogously until C
reaches (xn−1,2, yn−1,2, zn), which is the top right back
corner of the topmost slab Sn−1.
The curve C maps onto two piecewise linear curves in

the net. One curve, denoted by Q, forms the right part
of the perimeter of BE′, and the second curve, denoted
by R, forms the top part of the perimeter of RE′.

Our goal is to prove that the curves Q and R do not
intersect.
When the curve C cuts between Bi and Ri, the cor-

responding part of the curve R moves in the increasing
x-direction by zi+1− zi > 0 and the corresponding part
of the curve Q moves in the increasing y-direction by
zi+1 − zi > 0. If C moves in the x-direction by d, then
R moves to the right by d and Q moves to the left or
right (preserving the former direction of C) by d. If C
moves in the y-direction by d, then R moves up or down
(preserving the former direction of C) by d and Q moves
up by d.
The curves R and Q start diverging just after their

common starting point when C cuts between B0 and
R0: the curve R moves by z1 − z0 in the increasing
x-direction and the curve Q moves by z1 − z0 in the
increasing y-direction.
For every point A on the curve C we denote by A′R

the image of A on the curve R and we denote by A′Q
the image of A on the curve Q.

From the iterative process of constructing Q and R,
we deduce the following.

Observation 1 Let A be a point on the curve C except
the starting point and assume that A′R = (xR, yR) and
A′Q = (xQ, yQ). Then xR > xQ and yR < yQ. □

Lemma 2 The curves R and Q do not intersect nor
touch, except at the starting point (x0,2, y0,2).

Proof. For a proof by contradiction suppose the curves
Q and R intersect, see Figure 9. Denote by I ′ the point
of the first intersection of Q and R (except the starting
point). The point I ′ corresponds to a point U on C
from the perspective of R and also corresponds to a
point V on C from the perspective of Q (that is, U ′R =
V ′Q = I ′). By Observation 1 we have U ̸= V . Assume,
without loss of generality, that U appears on C before
V . Then U ′Q is before V ′Q on Q. From Observation 1 the
y-coordinate of U ′Q is greater than that of U ′R. SinceQ is
y-monotone and U is before V on C, the y-coordinate of
U ′Q is smaller than or equal to the y-coordinate of U ′R =
V ′Q. These two inequalities imply a contradiction. □

R

Q

I ′ = U ′

R = V ′

Q

(x0,2, y0,2) (x0,2, y0,2, z0)
C

U
V

U ′

Q V ′

R

Figure 9: The cut C and vertices for proof.

The rectangles of BE′ are to the left of the curve
Q and the rectangles of RE′ are below the curve R.
Because the curve Q is to the left and upwards of the
curve R and the curves Q and R do not intersect or
touch, the rectangles of BE′ and RE′ cannot overlap.

Let S be a point on the curve C such that S′Q is the
rightmost point of Q. Then by Observation 1 the point
S′R is to the right of S′Q. All the rectangles in LE′ are to
the right of S′R, so the rectangles in BE′ cannot overlap
with the rectangles in LE′. This concludes the proof
that rectangles placed in the back phase cannot overlap
with the rectangles from the right-left phase.

5 Discussion

Our algorithm relies on connected faces within each
phase and simple path cuts that separate the rectan-
gles of different phases. It leaves no more space in the
net between the back part and the right part, and be-
tween the right part and the front part; however, placing
more faces next to the left part is possible. We plan to
improve our algorithm so that each slab’s left boundary
does not have to consist of only one rectangle.

If we closely inspect the cutting segments of our al-
gorithm, we can see that they form a single path. The
path starts with the cut C separating the right part RE
from the back part BE, followed by the back edge of En,
a cut separating BE from LE, the left edge of E0, a cut
separating LE from FE, the front edge of En, and a
cut separating FE from RE.

An edge-unfolding of a polyhedron that is obtained
by cutting the surface along a path is called a Hamil-
tonian unfolding [13] or an edge-unzipping [12]. There
exist orthogonal polyhedra with no edge-unzipping [8].
The characterization of orthogonal polyhedra that have
edge-unzipping remains open.
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On 3-layered Cornerhedra: Optimum Box Partitions for Niches

Laurie Heyer∗ William Lenhart† Ulrike Stege‡ Sue Whitesides‡

Abstract

We define a family of orthogonal polyhedra we call
niches, which are certain unions of unit cubes (voxels)
in an octant of the 3D integer lattice. We seek to par-
tition the cubes into completely filled, interior-disjoint
rectangular boxes using the smallest possible number of
boxes. The number of extreme cubes, or peaks, provides
a known lower bound for the number of boxes needed.
We construct boxings (i.e., partitions into boxes) of op-
timum size, and characterize perfect niches, those niches
for which optimum boxings achieve the lower bound.

1 Introduction

In the 3D lattice of grid points with non-negative integer
coordinates, we consider orthogonal polyhedra that are
unions of unit grid cells, or voxels, which we call cubes.
A box is rectilinear, with 8 vertices at grid points, 6
rectangular faces, and 12 axis-aligned edges.

Figure 1: A cornerhedron with k = 23 corners, redrawn
from Winkler’s puzzle book [14].

A cornerhedron C (or corner polyhedron [2, 5]) is a
union of cubes with the property that, for each cube c
of C, the smallest box containing c and the cube cO at
the origin is completely filled with cubes of C (no “air”
inside the box). Any axis-aligned line intersects C in a
single segment with one endpoint on a coordinate plane.
See Figure 1 and Figure 3a, which we call a triskele.
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We partition the cubes of cornerhedron C into a set
of interior-disjoint boxes completely filled with cubes.
We call such a partition a boxing B of C, and we seek
boxings that minimize the size ∥B∥ of B.

A vertex of C is called a peak [2] if it is a local max-
imum in the (1, 1, 1) direction. If a cube has a peak
vertex, we call the cube a corner. We denote by k the
number of corners (equivalently, the number of peaks)
of C.
As no two corners or peaks can belong to the same

box, any boxing B must have at least as many boxes as
the number k of corners of C. If C has a boxing B that
achieves this lower bound, i.e., ∥B∥ = k, then we say
that C and B are perfect.

Motivating examples. When cornerhedron C has just
one layer (i.e., has height 1), then C is easily seen to
be perfect, which also follows from work on partition-
ing rectilinear polygons by Dielissen and Kaldewaij [4].
When cornerhedron C has exactly two layers, we prove
it is perfect in Theorem 2. For an example, see the
2-layer cornerhedron with 14 corners in Figure 4a and
its perfect boxing B with ∥B∥ = 14. When cornerhe-

Figure 2: A perfect boxing B consisting of ∥B∥ = 23
boxes of the (redrawn) cornherdron depicted on the
cover of Winklers puzzle book [14].

.
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Figure 3: a) triskele; b) and c) exploded views of two boxings of the triskele.

dron C has exactly three layers, the triskele (Figure 3a)
provides a fascinating instance. It has 13 cubes, includ-
ing three corners, ĉ1, ĉ2, and ĉ3. Hence at least three
boxes are required to pack up the cubes of the triskele.
We prove in Section 4 that the triskele requires at least
four boxes. Hence the triskele is not perfect, and both
boxings in Figure 3 are optimum. We claim that the
cornerhedron with 23 peaks shown in Figure 1 is per-
fect; Figure 2 shows the 23 boxes of our perfect boxing
of it.

Questions arising. What properties do imperfect 3-layer
cornerhedra share? Can we characterize perfect 3-layer
cornerhedra in a way that would lead to an efficient
recognition algorithm? If a 3-layer cornerhedron is not
perfect, can we at least find an optimum boxing for it,
minimizing the number of boxes used?

Our main results concern a subfamily of 3-layer cor-
nerhedra we call niches. In order to define niches and to
state our main results, we answer the first of the above
questions, after giving some notation.

Cubes. We identify a unit cube cx,y,z by the x, y, z-
coordinates (in a right-handed coordinate system) of the
vertex farthest from the origin O = (0, 0, 0). The cube
c1,1,1 with one vertex at O is called the origin cube,
denoted cO (see Figure 3b and c).

Layer-corners. Whether a cornerhedron C has one or
many layers, each layer z = i has at least one layer-
corner : a cube cx,y,i of layer i such that neither cx+1,y,i

nor cx,y+1,i exists, i.e., cx,y,i is an extreme cube in both
the x- and y-directions. Layer-corners may or not be
corners of C. When a layer-corner has a cube on top
of it, we call it a hidden layer-corner. We often denote
hidden layer-corners by c̃i, and layer-corners that are
corners of C by ĉi. We refer to corners of C that lie in
layer i as î-corners. They are both corners of C and
layer-corners of layer i. The triskele in Figure 3a has
two layer-corners ĉ1 = c3,2,1 and c̃1 = c1,3,1 in layer
z = 1 (its lowest layer), two layer-corners ĉ2 = c1,3,2 and
c̃2 = c2,1,2 in layer 2, and one layer-corner ĉ3 = c2,1,3 in
layer 3. The cornerhedron in Figure 4 ahead has three

hidden layer-corners: c̃x1,y1,1, c̃x2,y2,1, and c̃x3,y3,1.

Towers. A hidden layer-corner c̃1 in layer 1 and the
cube above it together build a short tower S. A hidden
layer-corner c̃2 in layer 2 and the cube above it together
build a tall tower T provided that layer 1 contains a
guard that serves as a witness, i.e, a corner with x-
and y-coordinates strictly greater than those of c̃2. The
triskele in Figure 3a has one short tower (c̃1 ∪ ĉ2) and
one tall tower (c̃2∪ĉ3), with ĉ1 as a witness. The triskele
(or its mirror image) is the smallest cornerhedron that
has both a short and a tall tower.

With these definitions, we can now address our first
question with a theorem that motivates the definition
of niches. The definition follows the theorem.

Theorem 1 Any cornerhedron C that has 3 layers but
is not perfect has at least one short tower and at least
one tall tower.

Proof. Let C′ denote the subcornerhedron of C formed
by layers 2 and 3. If C has no short tower, then all layer-
corners of layer 1 are corners. To box C, we take the
boxes of a perfect boxing for layer 1 and the boxes of an
optimum boxing for C′. Since C′ is perfect (Theorem 2
ahead), this gives a perfect boxing of C.

Likewise, we can box C perfectly if it has no tall tower.
In this case, all layer-corners of layer 2 are corners, so we
take the boxes of a perfect boxing for layer 3 together
with the boxes of an optimum boxing for the first two
layers, which is a perfect subcornerhedron. This gives a
perfect boxing for C. □

Niches. Based on Theorem 1, we define a niche N to
be a 3-layer cornerhedron C that, like the triskele, has
exactly one short tower and exactly one tall tower, such
that one of the towers lies against the x = 0 plane and
the other against the y = 0 plane; there are no ad-
ditional towers. Niches can be perfect (Figures 6–10).
Thus the family of niches, defined by two properties that
every 3-layer imperfect cornerhedron must have, is the
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smallest subfamily of cornerhedra where characterizing
and recognizing perfection arises.

Main contributions. Theorem 3, stated in Section 2,
characterizes perfect niches with a necessary and suffi-
cient condition involving corners and their alignment
properties. The proof of its sufficiency (Section 3)
uses what we call our anchored layer boxing (ALB)-
construction method, defined further on. The proof of
its necessity (Section 4) uses what we call our box(cO)
method for analysing a given boxing. Theorem 4 gives
constructions for optimum boxings of niches. We believe
that the concept of niches, and our ALB and box(cO)
methods can contribute to resolving many combinato-
rial and complexity questions for 3-layer cornerhedra
and possibly for cornerhedra in general.

Related work. In 1991, it was shown that the problem of
partitioning an orthogonal polyhedron into a minimum
number of boxes is NP-complete in 3D, while solvable
in polynomial time in 2D [4].

In 2018, Biedl et al. [2] considered the special case
of partitioning 3D-histograms into a minimum number
of boxes: the problem is NP-hard even for histograms
of height two. For partitioning what we call cornerhe-
dra here, they described a 2-approximation algorithm,
and they posed the problem of determining whether the
partitioning problem is polynomial or–at least–whether
there exists a PTAS.

Floderus et al. gave a 4-approximation for partition-
ing histograms and applied their result to matrix mul-
tiplication [7].

In two dimensions, a number of papers have given
polynomial time algorithms for partitioning a rectilin-
ear polygon into the minimum possible number of rect-
angles. See Lipski et al. 1979 [10], Ohtsuki 1982 [13],
and Ferrari et al. 1984 [6].

The representation of 3D objects as unions of cubes
(voxels) arises in other diverse areas of theory and ap-
plication. We give several examples below.

In combinatorial mathematics, the object we call a
cornerhedron arises as a representation by unit cubes
of a combinatorial object called a plane partition, de-
fined by P.A. MacMahon [12]. A plane partition is a
finite 2-dimensional array of non-negative integers such
that the entries in each row are non-increasing as the
column index increases (i.e., ai,j ≥ ai,j+1), and likewise
the entries in each column are non-increasing as the row
index increases (i.e., ai,j ≥ ai+1,j). A plane partition
can be represented by unit cubes. One regards each
entry ai,j of the 2-dimensional array as the number of
unit cubes to be stacked at the cell labelled (i, j). This
representation is a cornerhedron, and any cornerhedron
gives rise to a plane partition. The main goal in the
literature on plane partitions and their various classes
is to count the number of plane partitions in the given
class as a function of the number n of unit cubes in the

representation.

Agarwal et al. [1] investigated a problem arising, e.g.,
in motion planning, asking whether the complement of
a 3D object consisting of a collection of axis-aligned
cubes can be partitioned into a collection of axis-aligned
boxes.

Eppstein and Mumford [5] characterized which graphs
can be drawn on the skeletons of corner polyhedra,
which we call cornerhedra here (corner polyhedra of a
different kind were defined by Gomory [8] in the context
of linear programming).

When 3D printing a 3D object, it can be necessary
to partition a model of the object into printable parts
that are then assembled; see, e.g., Livisu et al. 2017
[11]. Similarly, a strategy for packing an object into a
box is to break the object into pieces for packing and
later reassembly; see, e.g., Chekanin 2020 [3].

Finally, as the cover of Winkler’s book [14] suggests,
cornerhedra are fascinating objects and suggest many
puzzles and problems.

2 Preliminaries

We begin with notation. Then, to introduce our an-
chored layer-boxing (ALB) method by way of an exam-
ple, we use it to prove, in Theorem 2, that all 2-layer
cornerhedra are perfect. We state our characterization
of perfect niches in Theorem 3. Based on Theorems 2
and 3, we then prove in Theorem 4 that an optimum
boxing of a niche has k boxes if the niche is perfect, and
k + 1 boxes if it is not perfect.

Recalling the definitions of niche N, short tower S,
and tall tower T , from now on we assume (WLOG) that
S lies against the plane x = 0 and that T lies against
the y = 0 plane as shown in Figure 3a.

Layer i of cornerdron C consists of the cubes of C
between two horizontal planes z = i − 1 and z = i,
i ≥ 1. Cubes in layer i have z-coordinate z = i; layer
i and its cubes have height i. A box with cubes in
exactly one, two, or three layers is called thin, thick, or
deep, respectively. The boxing in Figure 3b has two thin
boxes, two thick boxes, and no deep box; the boxing in
Figure 3c has two thin boxes, one thick box, and one
deep box.

A V -layer consists of the cubes of cornerhedron C be-
tween two vertical planes x = i−1 and x = i, or between
y = i− 1 and y = i, where i ≥ 1. Each cube cx0,y0,z0 of
C belongs to two V -layers, the V -layer between planes
x = x0 − 1 and x = x0, and the V -layer between planes
y = y0 − 1 and y = y0. A V -layer that contains cor-
ners of layers 2 and 3 is called a V3̂2̂-layer, and similarly
for other subsets of {3̂, 2̂, 1̂}. Some corners in a V -layer
may not appear in the subscript: a V2̂1̂-layer might also
be a V3̂2̂1̂-layer.

The V -layer between x = 0 and x = 1 is called the
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S-wall; the V -layer between y = 0 and y = 1 is the
T -wall. By assumption for niches, they contain S and
T , respectively. A V -layer that is perpendicular to the
T -wall or to the S-wall is called a VT ⊥ -layer or a VS⊥ -
layer, respectively.

Given a corner ĉ in layer 3, we call the cube in layer 1
whose x- and y-coordinates are 1 greater than those of
ĉ the key of ĉ. The key may be filled by a cube ckey(ĉ)
of C (ĉ is keyed) or it may be empty (ĉ is keyless).

We often denote the corner at the top of a tall tower
T by ĉT . By definition of tall tower T , layer 1 contains
a guard corner for T , which implies that ckey(ĉT ) exists.
Recalling the definition of layer-corner, we define be-

low a particular perfect boxing of a single layer, the
anchored layer-boxing (ALB). The single layer may be
all of the cornerhedron, or it may occur as just one layer.
We often construct perfect boxings by our ALB method:
we make an ALB for each layer of the given cornerhe-
dron to obtain an initial boxing and then modify the
boxing if necessary. For the definition of anchored layer-
boxing (ALB) below, refer to Figure 4b.

Definition [ALB anchored layer-boxing ]. Given a layer
at height z ≥ 1 of a cornerhedron C, let the coordi-
nates of the layer-corners be indexed (xi, yi, z), where
x1 is the smallest of the x-coordinates and y1 is the
largest of the y-coordinates. We choose one layer-corner
c∗xi0

,yi0 ,z
to be the anchor of the layer-boxing, and de-

fine the box containing it to be the box that contains
the two cubes c∗xi0 ,yi0 ,z

and c1,1,z. We denote this box

by box(c∗xi0
,yi0 ,z

). The other boxes of the ALB are de-

fined as follows. Each box(cxi,yi,z) such that xi > xi0
extends to the y = 0 plane and to the plane x = xi−1.
Each box(cxi,yi,z) s.t. xi < xi0 (i.e., yi > yi0) extends to
the x = 0 plane and to the plane y = yi+1.

The proof of our next result serves to introduce the
ALB construction method by way of an example. We
will use this method extensively in Section 3, which
gives a constructive proof of the sufficiency of our char-
acterization of perfect niches. For the proof of the fol-
lowing theorem, recall the definition of hidden layer-
corner.

Theorem 2 Every 2-layer cornerhedron C is perfect.

Proof. Let k̃ denote the number of hidden layer-
corners, and let their coordinates be denoted (xi, yi, 1),
where 1 ≤ i ≤ k̃; here x1 is the minimum of the xi, and
y1 is the maximum of the yi (the index i increases with
increasing distance from the plane x = 0). We choose
c̃x1,y1,1 and the corner ĉx1,yi,2 above it as anchors for
ALBs of layers 1 and 2. We refer to the resulting boxes
as the thin boxes. When k̃ = 0 the thin boxes form a
boxing B that is perfect. If k̃ > 0 the set of thin boxes
does not form a perfect boxing for cornerhedron C as the
boxes of hidden layer-corners do not contain corners of
C. Thus we modify this set of thin boxes as follows.

Figure 4: a) a 2-layer cornerhedron with k = 14 cor-
ners; b) ALBs anchored at ĉ∗x1,y1,2 and c̃∗x1,y1,1; and c)
a perfect boxing with 14 boxes. The three thick boxes,
in color, contain the hidden layer-corners.

We first thicken the thin box of ĉ∗x1,y1,2 by combining
it with the thin box of c̃∗xi,yi,1 below it. Because these
anchors have the same x, y-coordinates, their thin boxes
have the same footprint on plane z = 0. Thus the thick
box contains the cube cO, and the remaining thin boxes
are not affected.

When k̃ > 1, for 1 < i ≤ k̃, we thicken the box of
ĉxi,yi,2 so that the box contains c̃xi,yi,1. We extrude
this thick box to the thick box of ĉxi−1,yi−1,2, i.e., to the
plane x = xi−1. Extruding the thick box for ĉxi,yi,2

truncates the thin boxes of non-hidden layer-corners
(i.e., corners) of layers 1 and 2 having x-coordinates
strictly between xi−1 and xi: these thin boxes no longer
abut the plane y = 0 but instead abut a face of the ex-
truded thick box for ĉxi,yi,2 on plane y = yi.

Modifying the set of thin boxes as described gives a
perfect boxing for C. □

To obtain the perfect boxing B shown in Figure 4c, thick
boxes (in color) are created for the hidden layer-corners,
in order of increasing distance from the x = 0 plane.
The subcornerhedra (shown grey) have no hidden layer-
corners and so are perfect. The thick boxes and the thin
grey boxes together form a perfect boxing of size k.

Next we state our necessary and sufficient condition
for a niche to be perfect. Sufficiency is proved in Sec-
tion 3 and necessity in Section 4.
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Figure 5: For Lemma 5: k− = 2; C′1, C′2, C′3 (right to
left, grey). Large deep box (orange) contains keyless
3̂-corner ĉx1,y1,3. Small deep box (red) contains ĉx2,y2,3.

Theorem 3 (characterization of perfect niches)
A niche N is perfect if and only if N has at least one
of the following features:
i) a V3̂1̂-layer containing ĉT ; or
ii) a V2̂1̂-layer perpendicular to the S-wall; or
iii) a V3̂2̂-layer perpendicular to the T -wall; or
iv) a 3̂-corner whose V -layers together contain a 2̂-
corner and a 1̂-corner; or
v) a keyless 3̂-corner.

We refer to the condition of Theorem 3 simply as the
Condition. A niche N may have none, or some, of fea-
tures i)-v) of the Condition. Two corners align if they
belong to the same V -layer. Features i)-iv) describe
alignments of corners. These alignments are crucial to
the ALB-constructions in the proof of sufficiency.

Theorem 4 (optimum boxing for niches) Every
niche N with k corners has an optimum boxing B
such that ∥B∥ = k when N is perfect and such that
∥B∥ = k + 1 when N is not perfect.

Proof. When N is perfect, then by Theorem 3, it has
at least one of features i)-v). A perfect boxing B corre-
sponding to each feature is given in the proofs of Lem-
mas 5 and 6 in Section 3. When N is not perfect, i.e.,
when it fails to have any of the features i)-v), then we
obtain an optimum boxing B as follows.
We box the cubes of the T -wall into two boxes, a

box b1 containing ĉT and cO, and a box b2 containing
the remaining cubes of the T -wall. These remaining
cubes are all in layer 1 and include among them the
cube cxmax,1,1 with maximum x-coordinate in the T -
wall. While this cube in box b2 is extreme in the x-
direction, it is not a corner because N , being imperfect,
cannot have feature i). Then we remove the T -wall from
N , leaving a subcornerhedron N ′ with k − 1 corners
and only one tower, S. By Theorem 1, N ′ has a perfect
boxing B′ (obtained by the ALB-method in Theorem 2),
which together with boxes b1 and b2, gives a boxing B
of N . Since ∥B∥ = k + 1 and N is not perfect, B is an
optimum boxing. □

3 Sufficiency: Boxing Perfect Niches Perfectly

First we prove that a niche having feature v) of Theo-
rem 3 is perfect. The proof considers keyless 3̂-corners
in order of increasing distance from plane x = 0, the
same order in which the proof of Theorem 2 considered
hidden layer-corners of a 2-layer cornerhedron.

Lemma 5 Niche N is perfect if it has at least one key-
less 3̂-corner.

Proof. Let k− denote the number of keyless 3̂-corners
of N , and let their coordinates be denoted (xi, yi, 3),
where 1 ≤ i ≤ k−; x1 is the minimum of the xi, and y1
is the maximum of the yi. To create a perfect boxing
B for N , we first create a deep box for each keyless 3̂-
corner ĉxi,yi,3 as shown in Figure 5 for k− = 2. The
deep box for ĉx1,y1,3, shown orange, contains cO. The
deep box for each subsequent keyless 3̂-corner extends
to the plane y = 0 and to the side of the previous deep
box. This creates k−+1 subcornerhedra C′1, . . . , C′k−+1,
shown grey. Each C′i is perfect, whether it is empty, or
has height 1, or height 2 by Theorem 2, or height 3 by
Theorem 1. In any case, the ALB method of Theorem 2
applies. The perfect boxings of the C′i together with the
deep boxes form a perfect boxing B for N . □

Having shown the sufficiency of feature v) in Lemma 5,
our strategy for proving the sufficiency of each of the
remaining features i)-iv) is this: we make an ALB for
each layer, using the corners of N in a given feature
of N as anchors, and choosing an arbitrary anchor if
no corner for that layer appears in the feature. This
gives an imperfect boxing for N if it has hidden layer-
corners; we then make this imperfect boxing perfect by
modifying some of these boxes, making thick or deep
boxes to contain hidden layer-corners. The alignment
properties ensure that the boxes that are thickened or
deepened downward truncate the boxes below them, so
that truncated boxes remain rectilinear.

Lemma 6 (Sufficiency) If a niche N satisfies at least
one of i)-v) in the Condition, then N is perfect.

Proof. By Lemma 5, which establishes the perfection
of any N with feature v), we can assume from now on
that N has no keyless 3̂-corner. For each of the remain-
ing features i)-iv), we provide a perfect boxing for N
when N has that feature.

case i) Refer to Figures 6 and 7. Suppose N has a
V3̂1̂-layer containing cube ĉT , which is a VT ⊥-layer or
a VS⊥ -layer. Let ĉ3 = cT and ĉ1 denote the extreme
cubes at heights 3 and 1 in the 3̂1̂-layer of ĉ3. Let c̃2
denote the cube just under ĉ3. Cube c̃2 is a layer-corner
of layer 2, but not a corner of N . Using ĉ3, c̃2, and ĉ1 as
anchors, create an ALB for each layer of N . The boxes
for ĉ3, c̃2, and ĉ1 reach both the S and T -walls, with
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Figure 6: Sufficiency case (i) when a) the V3̂1̂-layer of ĉ3 is a VS⊥ -layer. b) ALB’s for the layers; c) box of ĉ3 = ĉT
extruded to z = 0 and to x = 0, making the deep orange box; d) box of ĉS extruded to z = 0 and to y = 1, making
the thick green box.

Figure 7: Sufficiency case (i) when a) the V3̂1̂-layer of ĉ3 is a VT ⊥ -layer. b) ALB’s for the layers; c) box of ĉT extruded
to z = 0 and to x = 0, making the deep orange box; d) box of ĉS extruded to z = 0 and to y = 1, making the thick
green box.

box(c̃2) exactly below box(ĉ3). Then extrude box(ĉ3)
down to the plane z = 0, making a deep box containing
both ĉ3 and cO. This deep box absorbs all the cubes
of box(c̃2) but does not affect any other boxes in the
anchored boxing of layer 2, which is anchored by c̃2. The
remaining boxes of this layer all extend to the S-wall
and lie beyond the plane y = 1. If the V3̂1̂-layer of ĉ3 is
a VT ⊥ -layer, the deep box truncates by one unit the box
anchored by ĉ1 so that the box of ĉ1 now abuts the side
of the deep box on the plane y = 1; otherwise, if the V3̂1̂-
layer of ĉ3 is a VS⊥-layer, the deep box truncates box(ĉ1)
so that it abuts the deep box at the plane x = x(ĉ1).

To complete the construction of a perfect boxing for
N , make a thick box containing S and extrude this thick
box over to the plane y = 1, where the thick box abuts
the deep box. This extrusion truncates by one unit the
boxes of the ALBs for layers 1 and 2 that lie beyond the
plane y = 1; it does not affect any thin boxes in layer 3,
and it does not affect the deep box or any other boxes of
layer 1 that do not reach the S-wall. The thin, possibly
truncated, boxes of the ALBs together with the thick
box for S and the deep box(ĉ3) make a perfect boxing
for N .

Examples of the two cases where the V3̂1̂-layer of ĉ3 is
a VS⊥ -layer and a VT ⊥ -layer, respectively, are illustrated
in Figures 6 and 7. In Figure 6a, the V3̂1̂-layer of ĉ3 is
the T -wall. Figure 6b shows ALBs based on ĉ3, c̃2, and

ĉ1. Figure 6c illustrates the extrusion of box(ĉ3) (shown
in color), which absorbs box(c̃2) and truncates box(ĉ1)
at x = x(ĉ3). Figure 6d shows the final extrusion of the
thick box of S.
In Figure 7a, the V3̂1̂-layer of ĉ3 is a VT ⊥-layer. Fig-

ure 7b shows ALBs based on ĉ3, c̃2, and ĉ1. Figure 7c
illustrates the downward extrusion of box(ĉ3) (shown in
color), which absorbs box(c̃2) and truncates box(ĉ1) at
y = y(ĉ3) = 1. Figure 7d shows the final extrusion of
the thick box of S.
case ii) Refer to Figure 8. Suppose N has a V2̂1̂-

layer that is a VS⊥ -layer. Let ĉ2 and ĉ1 denote the
corners of layers 2 and 1 in the V2̂1̂-layer that is that is
a VS⊥ -layer, and let ĉ3 denote an arbitrary corner of N
in layer 3. Using ĉ3, ĉ2, and ĉ1 as anchors, create an
anchored boxing for each layer of N . Now make a thick
box containing the short tower S, and extrude it to the
plane y = y(ĉ2) = y(ĉ1). This thick box truncates by 1
unit the boxes of the anchored boxings that lie in layer
1 or layer 2 on the S side of the plane y = y(ĉ2) =
y(ĉ1). These truncated boxes now end at the thick box
containing S rather than at plane x = 0. The boxes
of layer 3 are not affected. Similarly, create a thick box
containing the two cubes of T and extrude this thick box
to the plane x = 0. This truncates by one unit those
boxes in layers 2 and 3 that abut the plane y = 0. Boxes
in layer 1 are not affected. After these modifications, the
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Figure 8: Sufficiency case (ii). a) N has a V2̂1̂-layer that is a VS⊥ -layer. b) ALB’s for the layers; c) box of ĉS extruded
to z = 0 and to y = 2, making the thick green box; d) box of ĉT extruded to z = 1 and to x = 0, making the thick
orange box.

resulting set of boxes is a perfect boxing: each cube of
N belongs to a box containing a corner.
case iii) Refer to Figure 9. Suppose N has a V3̂2̂-layer

that is VT ⊥ -layer. This case is analagous to ii) above.
Let ĉ3 and ĉ2 denote the corners of layers 3 and 2 in
the V3̂2̂-layer that is a VT ⊥ -layer, and let ĉ1 denote an
arbitrary corner of N in layer 1. Using ĉ3, ĉ2, and ĉ1
as anchors, create an anchored boxing for each layer of
N . Now make a thick box containing the tall tower T ,
and extrude it to the plane x = x(ĉ3) = x(ĉ2). This
thick box truncates by 1 unit the boxes of the anchored
boxings that lie in layer 2 or layer 3 on the T side plane
x = x(ĉ3) = x(ĉ2). These truncated boxes now end at
the thick box containing T rather than at the T -wall.
The boxes of layer 1 are not affected. Similarly, create
a thick box containing the short tower S and extrude
this thick box to the T -wall. This truncates by one unit
those boxes in layers 1 and 2 that abut the S-wall. Boxes
in layer 3 are not affected. After these modifications, the
resulting set of boxes is a perfect boxing: each cube of
N belongs to a box containing a corner of N .
case iv) Refer to Figure 10. Suppose N contains a

3̂-corner ĉ3 whose V -layers together contain a 2̂-corner
ĉ2 and a 1̂-corner ĉ1. If ĉ2 and ĉ1 belong to the same
V -layer of ĉ3, then either case ii) or case iii) applies.
Likewise, case ii) or case iii) applies if the V -layers are
distinct, and the 3̂2̂-layer is a VT ⊥ -layer. Thus we need
only consider the situation in which the 3̂2̂-layer is a
VS⊥ -layer and the 3̂1̂-layer is a VT ⊥ -layer.
Using anchor cubes ĉ3, ĉ2, and ĉ1, create an anchored

boxing for each layer of N . See Figure 10a and 10b.
Now extrude box∗(ĉ3) to plane z = 0, creating a deep
box for corner ĉ3. See Figure 10c.

This deep box truncates box∗(ĉ2), which becomes a
smaller box that measures |x(ĉ2) − x(ĉ3)| in the x-
dimension. This smaller box, denoted box†(ĉ2), has one
face in plane y = 0 and abuts the deep box, on the plane
x = x(ĉ3). Because x(ĉ3) < x(ĉ2) and y(ĉ3) = y(ĉ2),
box∗(ĉ2) is the only box of the ALB for layer 2 affected
by the deep box.

Similarly, the deep box also truncates box∗(ĉ1), which

becomes a box that measures |y(ĉ1) − y(ĉ3)| in the y-
dimension. This smaller box, denoted box†(ĉ1), has a
face on the plane x = 0 and abuts the deep box on the
plane y = y(ĉ3). Because y(ĉ1) > y(ĉ3) and x(ĉ3) =
x(ĉ1), box

∗(ĉ1) is the only box of the anchored boxing
of layer 1 that is affected by the deep box.

Now box together the two cubes of S, making a thick
box for corner ĉS . Extrude this thick box to the plane
y = y(ĉ3), so that the thick box abuts the deep box.
See Figure 10d. Also, box together the two cubes of
T , making a thick box for corner ĉT , and extrude this
thick box to the plane x = x(ĉ3), so that it abuts the
deep box. See Figure 10e. The extrusion of the thick
box containing S truncates by one unit any boxes of the
anchored boxings for layers 1 and 2 (including box†(ĉ1))
that lie outside the deep box and that reach the plane
x = 0. The extrusion does not affect any boxes of layer
3. The extrusion of the thick box containing the cubes
of T truncates by one unit any boxes of the anchored
boxings for layers 3 and 2 (including box†(ĉ2)) that lie
outside the deep box and that reach the y = 0 plane.
The extrusion does not affect any boxes of layer 1.

The resulting boxing is a perfect boxing for N : each
cube belongs to the box of a corner of N , and the inte-
riors of the boxes are pairwise disjoint.

This completes the constructions for cases i)-v) and
concludes the proof. □

4 Necessity: Alignments in Perfect Niches

Technical Lemmas 7–12 show how i)-v) of the Condition
can arise from a perfect boxing B of a niche N . Each
element of a perfect B is a box b, denoted b = box(c),
where c is any cube inside the box, and the box must
contain a corner. A box is called an î-box, 1 ≤ i ≤ 3, if
it contains an î-corner.

The proof of Lemma 13 pulls Lemmas 7–12 together
and establishes the necessity of the Condition. The
proof, given a perfect boxing B, uses the box(cO)-
method, which considers which î-box contains cO.

We introduce our box(cO)-method by using it to prove
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that the triskele is not perfect. In the proof, we say a
cube c is dominated by a corner if c lies in the box deter-
mined by the corner and cO. Cubes that are dominated
by only one corner must lie in the box of that corner in
any perfect boxing.

The box(cO)-method, used to prove triskeles are not
perfect. A triskele has only three corners, ĉ1, ĉ2, ĉ3, one
in each layer i, 1 ≤ i ≤ 3. Each ĉi has two more cubes
that must belong to box(ĉi) as those cubes are uniquely
dominated. Since each box(ĉi) is convex, it contains a
fourth cube (see Figure 3b and Figure 3c). If cO belongs
to box(ĉi), that box contains six cubes. Thus the triskele
must have at least 14 cubes, a contradiction. Hence the
triskele is not perfect. Optimum boxings B with ∥B∥=4
are shown in Figure 3b, where cO is boxed by itself, and
Figure 3c, where box(cO) is deep.

We give some notation. Cube cx′,y′,z′ is a lower neigh-
bor, or simply a neighbor, of corner ĉx,y,z if x′ = x,
y′ = y + 1, and z′ < z, and similarly if x′ = x + 1,
y′ = y, and z′ < z. The 3̂-corner ĉ3 of the triskele in
Figure 3 has two neighbors in layer 1 and no neighbors
in layer 2.

For each of Lemmas 7–12, we assume that niche N
has a perfect boxing B.

Lemma 7 If box(ĉT ) ∈ B is deep, N has feature i).

Proof. By definition of tower T , the key cube ckey of
ĉxT ,1,3 = ĉT exists. At least one of the layer 1 neighbors
of ĉT is not boxed with ckey , as otherwise, box(ckey)
would intersect box(ĉT ). If ckey /∈ box(cxT +1,1,1) then

the corner of this box lies in the T -wall, which is thus
a V3̂1̂-layer of ĉT . If ckey /∈ box(cxT ,2,1) then the corner
of this box lies in the VT ⊥ -layer of ĉT . □

Lemma 8 If B has a 2̂-box that contains a cube of the
T -wall, then N has feature iii).

Proof. Let x′ be the maximum x-coordinate of a cube
in the T -wall that belongs to a 2̂-box. Since x′ < xT ,
cube cx′,1,3 exists and its box is thin. We claim that the
3̂-corner of box(cx′,1,3) lies in the same VT ⊥ -layer that
contains the 2̂-corner of box(cx′,2,1), by the maximality
of x′: otherwise, the x-coordinate x′′ of the 3̂-corner of
box(cx′,1,3) would be greater than x′, and would contain
a cube cx′′,1,3 in the T -wall, contradicting the maximal-
ity of x′. This VT ⊥ V -layer is thus a V3̂2̂-layer that is a
VT ⊥ -layer so N has feature iii). □

The niche in Figure 5 has one regular 3̂-corner, ĉ3. This
regular 3̂-corner has four neighbors, two in each of its
V -layers. The layer 2 neighbor ĉ′2 in its VT ⊥ -layer is a
2̂-corner, as is the layer 2 neighbor ĉ2 in its VS⊥ layer.

The next definition is used for the analysis of deep
boxes and the corner alignments that arise from them.

Definition [regular 3̂-corner ]. A 3̂-corner ĉx,y,3 is reg-
ular if: i) it has a key cube, and ii) ĉx,y,3 ̸= ĉT .

The niche in Figure 5 has one regular 3̂-corner, ĉ3. This
regular 3̂-corner has four neighbors, two in each of its
V -layers. The layer 2 neighbor ĉ2 in its VT ⊥ -layer is a
2̂-corner, as is the layer 2 neighbor ĉ′2 in its VS⊥ -layer.

Figure 9: Sufficiency case (iii). a) N has a V3̂2̂-layer that is a VT ⊥ -layer. b) ALB’s for the layers; c) box of ĉT
extruded to z − 1 and to x = 2, making the thick orange box; d) box of ĉS extruded to z = 0 and to y = 0, making
the thick green box.
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Figure 10: Sufficiency case (iv). a) N has a 3̂-corner ĉ3 whose V -layers together have a 2̂-corner ĉ2 and a 1̂-corner
ĉ1. b) ALB’s for each layer; c) box of ĉ3 extruded to z = 0, creating the deep orange box; d) box of ĉS extruded to
z = 0 and to y = 2, creating the thick green box; e) box of ĉT extruded to z = 1 and x = 2, creating the thick red
box.

Lemma 9 If ĉx,y,3 is regular and box(ĉx,y,3) ∈ B is
thick or deep, then ĉx,y,3 has a V3̂2̂-layer.

Proof. Since cube key(ĉx,y,3) exists, the layer 1 neigh-
bors of ĉx,y,3 also exist. Since ĉx,y,3 ̸= ĉT , and since
there are no other tall towers in N , corner ĉx,y,3 has at
least one layer 2 neighbor. If there is a cube in layer 2
over the key, then the regular 3̂-corner has two neigh-
bors in layer 2. They cannot belong to the same box, as
such a box would intersect the thick or deep box(ĉx,y,3).
A neighbor of layer 2 that is not boxed with the cube
above the key is boxed with a 2̂-corner in a V -layer of
ĉx,y,3, which is a V3̂2̂-layer. Likewise, if there is no cube
in layer 2 over the key, then any layer 2 neighbor of ĉx,y,3
is boxed with a 2̂-corner in a V3̂2̂-layer of ĉx,y,3. □

The proof of the next lemma is similar.

Lemma 10 If ĉx,y,3 is regular and box(ĉx,y,3) ∈ B is
deep, then one of the neighbors of ĉx,y,3 in layer 1 be-
longs to a box whose corner lies in a V -layer of ĉx,y,3,
where this V -layer is a V3̂2̂-layer or a V3̂1̂-layer of ĉx,y,3.

Proof. The key cube exists, so ĉx,y,3 has two neighbors
in layer 1. They cannot belong to the same box, as this
would intersect box(ĉx,y,3), so at least one neighbor in
layer 1 is not boxed with the key cube; hence, the corner

of the box of this neighbor, where the box can be thick
or thin, belongs to a V -layer of ĉx,y,3. This V -layer is
thus a V3̂2̂-layer or a V3̂1̂-layer of ĉx,y,3. □

Lemma 11 If ĉx0,y0,3 is a regular 3̂-corner with a V3̂1̂-
layer, and if box(ĉx0,y0,3) ∈ B is deep, then N has fea-
ture ii), iii), or iv) of the Condition.

Proof. By Lemma 9, the regular corner ĉx0,y0,3 has a
V -layer containing a 2̂-corner. If this V -layer contains
a 1̂-corner, then the V -layer is a V3̂2̂1̂-layer. If this V3̂2̂1̂-
layer is a VT ⊥ -layer, then N has feature iii) of the Con-
dition. If the layer is a VS⊥ -layer, then N has feature
ii). If the regular corner ĉx0,y0,3 has a 2̂-corner in one
V -layer and a 1̂-corner in the other V -layer, then N has
feature iv). □

Definition [special box ]. A box(ĉx0,y0,3) is special if: i)
the box is deep, and ii) ĉx0,y0,3 is a regular 3̂-corner with
no V3̂1̂-layer and no V3̂2̂-layer that is a VT ⊥ -layer.

Lemma 12 If B contains a special box, then N satisfies
the Condition.

Proof. The box is deep and ĉx0,y0,3 is regular but has
no V3̂1̂-layer and no V3̂2̂-layer that is a VT ⊥ -layer. It
follows from Lemma 10 that the VS⊥ -layer of ĉx0,y0,3
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Figure 11: A collection of ugly furniture: each cornerhedron is imperfect, consists of two niches sharing a tall tower,
and has an optimal boxing of size k + 1.

has a 2̂-corner and that the box of the 2̂-corner must be
thick as this box contains cx0+1,y0,1. Hence the 2̂-corner
box contains both cx0+1,y0,1 and cx0+1,y0,2.

Consider all the corners of thick 2̂-boxes (we have
just seen that there is at least one), and let ĉx′

0,y
′
0,2

de-
note the corner with maximum x-coordinate x′0. Hence
box(ĉx′

0,y
′
0,2

) is a thick 2̂-box, and with respect to the
position of ĉx0,y0,3, the coordinates of ĉx′

0,y
′
0,2

satisfy
x′0 > x0 and y′0 ≤ y0. If box(ĉx′

0,y
′
0,2

) contains cubes
in the T -wall, then by Lemma 8, N satisfies the Condi-
tion with feature iii). If box(ĉx′

0,y
′
0,2

) does not reach the
T wall, then we continue searching in N for a feature of
the Condition. Let cx′

0,y
′′
0 ,1

and cx′
0,y

′′
0 ,2

, where y′′0 < y′0,
denote the two cubes in the VT ⊥-layer of ĉx′

0,y
′
0,2

that
abut box(ĉx′

0,y
′
0,2

). We consider two cases i) and ii).

Case i) y′′0=1: The two cubes lie in the T -wall and
box(cx′

0,y
′′
0 ,2

) = box(ĉxT ,1,3) = box(ĉT ). If box(ĉT ) con-
tains cx′

0,y
′′
0 =1,1 and so is deep, then by Lemma 7, N has

feature i) of the Condition; otherwise, box(cx′
0,y

′′
0 =1,1)

belongs to the T -wall and contains a 1̂-corner. Again
the T -wall is a V3̂1̂-layer and N has feature i).

Case ii) y′′0 > 1: The corners of box(cx′
0,y

′′
0 ,1

) and
box(cx′

0,y
′′
0 ,2

), which may or not be the same box, lie
in the V -layer that contains the two cubes cx′

0,y
′′
0 ,1

and
cx′

0,y
′′
0 ,2

, where this V -layer is parallel to, but distinct
from, the T -wall; otherwise, their box(es) would inter-
sect the thick box(ĉx′

0,y
′
0,2

). We denote this V -layer by
V ′′ (its cubes have the same y-coordinate y′′0 ).

Suppose cx′
0,y

′′
0 ,1

and cx′
0,y

′′
0 ,2

belong to the same box
B′′. By maximality of x′0, box B′′ cannot be a thick
2̂-box, so B′′ must be a deep 3̂-box. However, the 3̂-
corner of B′′ cannot be ĉT , as B′′ contains cubes in V ′′.
Moreover, B′′ cannot be special, by maximality of x0.
Hence either its 3̂-corner is not regular because it has no
key, and thus N has feature v), or the 3̂-corner of B is
regular. In this case, since B is not special, the 3̂-corner
either lies in a V3̂2̂-layer that is a VT ⊥ -layer, and thus N
has feature iii), or the 3̂-corner lies in a V3̂1̂-layer, and
thus N has feature ii), iii) or iv) by Lemma 11.
To complete the proof of case ii) and the proof of

the lemma, suppose cx′
0,y

′′
0 ,1

and cx′
0,y

′′
0 ,2

do not belong

to the same box. Then box(cx′
0,y

′′
0 ,1

) is a 1̂-box with

1̂-corner in V ′′, and box(cx′
0,y

′′
0 ,2

) is either a 2̂-box or a

3̂-box with corner in V ′′. If box(cx′
0,y

′′
0 ,2

) is a 2̂-box, then
V ′′ is a V2̂1̂-layer that is a VS⊥-layer, so N has feature
ii). If box(cx′

0,y
′′
0 ,2

) is a 3̂-box with corner ĉx′′
0 ,y

′′
0 ,3

then
this box is thick (not deep, as it lies above box(cx′

0,y
′′
0 ,1

)).
If ĉx′′,y′′,3 has no key, then N has feature v); otherwise,
the key exists and by Lemma 9, at least one V -layer of
ĉx′′

0 ,y
′′
0 ,3

is a V3̂2̂-layer. If this V -layer is V ′′, then V ′′ is
a V3̂2̂1̂-layer that is a VS⊥-layer and N has feature ii).
Otherwise, ĉx′′

0 ,y
′′
0 ,3

has a 2̂-corner in one of its V -layers

(namely in its VT ⊥-layer) and a 1̂-corner in the other
(namely in layer V ′′, its VS⊥-layer), so N has feature
iv). □

We now establish the necessity of the Condition with the
box(cO)-method. The proof considers perfect boxings
Bi such that box(O) is an î-box, 1 ≤ i ≤ 3, and shows
that in each case, N has at least one of features i)-v).

Lemma 13 The Condition of Theorem 3 is necessary.

Proof. î = 1) Some perfect boxing B1 boxes the origin
cube cO in a thin 1̂-box: Let c1,y′,1 denote the cube in
the S-wall with maximum y-coordinate y′ such that the
cube belongs to a thin 1̂-box, namely box(ĉx′,y′,1), which
may or not be equal to box(cO). Since y′ < yS , there
must exist a cube c1,y′,2 above c1,y′,1. By maximality
of y′, the corner of box(c1,y′,2), which may be a 2̂- or
3̂-corner, lies in the VS⊥ -layer containing ĉx′,y′,1, so this
V -layer is either a V2̂1̂-layer that is a VS⊥ -layer, or a
V3̂1̂-layer that is a VS⊥ -layer. In the case of a V2̂1̂-layer
that is a VS⊥ -layer, N has feature ii). The case of a V3̂1̂-
layer that is a VS⊥ -layer arises when box(c1,y′,2) has a
3̂-corner and hence is thick. If the 3̂-corner is regular,
then by Lemma 9 the 3̂-corner has a V3̂2̂-layer, and also,
its VS⊥-layer is a V3̂1̂-layer. If the two V -layers are the
same, the 3̂-corner has a V3̂2̂1̂-layer that is a VS⊥ -layer
and N has feature ii); if the layers are distinct, then N
has feature iv). To complete this case, if the 3̂-corner of
box(c1,y′,2) is not regular, either the 3̂-corner is keyless,
or it belongs to T . If the 3̂-corner is keyless, then N
has feature v). If the 3̂-corner is equal to ĉT , then its
VS⊥ -layer is the T -wall, which is a V3̂1̂-layer, so N has
feature i).
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î = 2) Some perfect boxing B2 boxes the origin cube cO
in a thick 2̂-box: By Lemma 8, N has feature iii).

î = 3) Some perfect boxing B3 boxes cO in a deep 3̂-box:
If the 3̂-corner of this deep box is ĉT , then by Lemma 7,
N has feature i). If the 3̂-corner of the deep box is
keyless, then N has feature v).
If the 3̂-corner of the deep box is not ĉT and the 3̂-

corner is keyed, then by definition this corner is regular.
If this regular 3̂-corner of deep box(cO) has a V -layer
containing a 1̂-corner, then by Lemma 11, N has feature
ii), iii), or iv). If the 3̂-corner does not have such a
V -layer, then either the 3̂-corner has a V3̂2̂-layer that
is a VT ⊥ -layer, or the box of this 3̂-corner is a special
deep box. If the 3̂-corner has a V3̂2̂-layer that is a VT ⊥ -
layer then N has feature iii). If the box of the 3̂-corner
is special, then by Lemma 12, N has at least one of
features i) - v).
Thus any perfect boxing B of N has at least one of

features i)-v). □

5 Discussion and Conclusion

We have characterized perfect niches and constructed
optimum boxings for all niches, i.e., boxings B of size
∥B∥ = k for perfect niches and of size ∥B∥ = k+1 for im-
perfect niches. To do this, we developed two methods:
the anchored layer-boxing (ALB) method for construct-
ing partitions, and the box(cO) method for case analysis
of a given perfect boxing.
Our work has focussed on characterization of perfect

niches. Our theorems and their proofs clearly suggest
how to achieve low running time algorithms for recog-
nizing perfect niches and for constructing an optimum
boxing of any given niche. Depending on the details of
the input and data structures chosen, we conjecture that
algorithms for solving these two problems have running
times of O(k lg k), where k is the number of corners.

Many open problems arise for 3-layered cornerhedra
and more generally, for cornerhedra of three or more
layers.

1) Based on our characterization of perfect niches,
provide an efficient algorithm and implementation
for recognizing perfect niches, representing them
succinctly, e.g., by the coordinates of their corners.

2) Provide an efficient algorithm for boxing niches op-
timally, representing them succinctly.

3) Determine the complexity of recognizing perfect 3-
layer cornerhedra.

4) Determine the complexity of boxing 3-layer corner-
hedra optimally.

5) Given a subfamily (i.e., class) of cornerhedra, how
large can the gap be between the size ∥B(C)∥ of an

Figure 12: Cascadia: opt∥B∥ − k = 4

optimum boxing for a member C of the class and the
number of corners k(C) of C? For example, for 3-
layer cornerhedra, we can obtain a lower bound for
the gap by cascading triskeles as in Figure 12. As
another example, we define a subfamily of 3-layer
cornerhedra we call ugly furniture to consist of two
niches that share a tall tower. Optimum boxings of
the subset of ugly furniture shown in Figure 11 are
of size k + 1, where k is the number of corners of
the niche, so the gap is at least 1. Is it exactly 1?

6) Enumerate perfect niches for given bounding box
sizes, and likewise for imperfect niches. Counting
perfect niches (or imperfect niches, or niches) mir-
rors a problem of MacMahon, which, in his termi-
nology, was to count the number of (a, b, c)-plane
partitions. In our terminology, this is equivalent
to counting the number of cornerhedra of height at
most c in an a × b × c bounding box. MacMahon
[12] gave a well-known formula for this.

Acknowledgements

This research was initiated at two International Work-
shops on Computational Geometry and its Applications
to Computer Graphics, co-organized by Sylvain Lazard
and Sue Whitesides at the Bellairs Research Institute
of McGill; partial research funding was provided by
NSERC DGs of Stege and Whitesides. We thank Noah
Janssen, Harvey Ratson, and the workshop participants
for discussions and continued interest. We also thank
the reviewers for their very helpful comments.

References

[1] P.K. Agarwal, M. Sharir, A. Steiger. Decomposing the
complement of the union of cubes in three dimensions.
In Proc. of SODA 2021, ACM-SIAM Symposium on
Discrete Algorithms, pp. 1425-1444

[2] T.C. Biedl, M. Derka, V. Irvine, A. Lubiw, D. Mondal,
and A. Turcotte. Partitioning orthogonal histograms
into rectangular boxes. In Proc. of LATIN 2018, Lec-
ture Notes in Computer Science, vol. 10807, pp. 146–
160. Springer, 2018.

81



36th Canadian Conference on Computational Geometry, 2024

[3] V. Chekanin. Solving the Problem of Packing Objects
of Complex Geometric Shape into a Container of Arbi-
trary Dimension. CEUR Workshop Proceedings, 2744
(2020). doi:10.51130/graphicon-2020-2-3-50.

[4] V.J. Dielissen and A. Kaldewaij. Rectangular partition
in polynomial in two dimensions but NP-complete in
three. Inf. Process. Lett., 38:1–6, 1991.

[5] D. Eppstein and E. Mumford. Steinitz theorems for sim-
ple orthogonal polyhedra. J. Comput. Geom., 5(1):179–
244, 2014.

[6] L. Ferrari, P.V. Sankar, and J. Sklansky. Minimal rect-
angular partitions of digitized blobs. Computer Vision,
Graphics, and Image Processing, 28(1):58–71, 1984.

[7] P. Floderus, J. Jansson, C. Levcopoulos, A. Lingas,
D. Sledneu. 3D rectangulations and geometric matrix
multiplication. Algorithmica, 80:136-54, 2018.

[8] R. Gomory. Origin and early evolution of corner poly-
hedra. European Journal of Operational Research, 253:
543–55, 2016.

[9] C. Hoschl and J. Flusser. Decomposition of 3D Binary
Objects into Rectangular Blocks. In Proc. Interna-
tional Conference on Digital Image Computing: Tech-
niques and Applications (DICTA2016), pp. 1-8, 2016.

[10] W. Lipski Jr., E. Lodi, F. Luccio, C. Mugnai, and
L. Pagli. On two-dimensional data organization II. Fun-
damenta Informaticae, 2:245–260, 1979.

[11] M. Livesu, S. Ellero, J. Mart́ınez, S. Lefebvre and
M. Attene. From 3D models to 3D prints: an overview
of the processing pipeline. Comput. Graph. Forum,
36(2): 537–64, 2017.

[12] P.A. MacMahon. Combinatory Analysis vols. 1, 2.
Cambridge University Press, 1915, 1916; reprinted by
Chelsea, New York (1960), and by Dover, New York
(2004)

[13] T. Ohtsuki. Minimum dissection of rectilinear re-
gions. In Proc. IEEE Int. Symp. Circuits and Systems,
pp. 1210–1213, 1982.

[14] P. Winkler. Mathematical Puzzles: A Connoisseur’s
Collection. CRC Press, 2003.

82



CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

The Exact Routing and Spanning Ratio of arbitrary triangle Delaunay graphs

Prosenjit Bose ∗ Jean-Lou De Carufel † John Stuart ‡

Abstract

A Delaunay graph built on a planar point set has an
edge between two vertices when there exists a disk with
the two vertices on its boundary and no vertices in its
interior. When the disk is replaced with an equilateral
triangle, the resulting graph is known as a Triangle-
Distance Delaunay Graph or TD-Delaunay for short. A
generalized TDθ1,θ2-Delaunay graph is a TD-Delaunay
graph whose empty region is a scaled translate of a
triangle with angles of θ1, θ2, θ3 := π − θ1 − θ2 with
θ1 ≤ θ2 ≤ θ3. We prove that 1

sin(θ1/2)
is a lower

bound on the spanning ratio of these graphs which
matches the best known upper bound (Lubiw & Mondal
J. Graph Algorithms Appl., 23(2):345–369). Then we
provide an online local routing algorithm for TDθ1,θ2-
Delaunay graphs with a routing ratio that is optimal in
the worst case. When θ1 = θ2 = π

3 , our expressions for
the spanning ratio and routing ratio evaluate to 2 and√

5
3 , matching the known tight bounds for TD-Delaunay

graphs.

1 Introduction

Geometric graphs are graphs whose vertex sets are
points in the plane and whose edge weights are the cor-
responding Euclidean distances. A common theme in
Computational Geometry is the study of shortest paths.
In geometric graphs, one measure of how well a graph
preserves distances is its spanning ratio. The spanning
ratio of a geometric graph is the smallest upper bound
on the ratio of distance in the graph to distance in the
plane for all pairs of points [11]. One particular geo-
metric graph of interest is the Delaunay triangulation,
which has an edge between two vertices exactly when
they lie on the boundary of a disk which contains no
other vertex in its interior [9].

A long-standing open problem is to determine the
worst-case spanning ratio of the Delaunay triangulation,
which is known to be between 1.5932 [16] and 1.998
[15]. In other words, there exists a point set where the
spanning ratio is at least 1.5932, and for any point set,

∗School of Computer Science, Carleton University,
jit@scs.carleton.ca

†School of Electrical Engineering and Computer Science, Uni-
versity of Ottawa, jdecaruf@uottawa.ca

‡School of Electrical Engineering and Computer Science, Uni-
versity of Ottawa, jstua022@uottawa.ca

the spanning ratio is at most 1.998. While the exact
spanning ratio of the standard Delaunay triangulation
remains unknown, several variants do have known tight
spanning ratios in the worst case. For example, when
the empty disk is replaced with a square we obtain the
L∞ or L1-Delaunay graph, which is known to have a

spanning ratio of exactly
√

4 + 2
√

2 ≈ 2.61 [3]. Simi-
lar proof techniques have been generalized to Delaunay
graphs based on rectangles and parallelograms [14, 12].
In general, one can define a Delaunay graph from any
convex distance function, and such a graph is known to
have a constant spanning ratio where the spanning ratio
depends on the ratio of the perimeter to the width of the
convex shape [4]. When the unit circle in this distance is
a regular hexagon, then the exact worst-case spanning
ratio is 2 [13]. When the unit circle is an equilateral
triangle, then exact worst-case spanning ratio is also
2 [8]. A generalized TDθ1,θ2 -Delaunay graph is a TD-
Delaunay graph whose empty region is a scaled translate
of a triangle with angles of θ1, θ2, θ3 := π− θ1− θ2 with
θ1 ≤ θ2 ≤ θ3. In this paper, we provide a lower bound
of 1

sin(θ1/2)
that matches the best known upper bound

for TDθ1,θ2-Delaunay graphs [10].

The routing ratio of a geometric graph essentially cap-
tures how feasible it is to find short paths in a graph
when making local decisions based only on the neigh-
bourhood of the current vertex. The routing ratio is
the smallest upper bound on the ratio of the length of
the path returned by the routing algorithm and the Eu-
clidean distance between all pairs of vertices. Routing
in Delaunay trianglulations is notoriously difficult, with
the routing ratio of the standard Delaunay triangula-
tion known to be between 1.70 [1] and 3.56 [1]. Varia-
tions such as the L1-Delaunay triangulation are known
to have a routing ratio between 2.7 [1] and 3.16 [7].

For TD-Delaunay graphs, there is a gap between the
spanning ratio of 2 and the routing ratio which was
shown to be exactly 5√

3
in the worst-case [5]. We show

that this gap is preserved for TDθ1,θ2-Delaunay graphs
by extending techniques from [5] to obtain a tight rout-
ing ratio of

C(θ1, θ2) := max
j∈{1,2,3}
0≤α≤θj

sin(θj − α)

sin(θj+1)
+

sin(α)

sin(θj−1)
+ min

(

sin(α)

sin(θj−1)
+

sin(α+ θj−1)

sin(θj+1)
,

sin(θj − α)

sin(θj+1)
+

sin(α+ θj−1)

sin(θj−1)

)
.
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2 Preliminaries

We will denote the line segment from point u to point
v as uv, and the length of uv is denoted |uv|. For two
vertices u, v in a geometric graph G, the length of the
shortest path from u to v in G is denoted dG(u, v). Then
for a constant c ≥ 1, G is said to be a c-spanner if for
all vertices u, v in G, we have dG(u, v) ≤ c|uv|. The
spanning ratio of G is the least c for which G is a c-
spanner. The spanning ratio of a class of graphs G is
the least c for which all graphs in G are c-spanners. A
constant spanner is a c-spanner where c is a constant.

In a geometric graph, each vertex is identified with
its coordinates. Here, one unit of memory is either a
point in R2, or log2(n) bits. The k-neighbourhood of a
vertex u in a graph is defined to be all the vertices v such
that there is a path from u to v consisting of k or fewer
edges. Formally, a k-local, m-memory routing algorithm
is a function that takes as input (s,Nk(s), t,M), and
outputs a vertex p where s is the current vertex, Nk(s)
is the k-neighbourhood of s, t is the destination, M is an
m-unit memory register, and p ∈ N1(s). An algorithm
is said to be c-competitive for a family of geometric
graphs G if the path output by the algorithm for any
pair of vertices s, t ∈ V (G) for G ∈ G has length at
most c|st|. The routing ratio of an algorithm is the
least c for which the algorithm is c-competitive for G.

Throughout this paper, we fix a triangle 4 in the
plane with angles θ1 ≤ θ2 ≤ θ3. We assume that the cor-
responding corners of 4 are labelled τ1, τ2, τ3. In order
to keep notation cleaner, we use arithmetic modulo 3 for
operations on index i when referring to corners of trian-
gles. For example, τ4 = τ1, and τ0 = τ3. By convention,
the expression ∠abc will refer to the smaller angle among
the clockwise and counterclockwise angles between ab
and bc for three non-collinear points a, b, c ∈ R2.

For any two points u, v in the plane, define the trian-
gle Tu,v to be the smallest scaled translate of 4 with
u and v on its boundary. Note that smallest implies
that at least one of u, v is on a corner of Tu,v. We use
τu,vi to refer to the corner of triangle Tu,v corresponding
to τi. Now we define the cones, depicted in Figure 1.
In particular, for a point p and index i ∈ {1, 2, 3}, let
Cp,i := {v ∈ R2|p = τp,vi } be the positive cone centred
at point p corresponding to τi. On the other hand, de-
fine the negative cone Cp,i := {v ∈ R2|v = τp,vi }. Note
that Cp,i is Cp,i rotated by π radians about p.

The TD-Delaunay graph of a vertex set S ⊆ R2 has
an edge between vertices u and v when there exists an
equilateral triangle with u, v on its boundary and no
other points of S in its interior. Note that the equilat-
eral triangle is a scaled translate of the TD unit circle.
As with any Delaunay graph based on a convex distance
function, every bounded face is a triangle [4]. To define
the TDθ1,θ2 -Delaunay graph, we replace the equilateral
triangle with 4 containing angles of θ1, θ2, θ3. Equiv-

p

Cp,3

Cp,2

Cp,1

Cp,3

Cp,2

Cp,1

Figure 1: Cp,1, Cp,2, Cp,3 are the positive cones of p and
Cp,1, Cp,2, Cp,3 are the negative cones of p.

alently, if F is the affine transformation that brings 4
to the equilateral triangle (the unit circle in the trian-
gle distance), then there is an edge uv in the TDθ1,θ2-
Delaunay graph of a set S ⊆ R2 exactly when F (u)F (v)
is an edge of the TD-Delaunay graph of F (S). This al-
ternative definition immediately leads to a local routing
strategy for the TDθ1,θ2-Delaunay graph of a point set
S: use the existing routing algorithm from [5] on the
TD-Delaunay graph of F (S). In Section 4.2, we show
that this approach is not optimal.

Bonichon et al. [2] showed that the TD-Delaunay
graph corresponds to the half-θ6-graph. Analogous to
the half-θ6-graph, Lubiw and Mondal [10] define the 3-
sweep graph, which directly corresponds to the TDθ1,θ2-
Delaunay graph. The 3-sweep graph G gets its name
from an alternative, yet equivalent, construction. For
each vertex u and each positive cone Cu,i, include in G
the edge to the nearest vertex v ∈ Cu,i. By nearest, we

mean that the triangle Tu,v is minimal among {Tu,v′ |
v′ ∈ Cu,i}. In this way, one can picture the leading edge
τu,vi−1τ

u,v
i+1 sweeping through cone Cu,i. Throughout the

paper, we assume that no two points lie on a line parallel
to a cone boundary. This ensures that each vertex has
at most one neighbour in each positive cone.

One desirable property of paths is angle monotonicity.
A path is angle monotone with width α if the vector of
each edge on the path lies in a cone with apex angle
α. Lubiw and Mondal show that the 3-sweep graph
has certain angle-monotone properties which are used
to upper bound the spanning ratio, see Observation 1.

Observation 1 An angle monotone path from s to t

with width α has length at most |st|
cos(α/2) [10].

In [10], Lubiw and Mondal also define a k-layered 3-
sweep graph by combining k copies of rotated 3-sweep
graphs, and provide a local routing algorithm that
finds angle monotone paths in k-layered 3-sweep graphs.
Note that since k is at least 4, their routing algorithm
does not apply to TDθ1,θ2 -Delaunay graphs.

2.1 Our Contributions

In Section 3, we prove that 1
sin(θ1/2)

is a lower bound on

the spanning ratio of TDθ1,θ2 -Delaunay graphs which
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matches the best known upper bound [10]. Then in
Section 4, we provide a lower bound on the routing ratio
by showing that there exist TDθ1,θ2 -Delaunay graphs for
which the routing ratio of any k-local routing algorithms
is at least as large as C(θ1, θ2). Then, we show that our
lower bound is tight by providing an online local routing
algorithm for TDθ1,θ2-Delaunay graphs with a routing
ratio of C(θ1, θ2). Finally, in Section 4.2, we compare
our optimal routing algorithm to the previously best-
known approach to routing in TDθ1,θ2 -Delaunay graphs.

3 Spanning Ratio

We present a lower bound in the following proposition.

Proposition 1 There exists a set of points S ⊆ R2

such that the TDθ1,θ2-Delaunay graph of S has a span-
ning ratio of exactly 1

sin(θ1/2)
− ε for any ε > 0.

Proof. We will construct a point set S =

{a, b, τ1, τ2, τ3} such that dG(a, b) approaches |ab|
sin(θ1/2)

,

where G is the TDθ1,θ2-Delaunay graph of S. See
Figure 2. Place two points a, b outside 4 each at a

distance min(|τ1τ2|,|τ1τ3|)
2 from τ1, with a arbitrarily close

to τ1τ2 and b arbitrarily close to τ1τ3. By construction
of S, G has edges τ1τ2, τ2τ3, τ1τ3, τ1a, τ2a, τ1b and τ3b.

τ2

τ3

τ1b

a

θ1

Figure 2: The shortest path from a to b passes through
τ1 in the TDθ1,θ2-Delaunay graph G of the point set
{a, b, τ1, τ2, τ3}. As a, b get closer to 4, then dG(a, b)

approaches |ab|
sin(θ1/2)

.

The shortest path in G from a to b passes through τ1,

meaning the spanning ratio is at least |aτ1|+|τ1b||ab| . This

value can be made arbitrarily close to 1
sin(θ1/2)

as a and

b move closer to the boundary of 4. While this point
set may not be in general position, the vertices can be
perturbed to satisfy the general position constraint. �

The upper bound of 1
sin(θ1/2)

follows from Lemma 6

of [10] by Lubiw and Mondal.

4 Local Routing

Local routing has been studied in many contexts, and in
Section 4.2, we will show that the known routing algo-
rithms do not give optimal results in TDθ1,θ2 -Delaunay

graphs. In this section, we provide an optimal local
routing algorithm. Our approach is to generalize the
algorithm from [5], leading to our algorithm (refer to
Algorithm 1). The key algorithmic insight lies in the
threshold for making decisions in routing. Each deci-
sion is carefully made to reduce the total path length.
The goal of this section is to prove the following theo-
rem.

Theorem 2 The routing ratio of the TDθ1,θ2-Delaunay
graph is at most C(θ1, θ2). Furthermore, this bound is
tight in the worst case.

We will start with the following proposition:

Proposition 3 Let k be a positive integer. Every
k-local routing algorithm for TDθ1,θ2-Delaunay graphs
must have a routing ratio at least C(θ1, θ2) − ε for any
ε > 0.

Proof. We will construct two vertex sets S1 and S2 and
refer to their corresponding TDθ1,θ2-Delaunay graphs
as G1 and G2. Importantly, the k-neighbourhoods of
G1 and G2 around the start vertices s are identical,
however the rest of the graphs will be vastly different.
In this way any algorithm that performs well for one
graph will not for the other. These are analogous to
the constructions of Figure 12 in [5]. Assume j = 3

τ3

τ2

s

τ1

p1
p2
p3
p4

τ3

τ2

s

τ1

q1

p1

q2q3

p2
p3

q1q2q3

Figure 3: The TDθ1,θ2-Delaunay graphs G1 and G2 con-
structed for the lower bound of k-local routing from s
to τ3. In this example, k = 3.

maximizes the expression of C(θ1, θ2). Let s be on
τ1τ2. Place p1 inside Cs,1 ∩Cτ2,2 arbitrarily close to τ2,
then place q1 in Cs,2 ∩ Cp1,2 ∩ Cτ1,1 arbitrarily close
to τ1. Next, place p2 on segment τ3p1 in cone Cq1,1,
arbitrarily close to p1. Next, for i = 2, ..., k, place qi
such that triangle τ3, pi, qi is similar to τ3, p1, q1, and
place pi+1 such that triangle τ3, pi+1, qi is similar to
τ3, p2, q1. Finally, let S1 = {s, p1, ..., pk, q1, ..., qk, τ3}
and S2 = {s, p1, ..., pk, pk+1, q1, ..., qk, τ3}. This
construction ensures that G1 contains the
edges sp1, sq1, p1q1, pi−1pi, qi−1qi, qi−1pi, piqi, qkτ3
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where i ∈ {2, ..., k}. On the other hand, G2

contains the edges sp1, sq1, p1q1, pi−1pi, qi−1qi,
qi−1pi, piqi, pkpk+1, qkpk+1, pk+1τ3 where i ∈ {2, ..., k}.
Importantly, G1 does not contain the edge τ3pk because
qk is the closest neighbour to τ3 in the cone Cτ3,3.
Similarly, G2 does not contain the edge τ3qk because
pk+1 is the closest neighbour to τ3 in the cone Cτ3,3.
Similarly, the edges pkτ3 and qkτ3 do not exist in G1

and G2, respectively, since τ3 is in a negative cone of
pk and qk.

Since the k-neighbourhood of s in G1 and G2 is
{s, p1, ..., pk, q1, ..., qk}, then any algorithm routing from
s to τ3 will choose the same first vertex (p1 or q1) in G1

and G2. Moreover, τ3 only has one neighbour in each
graph, so any path from s to τ3 must pass through qk
in G1 and through pk+1 in G2. Then any algorithm
that visits p1 first will output a path from s to τ3 in G1

of length at least |sp1| + |p1qk| + |qkτ3|. On the other
hand, any algorithm that chooses to visit q1 first will
output a path from s to τ3 in G2 having length at least
|sq1| + |q1pk+1| + |pk+1τ3|. Since p1 is arbitrarily close
to τ2, p2 is arbitrarily close to p1, and q1 is arbitrarily
close to τ1, then each pi is arbitrarily close to τ2 and
each qi is arbitrarily close to τ1. Then, for any ε > 0,
the routing ratio of any algorithm is at least

min(|sτ2|+ |τ2τ1|+ |τ1τ3|, |sτ1|+ |τ1τ2|+ |τ2τ3|)
|sτ3|

− ε

=
|sτ1|
|sτ3|

+
|sτ2|
|sτ3|

+ min
( |sτ2|
|sτ3|

+
|τ1τ3|
|sτ3|

,
|sτ1|
|sτ3|

+
|τ2τ3|
|sτ3|

)
− ε.

Finally, we obtain C(θ1, θ2) − ε by the law of sines in
triangles sτ2τ3 and τ1sτ3, where angle α := ∠τ2τ3s,

|sτ2|
sin(α)

=
|sτ3|

sin(θ2)
=

|τ2τ3|
sin(π − α− θ2)

,

|sτ1|
sin(θ3 − α)

=
|τ1τ3|

sin(α+ θ2)
=
|sτ3|

sin(θ1)
.

�

4.1 Local Routing Algorithm

In this section, we present Algorithm 1 which is
a 1-local, 0-memory routing algorithm for TDθ1,θ2-
Delaunay graphs. It is generalized from the routing al-
gorithm by Bose et al. [5]. Let s be the start vertex, t be
the target vertex, and p be the current vertex. At each
step of Algorithm 1, the next vertex is chosen based on
the four cases (i), (ii), (iii), or (iv). To ease notation for
cases (ii), (iii), and (iv), we will define the left, middle,
and right regions of p: XL, XM , and XR respectively,
pictured in Figure 4. When t lies in a negative cone
Cp,i, then let XL := Cp,i−1 ∩ T p,t, XR := Cp,i+1 ∩ T p,t,
and XM := Cp,i ∩ T p,t.

In short, the algorithm prefers to route in the region
towards t, however when this is not possible, it stays

p

τ p,t2

τ p,t1

t = τ p,t3

XM

XR

XL

Figure 4: T p,t is the smallest scaled translate of 4 with
p and t on its boundary.

Algorithm 1: Local Routing algorithm in
TDθ1,θ2-Delaunay graph G

Data: Two points s, t ∈ S
Result: Path in G from s to t
p← s;
while p 6= t do

Choose the next vertex v based on the
following cases, then set p← v

(i) Case: t lies in a positive cone Cp,i.

Follow the unique edge pv in Cp,i.

(ii) Case: t lies in a negative cone Cp,i, and both
regions XL and XR are empty

Let j ∈ {1,−1} minimize |pτp,ti+j |+ |τp,ti+jt|. Choose
the neighbour in XM closest to Cp,i+j in cyclic
order about p.

(iii) Case: t lies in a negative cone Cp,i, and only one
region of {XL, XR} is empty.

If p has neighbours in XM , choose the neighbour v
closest to the empty region in cyclic order about
p. Otherwise, choose the unique neighbour in the
non-empty region.

(iv) Case: t lies in a negative cone Cp,i, and neither
XL nor XR is empty.

If p has neighbours in XM , choose an arbitrary
one. Otherwise, let j ∈ {1,−1} minimize
|pτp,ti+j |+ |τp,ti−jt|, and choose v in Cp,i+j .

end
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close to a neighbouring empty region or the side that
minimizes a possible detour. Now we will prove the
following upper bound:

Proposition 4 Let s, t be two vertices in a TDθ1,θ2-
Delaunay graph G. When t is in a negative cone of s,
then the path Ps,t output by Algorithm 1 from s to t

in G has ratio
|Ps,t|
|st| at most C(θ1, θ2). When t is in a

positive cone of s, then
|Ps,t|
|st| is at most 1

sin(θ1/2)
.

Notice that when the angles θ1, θ2, θ3 are all equal to π
3 ,

then C(θ1, θ2) in Proposition 3 for routing in a negative
cone reaches a maximum of 5/

√
3 when α = π

6 , match-
ing the bound from [5]. Furthermore, the expression for
routing in a positive cone matches the spanning ratio.

Proof. We will bound the path chosen by Algorithm
1 by defining a potential for each vertex along a path
and showing that at each step, the potential drops by
at least the length of the chosen edge. We define the
potential as follows, depicted in Figure 5.

• Case (i): Φ(p, t) := max
j=±1

(|pτp,ti+j |+ |τp,ti+jt|).

• Case (ii): Φ(p, t) := min
j=±1

(|pτp,ti+j |+ |τp,ti+jt|).

• Case (iii): Φ(p, t) := |pτp,ti+j | + |τp,ti+jt| where the

empty region (XL or XR) is Cp,i+j ∩ T p,t.

• Case (iv): Φ(p, t) := min
j=±1

(|pτp,ti+j | + |τp,ti+jτp,ti−j | +

|τp,ti−jt|).

t
Case (i)

t

Case (iii)
p

t

Case (iv)p

t

Case (ii)
p

p

Figure 5: The potential is given by the green path. In
this example, i takes values 1, 3, 3, 3 for cases (i), (ii),
(iii), (iv) respectively. The grey regions are empty.

Now, we will show that in each case of Algorithm
1, the length of each chosen edge is less than the drop
in potential. More precisely, we want to show |pv| +
Φ(v, t) ≤ Φ(p, t) for cases (i),(ii),(iii), and (iv).

Suppose the current vertex is p and the case is (i), as
can be seen in Figure 6. Then after an edge pv is chosen,
the current vertex will proceed to v and the case will be
either (i), (ii), or (iii). Case (iv) is not possible when t
lies in a negative cone of v because at least one of the

regions of v is empty. Then the next potential, Φ(v, t),
passes through some vertex τv,ti+k for k = ±1. We have

|pv|+ Φ(v, t) ≤ (|pτp,vi+k|+ |τ
p,v
i+kv|) + (|vτv,ti+k|+ |τ

v,t
i+kt|)

= (|pτp,vi+k|+ |vτ
v,t
i+k|) + (|τp,vi+kv|+ |τ

v,t
i+kt|)

= |pτp,ti+k|+ |τ
p,t
i+kt|

≤ max
j=±1

(|pτp,ti+j |+ |τp,ti+jt|) = Φ(p, t)

t

p

v

t

p

v

t
v

t

v

Case (i)

Case (ii) or (iii)
?

Case (i) with t ∈ Cv,1

Case (i) with t ∈ Cv,3

Figure 6: Bounding the potential in case (i) since t lies
in Cp,1. The dark grey regions are empty.

Next, suppose the current vertex is p and the case is
(ii), depicted in Figure 7. Let j minimize the expression
from Φ(p, t). Notice that since we choose the edge clos-
est in cyclic order about p to the region Cp,i+j ∩ T p,t,
then we can deduce that v has no neighbours in its re-
gion Cv,i+j ∩ T v,t. Therefore once the current vertex
proceeds to v, then the possible cases are only (ii) or
(iii). Then we have

|pv|+ Φ(v, t) ≤ (|pτp,vi+j |+ |τp,vi+jv|) + (|vτv,ti+j |+ |τv,ti+jt|)
= (|pτp,vi+j |+ |vτv,ti+j |) + (|τp,vi+jv|+ |τv,ti+jt|)
= |pτp,ti+j |+ |τp,ti+jt| = Φ(p, t)

t

p
v

t

v

Case (ii) or (iii)
?

Case (ii)

Figure 7: Case (ii) when t lies in Cp,3 and j = −1. The
dark grey and blue regions are empty.

Now suppose p is the current vertex, the case is (iii),
and Cp,i+j ∩ T p,t is the empty region, shown in Figure
8. If XM is not empty, then the choice of closest neigh-
bour v to Cp,i+j ∩ T p,t guarantees that the correspond-
ing region Cv,i+j ∩ T v,t of v is also empty. Likewise,
if XM is empty, then choosing the unique neighbour in
Cp,i−j ∩ T p,t again guarantees that v has an empty re-
gion Cv,i+j ∩ T v,t. Either way, once the current vertex
continues to v, then the case must be either (ii) or (iii).
Then the exact same sequence of inequalities as from
case (ii) completes the argument.
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t

p
v

t

v

Case (ii) or (iii)

?

t

pv

t

v? Case (ii) or (iii)

Case (iii) with v ∈ XM

Case (iii) with v /∈ XM

Figure 8: Case (iii) when t lies in Cp,3 and j = −1. The
dark grey and blue regions are empty.

Finally, we move on to case (iv), where p is the cur-
rent vertex. After choosing the next vertex v, the next
possible cases are (ii), (iii), or (iv). Let j = ±1 min-
imize the expression of Φ(p, t). In any case, we have
Φ(v, t) ≤ (|vτv,ti+j | + |τv,ti+jτv,ti−j | + |τv,ti−jt|) by the triangle
inequality. When v ∈ XM , then we use the following
inequalities to prove the claim, also shown in Figure 9.

1. |pv| ≤ |pτv,pi−j |+ |τv,pi−jv| by triangle inequality

2. |τv,ti−jt|+ |τv,pi−jv| = |τp,ti−jt| by projection

3. |pτv,pi−j | ≤ |τv,pi+jτv,pi−j | since p lies on τv,pi+jτ
v,p
i−j

4. |τv,ti+jτv,ti−j | + |τv,pi+jτv,pi−j | = |τp,ti+jτp,ti−j | by translation
and projection

5. |vτv,ti+j | ≤ |pτ t,pi+j | by projection

When v is not in XM , then let u be the intersection
of pτp,vi and τ t,vi−jτ

t,v
i+j . The following inequalities suffice

to prove the claim.

1. |pv| ≤ |pu|+ |uv| by triangle inequality

2. |uv|+ |vτv,ti+j | ≤ |pτp,ti+j | by projection

3. |τv,ti−jt|+ |pu| = |τp,ti−jt| by projection

4. |τv,ti+jτv,ti−j | ≤ |τp,ti+jτp,ti−j | by projection

t

p p

v
v

Case (iv) with v ∈ XM Case (iv) with v /∈ XMτ v,p2

u
t

Figure 9: Bounding the potential in case (iv) when t
lies in Cp,3, with i = 3, j = 1. The dotted paths repre-
senting |pv|+Φ(v, t) are shorter than the corresponding
solid paths of Φ(p, t). The grey region contains v, and
the blue triangle is T v,p.

Since Φ(t, t) = 0, then the path from s to t output
by Algorithm 1 can have length at most Φ(s, t). When
t is in a positive cone of s, then the potential is defined
using case (i). The corresponding path pτp,ti+j + τp,ti+jt is

π−θi+j monotone, then the routing ratio in such a case
can be at most 1

sin(θ1/2)
by Observation 1.

On the other hand, when t is in a negative cone of
s, there are three possible cases: (ii), (iii) or (iv). The
triangle inequality tells us that Φ(s, t) is largest in case
(iv). Then, similar to the proof of Proposition 3, the
routing ratio is bounded by C(θ1, θ2) using the law of
sines. �

Finally, Theorem 2 is a consequence of Propositions 3
and 4 since Algorithm 1 is 1-local.

4.2 Comparison to known routing algorithms

In this subsection, we show that currently known lo-
cal routing algorithms when applied on the TDθ1,θ2-
Delaunay graph are suboptimal. Firstly, note that by
using a stretch factor upper bound from Section 3, we
can apply the technique of Bose and Morin [6] to ob-
tain a local routing algorithm that finds a path between
any two vertices with length at most 9 times the stretch
factor, which is not optimal. Another approach is to
route in TDθ1,θ2-Delaunay graphs by combining the al-
gorithm of Bose et al. [5] with an affine transformation.
When 4 is the equilateral triangle, then Algorithm 1
simplifies to the standard TD-Delaunay routing algo-
rithm from [5]. In this case, notice that the thresholds in
cases (ii) and (iv) simplify so that j refers to the corner
τp,ti+j nearest p. In other words, the decision threshold is

the midpoint of the segment τp,ti+1τ
p,t
i−1. We will analyze

this standard TD-Delaunay routing algorithm when it is
used on the affine transformation of a general TDθ1,θ2-
Delaunay graph. Since affine transformations preserve
midpoints, then the decision threshold in case (iv) is
also the midpoint of the segment τp,ti+1τ

p,t
i−1. It is in this

way that applying an affine transformation to the exist-
ing algorithm differs from our Algorithm 1. To see the
difference in routing ratio of these two approaches, con-
sider the construction of G1 from Proposition 3. If we
enforce |sτ2| < |sτ1|, then the path output by the affine
transformation of the standard TD-Delaunay routing al-
gorithm would choose to visit p1 first. The routing ratio
of this algorithm would therefore be at least

sin(θ3 − α)

sin(θ1)
+

sin(α)

sin(θ2)
+

sin(α)

sin(θ2)
+

sin(α+ θ2)

sin(θ1)
− ε

where α := ∠τ2τ3s. For example, when θ1 = π
6 , θ2 = π

5 ,
and α = π

3 then the routing ratio of the standard TD-
Delaunay algorithm under an affine transformation is
strictly more than 6.55, whereas the optimal routing
ratio is less than 6.52 by Proposition 4.
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Exact solutions to the Weighted Region Problem∗

Sarita de Berg† Guillermo Esteban‡ Rodrigo I. Silveira§ Frank Staals¶

Abstract

In this paper, we consider the Weighted Region Problem.
In the Weighted Region Problem, the length of a path
is defined as the sum of the weights of the subpaths
within each region, where the weight of a subpath is its
Euclidean length multiplied by a weight α ≥ 0 depending
on the region. We study a restricted version of the
problem of determining shortest paths through a single
weighted rectangular region. We prove that even this
very restricted version of the problem is unsolvable within
the Algebraic Computation Model over the Rational
Numbers (ACMQ). On the positive side, we provide the
equations for the shortest paths that are computable
within the ACMQ. Additionally, we provide equations
for the bisectors between regions of the Shortest Path
Map for a source point on the boundary of (or inside)
the rectangular region.

1 Introduction

The Weighted Region Problem (WRP) [15] is a well-
known geometric problem that, despite having been
studied extensively, is still far from being well under-
stood. Consider a subdivision of the plane into (usually
polygonal) regions. Each region Ri has a weight αi ≥ 0,
representing the cost per unit distance of traveling in that
region. Thus, a straight-line segment σ, of Euclidean
length |σ|, between two points in the same region has
weighted length αi·|σ| when traversing the interior of Ri,
or min{αi, αj}·|σ| if it goes along the edge between Ri
and Rj . Then, the weighted length of a path through
a subdivision is the sum of the weighted lengths of its
subpaths through each face or edge. The resulting met-
ric is called the Weighted Region Metric. The WRP
entails computing a shortest path π(s, t) between two
given points s and t under this metric. We denote the

∗Work by G. E. and R. I. S. has been supported
by project PID2019-104129GB-I00 funded by MI-
CIU/AEI/10.13039/501100011033. G. E. was also funded
by an FPU of the Universidad de Alcalá.

†Department of Information and Computing Sciences, Utrecht
University, s.deberg@uu.nl

‡Departamento de F́ısica y Matemáticas, Universidad de
Alcalá and School of Computer Science, Carleton University,
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§Departament de Matemàtiques, Universitat Politècnica de
Catalunya, rodrigo.silveira@upc.edu

¶Department of Information and Computing Sciences, Utrecht
University, f.staals@uu.nl

weighted length of π(s, t) by d(s, t). Figure 1 shows how
the shape of a shortest path changes as the weight of
one region varies.

Existing algorithms for the WRP—in its general
formulation—are approximate. Since the seminal work
by Mitchell and Papadimitriou [15], with the first (1+ε)-
approximation, several algorithms have been proposed,
with improvements on running times, but always keeping
some dependency on the vertex coordinates sizes and
weight ranges. These methods are usually based on the
continuous Dijkstra’s algorithm, subdividing triangle
edges in parts for which crossing shortest paths have the
same combinatorial structure (e.g., [15]), or on adding
Steiner points (e.g., see [1, 2, 3, 5, 18]). However, rather
recently it has been proved that computing an exact
shortest path between two points using the Weighted Re-
gion Metric, even if there are only three different weights,
is an unsolvable problem in the Algebraic Computation
Model over the Rational Numbers (ACMQ) [6]. In the
ACMQ one can compute exactly any number that can
be obtained from rational numbers by applying a finite
number of operations from +,−,×,÷, and k

√
, for any

integer k ≥ 2. This provides a theoretical explanation for
the lack of exact algorithms for the WRP, and justifies
the study of approximation methods.

This also raises the question of which are the special
cases for which the WRP can be solved exactly. Two
natural ways to restrict the problem are by limiting
the possible weights and by restricting the shape of the
regions. For example, computing a shortest path among
polygonal or curved obstacles can be seen as a variant
of the WRP with weights in the set {1,∞}. Efficient
algorithms exists for this problem, culminating with the
recent algorithms by Wang [19] for polygonal obstacles,
and by Hershberger et al. [11] for shortest paths among
curved obstacles. The case for polygonal regions with
weights in {0, 1,∞} can be solved in O(n2) time [9] by
constructing a graph known as the critical graph, an
extension of the visibility graph. Other variants that can
be solved exactly correspond to regions shaped as regular
k-gons with weight ≥ 2 (since they can be considered as
obstacles), or regions with two weights {1, α} consisting
of parallel strips [16]. In the latter case, the angle of
incidence in each of the strips is the same, so they can be
rearranged so that they are all together, and the angle
of incidence can be computed exactly using Snell’s law
of refraction.
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α=0.2 α=1 α=1.2 α=1.8

Figure 1: Examples of shortest paths between two points—shown in orange—for two weighted regions. The unbounded
region has weight 1, the squares have varying weight α.

Our results. In light of the fact that the WRP is un-
solvable in the ACMQ already for three different weights,
in this work we study the case of two arbitrary weights,
that is, weights in {1, α}, where α ∈ Q+. In particu-
lar, and without loss of generality, we assume that the
weight of the unbounded region is 1. Otherwise, we
could always rescale the weights to be 1 outside the
regions. This case is particularly interesting, since an
algorithm for weights {1, α} can be transformed into
one for weights in {0, 1, α,∞} [13]. However, the variant
with weights {1, α} was conjectured to be as hard as the
general WRP problem, see the first open problem in [9,
Section 7]. (The results in [6] do not directly apply to
weights {0, 1, α,∞}.)

This paper is organized as follows. First we present
some preliminaries in Section 2. In Section 3 we consider
two weights and one rectangular region R, with the
source point s on its boundary or inside. For this setting,
we figure out all types of possible optimal paths and give
exact formulas to compute their lengths. In Section 3.3
we focus on the case where s is outside of R, and prove
that in this case the WRP with weights {1, α} is already
unsolvable in the ACMQ, confirming the suspicions of
Mitchell [13]. In Section 4 we explore the computation
of the Shortest Path Map for s. We finish with some
conclusions in Section 5.

2 Shortest paths and their properties

In this section we briefly review some key properties of
shortest paths in weighted regions.

First, with our assumption that the weight within each
region does not account for the effect of certain force
fields that favors some directions of travel, shortest paths
in the Weighted Region Problem will always be piecewise
linear, see [15, Lemma 3.1]. Second, it is known that
shortest paths must obey Snell’s law of refraction. So we
can think of a shortest path as a ray of light. Throughout
this paper, the angle of incidence θ is defined as the
minimum angle between the incoming ray and the vector
perpendicular to the region boundary. The angle of
refraction θ′ is defined as the minimum angle between
the outgoing ray and the vector perpendicular to the

region boundary. Snell’s law states that whenever the
ray goes from one region Ri to another region Rj , then
αi sin θ = αj sin θ

′. In addition, whenever αi > αj , the
angle θc at which

αi

αj
sin θc = 1 is called the critical angle.

A ray that hits an edge at an angle of incidence greater
than θc, will be totally reflected from the point at which
it hits the boundary. In our problem, a shortest path
will never be incident to an edge at an angle greater
than θc.

Finally, if the space only contains orthoconvex regions1

with weight at least
√
2, they can be simply considered

as obstacles [16]. Thus, since we focus on a rectangular
region R, we assume that its weight is 0 < α <

√
2.

However, first we provide some general properties of
shortest paths for arbitrary weighted regions that are
interesting on their own.

Lemma 1 Let S be a polygonal subdivision for which
each region has a weight in the set {1, α}, with α ≥ 0. A
shortest path π(s, t) visits any edge of the subdivision at
most once.

Proof. Assume, for the sake of contradiction, that
π(s, t) intersects an edge e in at least two disjoint in-
tervals I1 and I3 (note that I1 and I3 could be points).
Moreover, let p1 ∈ I1 and p3 ∈ I3 be points for which
the subpath π(p1, p3) ⊆ π(s, t) does not intersect e in
any points other than p1 and p3. Let p2 be a point on
π(p1, p3) between p1 and p3, which thus does not lie
on e. Now observe that there exists a path p1p3 from
p1 to p3 of length min{1, α}|p1p3|. Since p2 does not lie
on p1p3, it follows by the triangle inequality that the
length of π(p1, p3) is strictly larger than min{1, α}|p1p3|.
Hence, π(s, t) is not a shortest path, and we obtain a
contradiction. □

Observe that the previous result is not true when there
are more than two weights, see [15, Figure 2].

Corollary 2 Let S be a polygonal subdivision with n
vertices for which each region has a weight in the set
{1, α}, with α ≥ 0. Any shortest path π(s, t) is a polyg-
onal chain with at most O(n) vertices.

1A region is orthoconvex if its intersection with every horizontal
and vertical line is connected or empty [17].
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Proof. Any shortest path is a polygonal chain whose
interior vertices all lie on edges of S, see [15, Proposi-
tion 3.8]. By Lemma 1, each edge contributes with at
most two vertices. □

We observe that if the regions use only one of two
weights {1, α}, Corollary 2 implies that the time com-
plexity of the algorithm proposed by Mitchell and Pa-
padimitriou [15] can be improved by a quartic factor to
O(n4L), where L is the precision of the instance.

3 Computing a shortest path

We now consider the problem of computing a shortest
path π(s, t) from s to t when the region R is an axis-
aligned rectangle of weight α. The exact shape of π(s, t)
depends on the position of s and t with respect to R, and
on the value of α. In Sections 3.1 and 3.2 we consider the
case that s lies on the boundary or inside of R, respec-
tively. We categorize the various types of shortest paths,
and show that we can compute the shortest path of each
type, and thus we can compute π(s, t). In Section 3.3,
we consider the case that s and t lie outside R. In this
case π(s, t) may have only two vertices on the boundary
of R, and these vertices may not have the critical angle
property. We show that the coordinates of these vertices
cannot be computed exactly within the ACMQ.

3.1 The source point s lies on the boundary of R

Throughout this section we consider the case where s
is restricted to the boundary of R, a rectangle of unit
height with top-left corner at (0, 0). Let s = (sx, 0),
sx > 0, be a point on the top side of R, see Figure 2.
In addition, we assume that t is to the left of the line
through s perpendicular to the top side of R. The other
cases are symmetric.

Shortest path types. Lemma 1 implies that in this
setting, there are only O(1) combinatorial types of paths
that we have to consider. More precisely, we have that:

Observation 1 Let s be a point on the top boundary
of a rectangle R with weight 0 < α <

√
2. There are 12

types of shortest paths πi(s, t), shown in Figure 2, up to
symmetries.

Note that only some of the types can exist for both
α < 1 and 1 ≤ α <

√
2. These types are included twice

in Figure 2, once for each regime of α.

Length of πi(s, t). When s is on the boundary of R,
there is at most one vertex of πi(s, t) without the critical
angle property. This allows us to compute the exact
coordinates of the vertices of πi(s, t) in the ACMQ. We
now provide the equations for the length di(s, t) of the

12 types of shortest paths πi(s, t). Theorems 3 and 4
summarize the results. The proofs of the equations,
which are based on Snell’s law of refraction, are deferred
to Appendix A.

Theorem 3 Let s = (sx, 0) be a point on the boundary
of R with weight 0 < α <

√
2, and let β = α2 − 1.

The shortest path π(s, t) = πi(s, t) from s to a point
t = (tx, ty) outside R, and its length can be computed
in O(1) time in the ACMQ. In particular, the length
d(s, t) = di(s, t) is given by

• d1(s, t) =
√

(sx − tx)2 + t2y,

• d2(s, t) = α(sx − tx) +
√
1− α2ty,

• d3(s, t) = αsx +
√
t2x + t2y,

• d4(s, t) = sx +
√
t2x + t2y,

• d5(s, t) = sx −
√
1− βtx −

√
βty,

• d6(s, t) = α
√
s2x + y2 +

√
t2x + (ty − y)2, where y is

the unique real solution in the interval (ty, 0) to the
equation

βy4−2tyβy3+
[
α2t2x+βt

2
y−s2x

]
y2+2s2xtyy−s2xt2y = 0,

• d7(s, t) =
√
βsx + 1 +

√
t2x + (ty + 1)2,

• d8(s, t) =
√
β(sx + tx)−

√
1− β(1 + ty) + 1,

• d9(s, t) = α
√
(sx − x)2 + 1 +√

(tx − x)2 + (ty + 1)2, where x is the unique
real solution in the interval (tx, sx) to the equation

βx4 − 2β(tx + sx)x
3 +

[
β(s2x + t2x + 4sxtx)

+ α2(1 + ty)
2 − 1

]
x2 − 2

[
β(txs

2
x + t2xsx)

+ α2(1 + ty)
2sx − tx

]
x+ βt2xs

2
x

+ α2(1 + ty)
2s2x − t2x = 0. (1)

Theorem 4 Let s = (sx, 0) be a point on the boundary
of R with weight 0 < α <

√
2. The shortest path π(s, t) =

πi(s, t) from s to a point t = (tx, ty) inside R, and its
length can be computed in O(1) time in the ACMQ. In
particular, the length d(s, t) = di(s, t) is given by

• d10(s, t) = sx − tx −
√
α2 − 1ty,

• d11(s, t) = α
√
(sx − tx)2 + t2y,

• d12(s, t) =
√
α2 − 1(sx + tx)− ty.

3.2 The source point s lies inside R

We now consider the case where s is restricted to the
interior of the rectangle R.
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Figure 2: Path types for s on the boundary of R of weight α < 1 (blue) and 1 ≤ α <
√
2 (orange).

Observation 2 Let s be a point in a rectangle R with
weight 0 < α <

√
2. There are 6 types of shortest paths

πi(s, t), for i ∈ {6, 7, 8, 9, 11, 12}, up to symmetries.

The types of shortest paths are similar to the ones
defined in Observation 1, see the paths in Figure 2 where
the top side of R or the region above R is not intersected.
As in Theorems 3 and 4, we can thus compute (the length
of) a shortest path (of each type) exactly, albeit that the
expressions for the length are dependent on the location
of s in R. Note that Theorems 3 and 4 give exact lengths
for all path types when R has height > 1 and s is at
distance exactly 1 from the bottom boundary of R.

3.3 The source point s lies outside of R

When both the source and the target point are outside
of R, the shortest path can again be of many different
types. In particular, the types in Figure 2 can be gener-
alized to this setting. There are two special cases where
the shortest path bends twice, and these two vertices do
not have the critical angle property: it can bend on two
opposite sides of the rectangle, or on two incident sides.
In the first case, the angles at both vertices are equal,
and the shortest path can be computed exactly [16].
For the second case, we show that it is not possible to
compute the coordinates of the vertices exactly in the
ACMQ. Hence, the WRP limited to two weights {1, α}
is not solvable within the ACMQ. Note that this path

type can occur in an even simpler setting, where R is a
single quadrant instead of a rectangle.

Theorem 5 The Weighted Region Problem with weights
in the set {1, α}, with 0 < α <

√
2, and α ̸= 1, cannot

be solved exactly within the ACMQ, even if R is a single
quadrant.

Proof. Consider the situation where a horizontal and a
vertical line intersect at the point O = (50, 150). Let R
be the quadrant such that O is its top-left corner, and
has weight α = 1.2. Recall that the weight outside R is 1.
Let s = (0, 0) be the source point and t = (200, 200) be
the target point, see Figure 3. We follow the approach
of De Carufel et al. [6] to show that the polynomial that
represents a solution to the Weighted Region Problem
in this situation is not solvable within the ACMQ. The
following lemma, which is a consequence of Theorem 1
and Lemma 2 of De Carufel et al. [6], see also [4, 7], states
when a polynomial is unsolvable within the ACMQ.

Lemma 6 Let p(x) be a polynomial of odd degree d ≥ 5.
Suppose there are three primes q1, q2, q3 that do not divide
the discriminant of p(x), such that

p(x) ≡ pd(x) mod q1,

p(x) ≡ p1(x)pd−1(x) mod q2, and

p(x) ≡ p2(x)pd−2(x) mod q3,
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s = (0, 0)

t = (200, 200)

(x, y)

θ1

θ1

θ′1

θ2

θ′2
θ̄′2

α = 1.2

(50, 150)

Figure 3: The set-up for the proof that even for two
weights the Weighted Region Problem cannot be solved
within the ACMQ.

where pi(x) denotes an irreducible polynomial of degree i
modulo the given prime. Then p(x) = 0 is unsolvable
within the ACMQ.

Let (x, y) be the coordinates of the intersection point
of the path π(s, t) with the vertical side of the quad-
rant. We denote by θ1 the angle made by the ray from
s to (x, y) with the perpendicular to the vertical side
of the quadrant, by θ′1 the angle of the refracted ray
with respect to the same line, and by θ̄′2 the angle of
the refracted ray with respect to the top side of the
quadrant, see Figure 3. First we use Snell’s law to show
the following relations between the angles:

sin θ′1 =
sin θ1
α

, (2)

cos θ̄′2 =

√
α2 − sin2 θ1. (3)

To obtain the relation in Equation (3) we use Equa-
tion (2), and the fact that cos θ̄′2 = α cos θ′1, and

cos θ′1 =
√
1− sin2 θ′1. We then express the sum of the

horizontal distances in terms of tangents of the angles,
as follows:

200 = 50 +
150− y
tan θ′1

+
50

tan θ̄′2

=⇒ 0 =
150− y
tan θ′1

+
50

tan θ̄′2
− 150.

Using that y = 50 tan θ1, we obtain an equation only
containing θ1, θ

′
1 and θ̄′2.

0 =
150− 50 tan θ1

tan θ′1
+

50

tan θ̄′2
− 150.

We then apply the trigonometric identities tan θ =

sin θ√
1−sin2 θ

, for θ1 and θ′1, and tan θ =
√
1−cos2 θ
cos θ , for θ̄′2.

0 =
150− 50 sin θ1√

1−sin2 θ1

sin θ′1√
1−sin2 θ′1

+
50√

1−cos2 θ̄′2
cos θ̄′2

− 150.

Finally, we replace all instances of sin θ′1 and cos θ̄′2 by
expressions in sin θ1 using Equations (2) and (3).

0 =
150− 50 sin θ1√

1−sin2 θ1

sin θ1

α

√
1− sin2 θ1

α2

+
50√

1−(α2−sin2 θ1)√
α2−sin2 θ1

− 150

=

(
150− 50

sin θ1√
1− sin2 θ1

)
·
√
α2 − sin2 θ1
sin θ1

+
50
√
α2 − sin2 θ1√

1− (α2 − sin2 θ1)
− 150

= 50

√
α2 − sin2 θ1

(
3

sin θ1
− 1√

1− sin2 θ1

+
1√

1− α2 + sin2 θ1

)
− 150.

The final equation in terms of u = sin θ1 then becomes

√
α2 − u2

(
3

u
− 1√

1− u2
+

1√
1− α2 + u2

)
= 3.

For α = 1.2, this can be transformed into the following
polynomial by squaring appropriately using Mathemat-
ica [20]:

p(u) =− 5602195930320001 + 93511401766200000u

− 713160370741499900u2 + 3259398736514250000u3

− 9869397269940000000u4 + 20717559301050000000u5

− 30701172521250000000u6 + 32082903984375000000u7

− 23159988281250000000u8 + 10999072265625000000u9

− 3093750000000000000u10 + 390625000000000000u11.

To show that polynomial p(u) is unsolvable, we thus
need three primes q1, q2, q3 that adhere to the conditions
in Lemma 6. Using Mathematica we find the following
expressions for p(u) modulo 59, 37, and 17, respectively:

46
(
u11 + 44u10 + 32u9 + 33u8 + 26u7 + 47u6 + 21u5

+ 11u4 + 38u3 + 3u2 + 6u+ 42
)
,

16(u+ 17)
(
u10 + 18u9 + 23u8 + 23u7 + 35u6 + 8u5

+ 34u4 + 16u3 + 11u2 + 34u+ 10
)
,
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4
(
u2 + 14u+ 9

)(
u9 + 8u8 + 11u7 + 3u6 + 5u5

+ 2u4 + 2u3 + 12u2 + 9u+ 16
)
.

We conclude that even the very limited weighted re-
gion problem where we allow for a single quadrant to
have weight unequal to 1 and s and t are on halfplanes
bounded by the sides of the quadrant, not containing
the quadrant, is not solvable within the ACMQ. □

4 Computing a Shortest Path Map

To find a shortest path from a source point s to all points
at once, one can build a Shortest Path Map (SPM ),
see e.g., [10, 14, 15]. A SPM is a subdivision of the
space for a given source s, where for each cell the paths
π(s, t), with t in the cell, have the same type. With
it, we are able to find for each specific destination t,
the weight of the shortest path from s to t simply by
locating the point t in the subdivision. Once a SPM is
available, we are able to report weights of shortest paths
from s to any destination t by standard point location
techniques [8, 12]. To compute the SPM , we consider
computing the bisectors bi,j = {q | q ∈ R2 ∧ di(s, q) =
dj(s, q)} for all relevant pairs of shortest path types
πi, πj , i.e., pairs for which bi,j appears in the Shortest
Path Map. A SPM requires only polynomial space.
However, in general, the bisector curves that bound
cells of the SPM subdivision will be curves of very high
degree [6, 11].
As before, we consider the setting where R is a rect-

angular region. In Section 4.1, we first consider the case
when s lies on the boundary of R. In Section 4.2, we do
the same for the case s lies inside R. The case that s lies
outside R is not interesting, as we cannot even compute
exactly a single shortest path in that case.

4.1 The source point s lies on the boundary of R

The SPM is given by the boundary of R and several
bisector curves, expressed as points (x, bi,j(x)). If α < 1,
these curves all lie outside R (the interior of R is a single
region in the SPM ).

Furthermore, bisectors involving π9(s, t) are of a much
more complicated form, as might be expected from the
implicit representation used for d9(s, t) in Theorem 3.
Therefore, Lemmas 7 and 8 give the bisector curves,
excluding the ones related to π9(s, t). The proofs are
deferred to Appendix B.

Lemma 7 The SPM for a point s = (sx, 0) on the
boundary of the region R with weight α < 1 is defined
by:

bi,j(x) =





√
1−α2

α (sx − x) if i = 1, j = 2

−
√
1−α2

α x if i = 2, j = 3

0 if i = 3, j = 6

Lemma 8 The SPM for a point s = (sx, 0) on the
boundary of the region R with weight 1 < α <

√
2 is

defined by:

bi,j(x) =





0 if i = 1, j = 4√
α2−1√
2−α2

x if i = 4, j = 5
√
α2−1√
2−α2

x−
√
α2 − 1sx if i = 5, j = 6

x = 0 if i = 6, j = 7

−1−
√
2−α2√
α2−1x if i = 7, j = 8

−
√
α2 − 1(sx − x) if i = 10, j = 11

− (sx+x)+2α
√
sxx√

α2−1 if i = 11, j = 12

We conjecture the following on the bisectors involving
π9(s, t).

Conjecture 1 No point on bi,9(x) \ R, i ∈ {4, . . . , 8},
can be computed exactly within ACMQ.

We tried to prove this conjecture by taking a similar
approach as in Theorem 5. However, the solution to
Equation (1) already seems to be of high degree. We
therefore did not manage to formulate a point on the
bisector as a polynomial equation (not containing roots).
Note that in the more restrictive case where R is a

single quadrant and s lies on its boundary, the only
types of shortest paths that exist are πi(s, t), for i ∈
{1, 2, 3, 4, 5, 6, 10, 11, 12}. Thus, we can compute the
SPM in the ACMQ (the bisectors are given by some of
the equations in Lemmas 7 and 8).

4.2 The source point s lies inside R

In this case we have shortest paths of type πi(s, t), for i ∈
{6, 7, 8, 9, 11, 12}. Hence, the equations of the bisectors
of the SPM are given by the sides of R, and bisector b6,9
if α < 1, and bisectors b6,7, b7,8, b6,9, b7,9, b8,9 and b11,12
if 1 < α <

√
2. See Lemmas 7 and 8, and Conjecture 1.

5 Conclusion

We analyzed the WRP when there is only one weighted
rectangle R, and showed how to obtain the exact shortest
path π(s, t) and its length when s lies in or on R. When
both s and t lie outside R the exact solution is unsolvable
in the ACMQ. We obtain similar results in the case
where R is a single quadrant. For future work, it would
be interesting to find an exact formula within the ACMQ
for the bisectors involving π9(s, t). In addition, we may
want to analyze if or how we can generalize these results
to other convex shapes.
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A Computing a shortest path when the source
point s lies on the boundary of R

In this section, we prove the stated lengths of the shortest
paths as defined in Theorems 3 and 4. All angles in this
section are measured relative to the vertical or horizontal
line through the bending point for the bending point on the
top (and bottom) or left side of R, respectively. We denote
by θc the critical angle. The following two equations capture
the properties we use of the critical angle. For α < 1, we
have

sin θc = α ⇒





cos θc =
√

1 − α2

tan θc = sin θc
cos θc

= α√
1−α2

.
(4)

And for α > 1, we have

sin θc =
1

α
⇒





cos θc =
√

1 − 1
α2

tan θc = sin θc
cos θc

=
1
α√

1− 1
α2

= 1√
α2−1

.
(5)

We frequently use these equations in the rest of this section
to determine the lengths of the path di(s, t) for all i.

From now on, we consider the case where the source point s
is restricted to the boundary of R, an axis-aligned rectangle
of unit height with top-left corner at (0, 0).

Observation 3 Let R be a rectangular region with weight
0 < α <

√
2. Let s = (sx, 0) be a point on the boundary of R.

Then the length of the shortest path π1(s, t) from s to a point
t = (tx, ty) outside R is given by d1(s, t) =

√
(sx − tx)2 + t2y.

Lemma 9 Let R be a rectangular region with weight 0 <
α < 1. Let s = (sx, 0) be a point on the boundary of R. Then
the length of the shortest paths π2(s, t) from s to a point t =
(tx, ty) outside R is given by d2(s, t) = α(sx−tx)+

√
1 − α2ty.

Proof. Let θc be the critical angle made by π2(s, t) on the
top boundary of R, and let (b, 0) be the point where the
shortest path leaves R. We use Equation (4) to obtain the
value of b:

α√
1 − α2

=
|b− tx|
|ty|

=
b− tx
ty

⇒ b = tx +
α√

1 − α2
ty. (6)

We know that the weight of the shortest paths π2(s, t) is
given by d2(s, t) = α|sx − b| +

√
(b− tx)2 + t2y. By using

Equation (6), we have that

d2(s, t) = α

(
sx − tx − α√

1 − α2
ty

)

+

√(
tx +

α√
1 − α2

ty − tx

)2

+ t2y

= α

(
sx − tx − α√

1 − α2
ty

)
+

√
α2t2y

1 − α2
+ t2y

= α(sx − tx) − α2ty√
1 − α2

+

√
t2y

1 − α2

= α(sx − tx) − α2ty√
1 − α2

+
|ty|√

1 − α2

= α(sx − tx) +
1 − α2

√
1 − α2

ty

= α(sx − tx) +
√

1 − α2ty. □

s = (sx, 0)

θc

θ1
t = (tx, ty)

(b1, 0)

(0, b2)

Figure 4: Illustration of Lemma 10.

Observation 4 Let R be a rectangular region with weight
0 < α < 1. Let s = (sx, 0) be a point on the boundary of R.
Then the length of the shortest paths π3(s, t) from s to a point
t = (tx, ty) outside R is given by d3(s, t) = αsx +

√
t2x + t2y.

Observation 5 Let R be a rectangular region with weight
1 < α <

√
2. Let s = (sx, 0) be a point on the boundary of R.

Then the length of the shortest path π4(s, t) from s to a point
t = (tx, ty) outside R is given by d4(s, t) = sx +

√
t2x + t2y.

Lemma 10 Let R be a rectangular region with weight 1 <
α <

√
2. Let s = (sx, 0) be a point on the boundary of R.

Then the length of the shortest path π5(s, t) from s to a point
t = (tx, ty) outside R is given by d5(s, t) = sx −

√
2 − α2tx −√

α2 − 1ty.

Proof. The shortest path from s to t intersects the top
side of R, and then it enters R using the critical angle, see
Figure 4. We proceed to compute the coordinates of the
vertices of the shortest path in this case.

Let θ1 be the angle at which the shortest path leaves R
with respect to the normal, see Figure 4. Then

sin θ1 = α sin
(π

2
− θc

)
= α cos θc =

√
α2 − 1,

and thus

tan θ1 =
sin θ1
cos θ1

=

√
α2 − 1√

1 − (α2 − 1)
=

√
α2 − 1√
2 − α2

. (7)

Let (b1, 0) and (0, b2) be, respectively, the points where the
shortest path enters and leaves R. We also know that tan θ1 =
|ty−b2|

|tx| . Since ty < b2 < 0, and tx < 0, we use Equation (7)
to get the value of b2:

√
α2 − 1√
2 − α2

=
|ty − b2|

|tx|
=

b2 − ty
−tx

⇒ b2 = ty −
√
α2 − 1√
2 − α2

tx. (8)

Also, since tan θc = |b1|
|b2| , and b2 < 0 < b1, we use Equa-

tion (5) to get the value of b1:

1√
α2 − 1

=
|b1|
|b2|

=
b1
−b2
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⇒ b1 = − b2√
α2 − 1

= − ty√
α2 − 1

+
tx√

2 − α2
.

Since sin θc = b1√
b21+b22

= 1
α
⇒

√
b21 + b22 = b1α. Thus:

d5(s, t) = sx − b1 + α
√

b21 + b22 +
√

t2x + (ty − b2)2

= sx − b1 + b1α
2 +

√

t2x +

(
ty − ty +

√
α2 − 1√
2 − α2

tx

)2

= sx + (α2 − 1)b1 +

√
t2x +

α2 − 1

2 − α2
t2x

= sx + (α2 − 1)b1 + |tx|
√

1 +
α2 − 1

2 − α2

= sx + (α2 − 1)b1 + |tx|
√

2 − α2 + α2 − 1

2 − α2

= sx + (α2 − 1)

(
tx√

2 − α2
− ty√

α2 − 1

)
− tx

1√
2 − α2

= sx −
√

α2 − 1ty +
α2 − 1 − 1√

2 − α2
tx

= sx −
√

α2 − 1ty − 2 − α2

√
2 − α2

tx

= sx −
√

α2 − 1ty −
√

2 − α2tx. □

Lemma 11 Let R be a rectangular region with weight 0 <
α <

√
2. Let s = (sx, 0) be a point on the boundary of R.

Then the length of the shortest paths π6(s, t) from s to a point
t = (tx, ty) outside R is given by d6(s, t) = α

√
s2x + y2 +√

t2x + (ty − y)2, where y is the unique real solution in the
interval (ty, 0) to the equation

(α2 − 1)y4 − 2ty(α2 − 1)y3 + [α2t2x + (α2 − 1)t2y − s2x]y2

+2s2xtyy − s2xt
2
y = 0,

Proof. Let (0, y) be the point where π6(s, t) leaves R, and
let θ1 and θ2 be, respectively, the angles of incidence and
refraction at (0, y). Then, by Snell’s law of refraction, we get
that α sin θ1 = sin θ2. Thus,

α
|y|√

s2x + y2
=

|ty − y|√
t2x + (ty − y)2

⇒ α2y2(t2x + (ty − y)2) = (ty − y)2(s2x + y2)

⇒ α2y2t2x + α2y2t2y + α2y4 − 2α2y3ty = s2xt
2
y + s2xy

2 − 2s2xtyy

+ y2t2y + y4 − 2y3ty.

Hence,

(α2 − 1)y4 − 2ty(α2 − 1)y3 + [α2t2x + (α2 − 1)t2y − s2x]y2

+2s2xtyy − s2xt
2
y = 0

Finally, we get that the weighted length of the shortest paths
π6(s, t) is given by

d6(s, t) = α
√

s2x + y2 +
√

t2x + (ty − y)2. □

Lemma 12 Let R be a rectangular region with weight 1 <
α <

√
2. Let s = (sx, 0) be a point on the boundary of R.

Then the length of the shortest paths π7(s, t) from s to a point
t = (tx, ty) outside R is given by d7(s, t) =

√
α2 − 1sx + 1 +√

t2x + (ty + 1)2.

s = (sx, 0)

t = (tx, ty)

(0, b1)

(0, b2)

(0,−1)
(b3,−1)

θ1

θc

θc

Figure 5: Illustration of Lemma 13.

Proof. Let (0, b1) be the point where π7(s, t) leaves R, i.e.,
the first vertex of the shortest path. Since b1 < 0, and sx > 0,
we obtain the coordinates of this first bending point by using
Equation (5):

tan θc =
|b1|
|sx|

=
−b1
sx

=
1√

α2 − 1
⇒ b1 = − sx√

α2 − 1
. (9)

The weight of the shortest paths π7(s, t) is then given by

d7(s, t) = α
√

s2x + b21 + (b1 + 1) +
√

t2x + (−1 − ty)2

=
α2sx√
α2 − 1

− sx√
α2 − 1

+ 1 +
√

t2x + (−1 − ty)2

=
√

α2 − 1sx + 1 +
√

t2x + (ty + 1)2. □

Lemma 13 Let R be a rectangular region with weight 1 <
α <

√
2. Let s = (sx, 0) be a point on the boundary of R.

Then the length of the shortest path π8(s, t) from s to a point
t = (tx, ty) outside R is given by d8(s, t) =

√
α2 − 1(sx +

tx) −
√

2 − α2(1 + ty) + 1.

Proof. Let (0, b1) be the point where π8(s, t) leaves R for
the first time and let (0, b2) and (b3,−1) be, respectively,
the points where π8(s, t) enters and leaves R for the second
time, see Figure 5. As π7(s, t) and π8(s, t) overlap up to b2,
Equation (9) gives us that b1 = − sx√

α2−1
.

Recall that R has height 1. Let θ1 be the angle at which
the shortest path leaves R for the last time with respect to

the normal, see Figure 5. Then, tan θ1 =

√
α2−1√
2−α2

, similar to

Equation (7). So,

tan θ1 =
|tx − b3|
|ty + 1| =

tx − b3
−1 − ty

=

√
α2 − 1√
2 − α2

⇒ b3 = tx + (1 + ty)

√
α2 − 1√
2 − α2

.

And, using Equation (5), we get

tan θc =
|−1 − b2|

|b3|
=

b2 + 1

b3
=

1√
α2 − 1
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⇒ b2 =
b3√

α2 − 1
− 1 =

tx√
α2 − 1

+
1 + ty√
2 − α2

− 1.

The weight of the shortest paths π8(s, t) is given by
d8(s, t) = α

√
s2x + b21 + |b2 − b1| + α

√
b23 + (b2 + 1)2 +√

(b3 − tx)2 + (−1 − ty)2. Using the expression for b1, we
have that

√
s2x + b21 =

√
s2x +

(
− sx√

α2 − 1

)2

=

√
α2 − 1 + 1

α2 − 1
s2x =

αsx√
α2 − 1

. (10)

Using our expressions for b2 and b3, and the fact that b2+1 >
0, we obtain the following for the terms A =

√
b23 + (b2 + 1)2

and B =
√

(b3 − tx)2 + (−1 − ty)2:

A =

√(
tx + (1 + ty)

√
α2 − 1√
2 − α2

)2

+

(
tx√

α2 − 1
+

1 + ty√
2 − α2

− 1 + 1

)2

=

√
(α2 − 1)

(
tx√

α2 − 1
+

1 + ty√
2 − α2

)2

+

(
tx√

α2 − 1
+

1 + ty√
2 − α2

)2

=

√
α2

(
tx√

α2 − 1
+

1 + ty√
2 − α2

)2

= α

(
tx√

α2 − 1
+

1 + ty√
2 − α2

)
, (11)

and

B =

√(
tx + (1 + ty)

√
α2 − 1√
2 − α2

− tx

)2

+ (−1 − ty)2

=

√
(1 + ty)2

α2 − 1

2 − α2
+ (1 + ty)2

=

√
(1 + ty)2

α2 − 1 + 2 − α2

2 − α2

=
|1 + ty|√

2 − α2
. (12)

Using Equations (10), (11), and (12), we get that the weighted
length of the shortest paths π8(s, t) is given by

d8(s, t) =
α2sx√
α2 − 1

− sx + tx√
α2 − 1

− 1 + ty√
2 − α2

+ 1

+ α2

(
tx√

α2 − 1
+

1 + ty√
2 − α2

)
+

|1 + ty|√
2 − α2

= α2 sx + tx√
α2 − 1

− sx + tx√
α2 − 1

+ (α2 − 1)
1 + ty√
2 − α2

+ 1 − 1 + ty√
2 − α2

= (α2 − 1)
sx + tx√
α2 − 1

+ (α2 − 2)
1 + ty√
2 − α2

+ 1

=
√

α2 − 1(sx + tx) −
√

2 − α2(1 + ty) + 1. □

Lemma 14 Let R be a rectangular region with weight 0 <
α <

√
2. Let s = (sx, 0) be a point on the boundary of R.

Then the length of the shortest paths π9(s, t) from s to a point
t = (tx, ty) outside R is given by d9(s, t) = α

√
(sx − x)2 + 1+

√
(tx − x)2 + (ty + 1)2 where x is the unique real solution in

the interval (tx, sx) to the equation

(α2 − 1)x4 − 2(α2 − 1)(tx + sx)x3

+ [(α2 − 1)(s2x + t2x + 4sxtx) + α2(1 + ty)2 − 1]x2

− 2[(α2 − 1)(txs
2
x + t2xsx) + α2(1 + ty)2sx − tx]x

+ (α2 − 1)t2xs
2
x + α2(1 + ty)2s2x − t2x = 0.

Proof. Let (x,−1) be the point where π9(s, t) leaves R, and
let θ1 and θ2 be, respectively, the angles of incidence and
refraction at (x,−1). Then, by Snell’s law of refraction, we
get that:

α sin θ1 = sin θ2 ⇒ α
sx − x√

(sx − x)2 + 1
=

x− tx√
(x− tx)2 + (−1 − ty)2

⇒ α2(x− tx)2(sx − x)2 + α2(−1 − ty)2(sx − x)2

= (x− tx)2(sx − x)2 + (x− tx)2

⇒ (α2 − 1)(x− tx)2(sx − x)2 + α2(−1 − ty)2(sx − x)2

− (x− tx)2 = 0

⇒
[
(α2 − 1)x2 + (α2 − 1)t2x − 2(α2 − 1)txx

]

· (s2x + x2 − 2sxx) + α2(−1 − ty)2s2x + α2(−1 − ty)2x2

− 2α2(−1 − ty)2sxx− x2 − t2x + 2txx = 0

⇒ (α2 − 1)x2s2x + (α2 − 1)x4 − 2(α2 − 1)sxx
3

+ (α2 − 1)t2xs
2
x + (α2 − 1)t2xx

2 − 2(α2 − 1)t2xsxx

− 2(α2 − 1)txs
2
xx− 2(α2 − 1)txx

3 + 4(α2 − 1)sxtxx
2

+ α2(−1 − ty)2s2x + α2(−1 − ty)2x2

− 2α2(−1 − ty)2sxx− x2 − t2x + 2txx = 0.

Hence,

(α2 − 1)x4 − 2(α2 − 1)(tx + sx)x3

+ [(α2 − 1)(s2x + t2x + 4sxtx) + α2(1 + ty)2 − 1]x2

− 2[(α2 − 1)(txs
2
x + t2xsx) + α2(1 + ty)2sx − tx]x

+ (α2 − 1)t2xs
2
x + α2(1 + ty)2s2x − t2x = 0.

Finally, we get that the weighted length of the shortest paths
π9(s, t) is given by

d9(s, t) = α
√

(sx − x)2 + 1 +
√

(tx − x)2 + (1 + ty)2. □

Lemma 15 Let R be a rectangular region with weight 1 <
α <

√
2. Let s = (sx, 0) be a point on the boundary of R.

Then the length of the shortest paths π10(s, t) from s to a
point t = (tx, ty) inside R is given by d10(s, t) = sx − tx −√
α2 − 1ty.

Proof. Let (b1, 0) be the point where π10(s, t) enters R. Let
θc be the angle at which π10(s, t) enters R. Since θc is the
critical angle, using Equation (5), we get the value of b1:

tan θc =
|b1 − tx|

|ty|
=

b1 − tx
−ty

=
1√

α2 − 1

⇒ b1 = tx − ty√
α2 − 1

. (13)
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We know that the weight of the shortest paths π10(s, t) is
given by d10(s, t) = |sx − b1| + α

√
(b1 − tx)2 + t2y. By using

Equation (13), we have that

d10(s, t) =

(
sx − tx +

ty√
α2 − 1

)

+ α

√(
tx − ty√

α2 − 1
− tx

)2

+ t2y

=

(
sx − tx +

ty√
α2 − 1

)
+ α

√
t2y

α2 − 1
+ t2y

= sx − tx +
ty√

α2 − 1
+ α

√
α2t2y
α2 − 1

= sx − tx +
ty√

α2 − 1
+

α2|ty|√
α2 − 1

= sx − tx +
ty√

α2 − 1
− α2ty√

α2 − 1

= sx − tx − (α2 − 1)ty√
α2 − 1

= sx − tx −
√

α2 − 1ty. □

Observation 6 Let R be a rectangular region with weight
0 < α <

√
2. Let s = (sx, 0) be a point on the boundary

of R. Then the length of the shortest paths π11(s, t) from
s to a point t = (tx, ty) inside R is given by d11(s, t) =
α
√

(sx − tx)2 + t2y.

Lemma 16 Let R be a rectangular region with weight 1 <
α <

√
2. Let s = (sx, 0) be a point on the boundary of R.

Then the length of the shortest path π12(s, t) from s to a point
t = (tx, ty) inside R is given by d12(s, t) =

√
α2 − 1(sx +

tx) − ty.

Proof. Let (0, b1) and (0, b2) be the points where π12(s, t)
leaves and enters for the second time, respectively, the re-
gion R. From Lemma 13 we know that b1 = − sx√

α2−1
. Using

Equation (5), we find:

tan θc =
|ty − b2|

|tx|
=

b2 − ty
tx

=
1√

α2 − 1

⇒ b2 =
tx√

α2 − 1
+ ty.

We then get that the weight of π12(s, t) is given by
d12(s, t) = α

√
s2x + b21 + |b2 − b1| + α

√
t2x + (b2 − ty)2. So:

d12(s, t) = α

√
s2x +

s2x
α2 − 1

− sx√
α2 − 1

− tx√
α2 − 1

− ty

+ α

√
t2x +

(
tx√

α2 − 1
+ ty − ty

)2

= α

√
α2s2x
α2 − 1

− sx + tx√
α2 − 1

− ty + α

√
t2x +

t2x
α2 − 1

=
α2|sx|√
α2 − 1

− sx + tx√
α2 − 1

− ty + α

√
α2t2x
α2 − 1

=
α2sx√
α2 − 1

− sx + tx√
α2 − 1

− ty +
α2tx√
α2 − 1

=
α2(sx + tx)√

α2 − 1
− sx + tx√

α2 − 1
− ty

=
α2 − 1√
α2 − 1

(sx + tx) − ty

=
√

α2 − 1(sx + tx) − ty. □

B Computing the shortest path map for a given s

In this section, we express each bisector as an explicit function
of the shape y = f(x). Then, the actual bisector is given by
the corresponding points (x, y).

Lemma 17 The bisector b1,2 is given by y =

√
1−α2

α
(sx−x).

Proof. We want to compute the coordinates of the points
such that the weighted length of paths π1(s, t) and
π2(s, t) is the same, i.e., the points (tx, ty) such that√

(sx − tx)2 + t2y = α(sx − tx) +
√

1 − α2ty. Thus:

(sx − tx)2 + t2y = α2(sx − tx)2 + (1 − α2)t2y

+ 2α
√

1 − α2(sx − tx)ty

0 = (1 − α2)(sx − tx)2 + α2t2y

− 2α
√

1 − α2(sx − tx)ty

0 =
[√

1 − α2(sx − tx) − αty
]2

αty =
√

1 − α2(sx − tx)

⇒ ty =

√
1 − α2

α
(sx − tx). □

Lemma 18 The bisector b2,3 is given by y = −
√

1−α2

α
x.

Proof. We want to compute the coordinates of the points
such that the weighted length of paths π2(s, t) and π3(s, t)
is the same, i.e., the points (tx, ty) such that α(sx − tx) +√

1 − α2ty = αsx +
√

t2x + t2y. Thus:

−αtx +
√

1 − α2ty =
√

t2x + t2y

α2t2x + (1 − α2)t2y − 2α
√

1 − α2txty = t2x + t2y

(1 − α2)t2x + α2t2y + 2α
√

1 − α2txty = 0
[√

1 − α2tx + αty
]2

= 0
√

1 − α2tx = −αty

⇒ ty = −
√

1 − α2

α
tx. □

Lemma 19 The bisector b4,5 is given by y =

√
α2−1√
2−α2

x.

Proof. We want to compute the coordinates of the points
such that the weighted length of paths π4(s, t) and π5(s, t) is
the same, i.e., the points (tx, ty) such that sx +

√
t2x + t2y =

sx −
√

2 − α2tx −
√
α2 − 1ty. Thus:

√
t2x + t2y = −

√
α2 − 1ty −

√
2 − α2tx

t2x + t2y = (α2 − 1)t2y + (2 − α2)t2x + 2
√

α2 − 1
√

2 − α2txty
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0 = (2 − α2)t2y − 2
√

α2 − 1
√

2 − α2txty + (α2 − 1)t2x

0 = (
√

2 − α2ty −
√

α2 − 1tx)2

√
2 − α2ty =

√
α2 − 1tx

⇒ ty =

√
α2 − 1√
2 − α2

tx. □

Lemma 20 The bisector b5,6 is given by y =

√
α2−1√
2−α2

x −
√
α2 − 1sx.

Proof. The path π6(s, t) is similar to a path π5(s, t) where
the point of entry in R is s. The path π6(s, t) do not have the
critical angle property. However, the points on the bisector,
still have that critical angle property, since the shortest path
from s to them is of both types. Let (0, b2) be the point where
π5(s, t) leaves the square, see Figure 4. Using Equation (5)
we obtain the following relation:

tan θc =
|sx|
|b2|

⇒ |b2| =
|sx|

tan θc
=

√
α2 − 1|sx| =

√
α2 − 1sx

⇒ b2 = −
√

α2 − 1sx.

For π5(s, t), we obtained b2 = ty−
√

α2−1√
2−α2

tx in Lemma 10 (see

Equation (8)). We then obtain the equation of the bisector
b5,6:

ty = b2 +

√
α2 − 1√
2 − α2

tx =

√
α2 − 1√
2 − α2

tx −
√

α2 − 1sx. □

Lemma 21 The bisector b7,8 is given by y = −1−
√

2−α2√
α2−1

x.

Proof. We want to know the coordinates of the points
(tx, ty) such that

√
α2 − 1(sx + tx) −

√
2 − α2(1 + ty) + 1 =√

α2 − 1sx + 1 +
√

t2x + (ty + 1)2. Thus,

√
α2 − 1tx −

√
2 − α2(1 + ty) =

√
t2x + (1 + ty)2

⇒ (α2 − 1)t2x + (2 − α2)(1 + ty)2

−2
√

α2 − 1
√

2 − α2(1 + ty)tx = t2x + (1 + ty)2

⇒ (2 − α2)t2x + (α2 − 1)(1 + ty)2

+2
√

2 − α2
√

α2 − 1(1 + ty)tx = 0

⇒
[√

2 − α2tx +
√

α2 − 1(1 + ty)
]2

= 0

⇒ −
√

α2 − 1(1 + ty) =
√

2 − α2tx

⇒ −1 −
√

2 − α2

√
α2 − 1

tx = ty. □

Lemma 22 The bisector b10,11 is given by y =
−
√
α2 − 1(sx − x).

Proof. We want the curve defining the bisector between
the region containing the points t = (tx, ty) such that the
shortest path from s = (sx, 0) to t is π10(s, t), and the region
containing the points t = (tx, ty) such that the shortest path
from s = (sx, 0) to t is π11(s, t). Thus,

α
√

(sx − tx)2 + t2y = sx − tx −
√

α2 − 1ty

⇒ α2[(sx − tx)2 + t2y] = (sx − tx)2 + (α2 − 1)t2y

− 2(sx − tx)
√

α2 − 1ty

⇒ 0 = α2(sx − tx)2 − (sx − tx)2 + α2t2y

− α2t2y + t2y + 2(sx − tx)
√

α2 − 1ty

= (α2 − 1)(sx − tx)2 + t2y

+ 2(sx − tx)2
√

α2 − 1ty

= (ty +
√

α2 − 1(sx − tx))2

⇒ ty = −
√

α2 − 1(sx − tx). □

Lemma 23 The bisector b11,12 bisector is given by y =

− (sx+x)+2α
√
sxx√

α2−1
.

Proof. We want the curve defining the bisector between
the region containing the points t = (tx, ty) such that the
shortest path from s = (sx, 0) to t is π11(s, t), and the region
containing the points t = (tx, ty) such that the shortest path
from s = (sx, 0) to t is π12(s, t). Thus,

√
α2 − 1(sx + tx) − ty = α

√
(sx − tx)2 + t2y

⇒
[√

α2 − 1(sx + tx) − ty
]2

= α2((sx − tx)2 + t2y).

By expanding the square we find

0 = (α2 − 1)t2y + 2
√

α2 − 1(sx + tx)ty + α2(sx − tx)2

− (α2 − 1)(sx + tx)2

= (α2 − 1)t2y + 2
√

α2 − 1(sx + tx)ty + α2s2x + α2t2x

− 2α2sxtx − α2s2x − α2t2x − 2α2sxtx + (sx + tx)2

= (α2 − 1)t2y + 2
√

α2 − 1(sx + tx)ty − 4α2sxtx

+ (sx + tx)2.

From which we obtain that

ty =
−2

√
α2 − 1(sx + tx)

2(α2 − 1)

±
√

4(α2 − 1)((sx + tx)2 − [−4α2sxtx + (sx + tx)2])

2(α2 − 1)

=
−
√
α2 − 1(sx + tx) ±

√
(α2 − 1)4α2sxtx

α2 − 1

=
−(sx + tx) ± 2α

√
sxtx√

α2 − 1
.

Let (0, b1) and (0, b2) be, respectively, the points where
π12(s, t) leaves and enters for the second time the region R.
We know that b1 > b2. Thus, using Lemma 16, we know that
π12(s, t) exists if ty < − sx+tx√

α2−1
. Hence, the bisector is given

by the curve ty = −(sx+tx)−2α
√
sxtx√

α2−1
. □
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Computing shortest paths amid non-overlapping weighted disks∗

Prosenjit Bose† Jean-Lou De Carufel‡ Guillermo Esteban§ Anil Maheshwari¶

Abstract

In this article, we present an approximation algorithm
for solving the Weighted Region Problem amidst a setD
of n non-overlapping weighted disks in the plane. For
a given parameter ε ∈ (0, 1], the length of the approxi-
mate path is at most (1+ε) times larger than the length
of the actual shortest path. The algorithm is based
on the discretization of the space by placing points on
the boundary of the disks. Using such a discretization
we can use Dijkstra’s algorithm for computing a short-
est path in the geometric graph obtained in (pseudo-
)polynomial time.

1 Introduction

Computing a geodesic path (i.e., shortest path) be-
tween two points s and t in a geometric setting is one
of the most studied problems in computational geom-
etry. Applications of geometric shortest path prob-
lems are ubiquitous, appearing in diverse areas such
as robotics [16, 25, 26], video games design [18, 29],
or geographic information systems [13]. We refer to
Mitchell [21] for an excellent survey on geometric short-
est path problems.
In contrast to the classical shortest path problem in

graphs, where the space of possible paths is discrete, in
geometric settings the space is continuous: the source
and target points can be anywhere within a certain ge-
ometric domain (e.g., a polygon, the plane, a surface),
and the set of possible paths to consider has infinite size.
Many variations of geometric shortest path problems
have been studied before, depending on the geomet-
ric domain, the objective function (e.g., Euclidean met-
ric, link-distance, geodesic distance), or specific domain
constraints (e.g., obstacles in the plane, or holes in poly-
gons). Finding shortest paths among polygonal obsta-
cles in the plane has drawn great interest [3, 5, 22, 30].

∗Partially supported by the Natural Sciences and Engineering
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†School of Computer Science, Carleton University,
jit@scs.carleton.ca

‡School of Electrical Engineering and Computer Science, Uni-
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Alcalá and School of Computer Science, Carleton University,
g.esteban@uah.es

¶School of Computer Science, Carleton University,
anil@scs.carleton.ca

Some of these results apply directly to real world prob-
lems. For instance, for modelling subdivisions of sur-
faces, embedding models use cylindrical faces, quadrics
or patch together surfaces that are defined via bicubic
or quadratic splines, see, e.g., [6, 11, 20]. Motion plan-
ning problems typically involve motion of curved objects
through obstacles having curved boundaries [10, 19].
Modern font design systems rely upon conic and cu-
bic spline curves [23, 24]. Numerous applications need
efficient algorithms for processing curved objects di-
rectly [15, 28]. The way to tackle arbitrary real objects
has been to approximate them as polygons or polyhe-
dra of a sufficient number of vertices. This process is
generally unsatisfactory, see [14]. For these reasons, in
this paper, as in [7, 8, 9, 17], we focus on the problem
of computing shortest paths among curved objects. In
particular, we consider disks of different radii with a
non-negative weight assigned to them.

1.1 Previous results

One of the most general versions of the shortest path
problem that has been studied consists of a subdivision
of the two-dimensional space. Without loss of general-
ity, we assume it to be triangulated. Each region has a
(non-negative) weight associated to it, representing the
cost per unit distance of traveling in that region. Thus,
the cost of traversing a region is typically given by the
Euclidean distance traversed in the region, multiplied by
the corresponding weight. The resulting metric is often
called the weighted region metric, and the problem of
computing a shortest path between two points under
this metric is known as the Weighted Region Problem
(WRP). This problem is very general, since it allows to
model many well-known variants of geometric shortest
path problems.

The WRP was first introduced by Mitchell and Pa-
padimitriou [22]. They provided an approximation al-
gorithm that computes a (1 + ε)-approximation path
in O

(
n8 log nNW

wε

)
time, where n is the total number

of vertices describing the polygonal regions, N is the
maximum integer coordinate of any vertex of the subdi-
vision, W (resp., w) is the maximum (resp., minimum
non-zero) integer weight assigned to a face of the sub-
division.

Recently, it has been shown that the WRP cannot be
solved exactly within the Algebraic Computation Model
over the Rational Numbers [12]. In this model one can
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Time complexity Reference

O
(
n8 log nNW

wε

)
[22]

O
(
N4 log

(
NW
wε

)
n
ε2 log

nN
ε

)
[1]

O
(
N2 log

(
NW
w

)
n
ε log

1
ε

(
1√
ε
+ log n

))
[2]

O
(
N2 log

(
NW
w

)
n
ε log

n
ε log

1
ε

)
[30]

O
(
N2 log

(
NW
w

)
n√
ε
log n

ε log
1
ε

)
[3]

Table 1: Some (1+ ε)-approximation algorithms for the
WRP. In this table, N is the maximum integer coordi-
nate of any vertex of the subdivision, W (resp., w) is
the maximum (resp., minimum non-zero) integer weight
assigned to a face of the subdivision.

compute exactly any number that can be obtained from
rational numbers by a finite number of basic operations.
This emphasizes the need for high-quality approxima-
tion paths instead of optimal paths.

Most of the results for the WRP are focused on polyg-
onal obstacles. The most common scheme followed in
the literature is to discretize the geometric space by po-
sitioning Steiner points, and then build a graph by con-
necting pairs of Steiner points, see [1, 2, 3, 5, 30]. An ap-
proximate solution is constructed by finding a shortest
path in this graph, by using well-known combinatorial
algorithms (e.g., Dijkstra’s algorithm). See Table 1 for
the time complexity of some approximation algorithms
designed following this scheme.

However, we are aware of only a few publications that
treat curved objects. In general, we do not seem to have
a good grasp on the complexity of weighted shortest
paths when the region boundaries are nonlinear curves.
The particular case where we consider n pseudodisk ob-
stacles in the two-dimensional space (i.e., the weight
of all the regions is infinity) can be solved exactly in
O(n log n+ k) time, where k is the size of the extended
visibility graph of the union of the pseudodisks [8].
Later, Chen and Wang [9] computed a shortest path
avoiding a set S of h pairwise disjoint splinegons with
a total of n vertices in O(n+ h log h+ d) time, where d
is a parameter sensitive to the geometric structures of
the input, by applying a bounded degree decomposition
of the set of obstacles. This improves the result in [8]
when h = o(n).

Obstacles with curved boundaries present both alge-
braic and combinatorial challenges [7]. Thus, Hersh-
berger et al. [17] proposed an O(n log n) time algorithm
for the shortest path problem based on certain assump-
tions on the computation of locating the intersection of
two bisectors defined by pairs of curved obstacle bound-
ary segments. They provided a (1 + ε)-approximation
of a shortest path in O

(
n log n+ n log 1

ε

)
time without

the bisector computation assumption.

Moreover, if we consider the problem for weighted
disks where inside each region we can travel between
any pair of points at no cost whereas outside all regions
the travel cost between two points is their Euclidean
distance, this can be seen as a redefinition of the ad-
ditively weighted point set spanner problem. Bose et
al. [4] were able to show that it is possible to design a
graph G with a linear number of edges such that for any
pair of disks D and D′ there is a path in G whose length
is arbitrarily close to the Euclidean distance between D
and D′. Recently, this was improved by Smid [27] by
reducing the number of edges needed by a factor of 4.

1.2 Our results

Sometimes, the shape of a real-world curved object can
be approximated using a polygon whose vertices are
specified by a subset of c points on the object, where c is
a sufficiently large value. Then, one approach to solv-
ing the WRP on a set of curved regions would be to
approximate each region with a polygon, and then use
existing algorithms that work on polygons. However,
this method is not always optimal.

Let D = {D1, . . . , Dn} be a set disks, each with a ra-
dius Ri > 0, and for any pair Di and Dj , 1 ≤ i < j ≤ n,
Di∩Dj = ∅. In addition, each disk has a (non-negative)
weight ωi assigned to it. In this paper, we provide an
algorithm to compute a path between two points amidst
D that is at most (1 + ε) times larger than the actual
shortest path. To solve this problem, we use the tradi-
tional technique of partitioning the 2-dimensional space
into a discrete space by using a non-trivial Steiner points
placement and designing an appropriate graph. With-
out loss of generality, we may assume that s and t are
vertices of this graph. In particular, the main results of
this paper are:

• The special case where the weight of all the disks
is at least π

2 can be solved exactly by using the
algorithms in, e.g., [8, 9, 17]. See Section 2.

• For the general version of the WRP, we propose a
discretization that consists of a set of Steiner points
along the boundary of each disk. We first place
some vertices, called vertex vicinity centers, evenly
on the boundary of each disk. Then, if the weight
of the disk is strictly positive, we create an annulus
around each vertex vicinity center, and we place
a set of Steiner points inside each annulus. For
a given approximation parameter ε ∈ (0, 1], the
number of vertices of the discretization is at most
C(D)nε , where C(D) captures geometric parame-
ters and the weights of D. See Section 3.

• We show that the weighted length of the approxi-
mated path between any pair of nodes is at most
(1 + ε) times the weighted length of a shortest
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path. This approximation path can be computed
by executing shortest path algorithms on the graph
formed by Steiner points where two Steiner points
are joined by an edge. See Section 4.

2 Preliminaries

Any continuous (rectifiable) curve lying in the two-
dimensional space is called a path. Let Π(s, t) de-
note a path from a source point s to a target point t
among D = {D1, . . . , Dn}. Let Ri and ci be, respec-
tively, the radius and the center of each disk Di. Let
ωi ∈ R≥0, i ∈ {1, . . . , n}, be the weight associated to
a disk Di ∈ D, which represents the cost of travel-
ing a unit Euclidean distance inside that disk. In ad-
dition, and without loss of generality, we can assume
that the weight outside the disks is 1. Otherwise, we
could always rescale the weights to be 1 outside the
disks. Then, the weighted length of Π(s, t) is given by
∥Π(s, t)∥ = µ+

∑n
i=1 ωi · |πi|, where µ denotes the Eu-

clidean length of the intersection between Π(s, t) and
the space outside the disks, and |πi| denotes the Eu-
clidean length of the intersection between Π(s, t) and a
disk Di, that is, πi = Π(s, t) ∩ Di. In case πi coincides
with an arc of Di, the weight of traveling along that arc
is given by min{1, ωi}. Given s and t, a weighted short-
est path SPw (s, t) is a path that minimizes the weighted
length between s and t.
Observe that every path consists of a sequence of

(straight or circular-arc) segments whose endpoints
a1, . . . , am are on the boundary of the disks in D. These
endpoints a1, . . . , am, are called bending points.
We now present some properties of a shortest path

between two points on the boundary of the same disk
that will be useful in the forthcoming sections. Observa-
tion 1 gives the (weighted) length of a subpath between
two points p and q on the boundary of a disk D ∈ D.
The result can be proved using the law of cosines.

Observation 1 Let p and q be two consecutive bending
points of the path SPw (s, t) on the boundary of D ∈ D
centered at c with radius R and weight ω ≥ 0. Let θ be
the angle ∠cpq.

• If SPw (p, q) coincides with an arc of D, then
∥SPw (p, q)∥ = R · (π− 2θ); see the red path in Fig-
ure 1.

• If SPw (p, q) only intersects the boundary of D at p
and q, then ∥SPw (p, q)∥ = ω · 2R cos θ; see the blue
path in Figure 1.

The following result follows from the fact that the
weight of the boundary of a region is given by the min-
imum among the weights of the two adjacent regions.

θ pc

q

R

Figure 1: The two types of shortest paths between p
and q on the boundary of a disk.

Observation 2 Let p and q be two consecutive bend-
ing points of the path SPw (s, t) on the boundary of D.
Let ω ∈ [0, 1] be the weight of D. Then SPw (p, q) only
intersects the boundary of D at p and q.

Now consider a special case of the WRP where all
the regions have a weight ω ≥ π

2 . Lemma 1 states that
when the weight of a disk is at least π2 , then the disk can
be considered as an obstacle. Hence, if all disks have
weight at least π

2 , we can compute exactly a shortest
path between any pair of points, see, e.g., [9].

Lemma 1 Let p and q be two consecutive bending
points of the path SPw (s, t) on the boundary of D. Let
ω ≥ π

2 be the weight of D. Then SPw (p, q) coincides
with the shortest arc of D from p to q.

Proof. We need to prove that the weight of a path in-
tersecting the interior of the disk is larger than when
going along the boundary, i.e., that R · (π − 2θ) ≤
2Rω cos θ ⇐⇒ π−2θ ≤ 2ω cos θ, for any angle θ ∈ [0, π2 ].

We know that ω ≥ π
2 , so 2ω cos θ ≥ π cos θ. Thus,

it is sufficient to prove that π − 2θ ≤ π cos θ. We first
minimize the function π cos θ + 2θ:

∂π cos θ + 2θ

∂θ
= −π sin θ + 2 = 0⇐⇒ sin θ =

2

π

For this value of θ, we get that π cos θ + 2θ ≥√
π2 − 4 + 2 arcsin 2

π , which is greater than π, which
gives us the desired result. □

Now, we state that there are no other ways for a short-
est path between p and q to intersect the disk D than
the ones described in Observation 1. This means that
if p and q are two consecutive bending points on the
boundary of D, a shortest path between p and q is a
(straight or circular-arc) segment, i.e., SPw (p, q) does
not bend on the boundary of D.

Lemma 2 Let p and q be two consecutive bending
points of the path SPw (s, t) on the boundary of D. If
ω ∈ (1, π2 ), then a shortest path between p and q is a
(straight or circular-arc) segment.
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θ

γ

p
c

q

b

R

Figure 2: The two possible types of shortest paths be-
tween p and q on the boundary of a disk are depicted
in red and blue.

Proof. Suppose there is a point b ̸= p, q on the bound-
ary of D where SPw (p, q) bends, and let γ be the angle
∠cpb, see Figure 2.
In this case, the length of SPw (p, q) is

∥SPw (p, q)∥ = R sin (π−2γ)
sin γ ω + 2R(γ − θ) =

R ·
(

2 cos γ sin γ
sin γ ω + 2(γ − θ)

)
= 2R (ω cos γ + (γ − θ)).

The value ∥SPw (p, q)∥ is minimized when cos γ =√
ω2−1
ω :

∂∥SPw (p, q)∥
∂γ

= −2Rω sin γ + 2R = 0⇐⇒ ω sin γ = 1

⇐⇒
{
sin γ = 1

ω ,

cos γ =
√
ω2−1
ω .

We can see that the equation holds since ω ∈ (1, π2 ).
Hence, for this value of γ, the weighted length of a short-
est path from p to q is:

∥SPw (p, q)∥ = 2R (ω cos γ + (γ − θ))

= 2R
√
ω2 − 1 + 2R

(
arcsin

(
1

ω

)
− θ
)
.

Now, we need to compare the length of SPw (p, q) with
the length of (i) a path π1(p, q) that only intersects the
boundary of D at p and q, and (ii) a path π2(p, q) along
the boundary of D.
We first define the function ω cos θ+ θ that allows us

to prove that ∥π1(p, q)∥ ≤ ∥SPw (p, q)∥. The maximum
value of the function, when θ ∈

(
0, π2

]
is obtained next:

∂ω cos θ + θ

∂θ
= −ω sin θ + 1 = 0⇐⇒ ω sin θ = 1

⇐⇒ sin θ =
1

ω
⇐⇒ θ = arcsin

(
1

ω

)
.

Hence,

ω cos θ + θ ≤ ω cos

(
arcsin

(
1

ω

))
+ arcsin

(
1

ω

)

=
√
ω2 − 1 + arcsin

(
1

ω

)

=⇒ ω cos θ ≤
√
ω2 − 1 + arcsin

(
1

ω

)
− θ

=⇒ 2Rω cos θ ≤ 2R
√
ω2 − 1 + 2R

(
arcsin

(
1

ω

)
− θ
)

=⇒ ∥π1(p, q)∥ ≤ ∥SPw (p, q)∥.

Now, we define another function ω5−14ω3+37ω that
allows us to prove that ∥π2(p, q)∥ ≤ ∥SPw (p, q)∥. The
maximum of this function, when ω ∈ (1, π2 ), is obtained
next:

∂ω5 − 14ω3 + 37ω

∂ω
= 5ω4 − 42ω2 + 37 = 0⇐⇒ ω = 1.

Hence,

ω5 − 14ω3 + 37ω ≤ 24 =⇒ ω4 − 14ω2 + 37

24
≤ 1

ω

=⇒24− 12ω2 + 12 + ω4 − 2ω2 + 1

24
≤ 1

ω

=⇒1− ω2 − 1

2
+

(ω2 − 1)2

24
≤ 1

ω
.

The Taylor series of the function cosx is∑∞
n=0

(−1)n
(2n)! x

2n, for all x. Thus, cos
√
ω2 − 1 ≤

1− ω2−1
2 + (ω2−1)2

24 , and we get that

cos
√
ω2 − 1 ≤ 1

ω
=⇒ sin

(π
2
−
√
ω2 − 1

)
≤ 1

ω

=⇒ π

2
−
√
ω2 − 1 ≤ arcsin

(
1

ω

)

=⇒ π − 2
√
ω2 − 1 ≤ 2 arcsin

(
1

ω

)

=⇒ R · (π − 2θ) ≤ 2R

(√
ω2 − 1 + arcsin

(
1

ω

)
− θ
)

=⇒ ∥π2(p, q)∥ ≤ ∥SPw (p, q)∥.

We proved that the length of both paths π1(p, q)
and π2(p, q) is not larger than the length of the path
SPw (p, q). Hence, a shortest path from p to q is either
the straight-line segment from p to q or a shortest arc
of D from p to q. □

3 Discretization

In this section, we construct a weighted graph Gε =
(Vε(Gε), Eε(Gε)) by carefully adding Steiner points on
the boundary of the disks. Then, one can apply Dijk-
stra’s algorithm on Gε to obtain a path π̃(s, t) that is a
(1 + ε)-approximation of SPw (s, t).

Lemma 1 states that when the weight of a disk is at
least π

2 , then no shortest path will intersect the inte-
rior of that disk. In this paper we are discretizing the
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αi

ri v

Ri

Di

ci

Figure 3: Vertex vicinity of a vertex v (in grey) on the
boundary of disk Di.

space to obtain a (1 + ε)-approximation of a shortest
path. Thus, from now on, we can assume, without loss
of generality, that the maximum weight of the regions
is π

2 .
First, we introduce the value di defined as the mini-

mum Euclidean distance from Di to any other disk Dj

in D. We also define a weighted angular radius αi to

be αi = arcsin
(

min{di,Ri}min{1,ωi}
4Ri max{1,ωi}

)
. Observe that αi is

not larger than π
2 .

Definition 1 Let v be a point on the boundary of Di ∈
D. We refer to the disk with center v and radius
2Ri sinαi as the vertex vicinity of vertex v, or vertex
vicinity when v is clear from the context.

Observe that in Definition 1, αi is equal to the mini-
mum angle between (i) the line tangent to Di at v, and
(ii) the line through v and the intersection point be-
tween the vertex vicinity of v and Di. See Figure 3. We
use the definition of vertex vicinity to place ki points
around each disk Di. These points {v1i , . . . , vkii }, called
vertex vicinity centers, are equally spaced around Di.
If the weight of the disk Di is 0, we define the angular

distance between ci, and two consecutive vertex vicinity
centers vℓi and v

ℓ+1
i , for 1 ≤ ℓ < ki, by

∠vℓi civℓ+1
i =

εdi
a(di + 1)

, for ε ∈
(
0,
aπ

2ωi

]
, (1)

where a = 1+3c+
√
9c2+10c+1
2 , c =

π
2 max1≤j≤n{Rj}
min1≤j≤n{dj} ,

and ki is the largest integer satisfying ∠v1i civkii < 2π.
Note that we do not consider the particular case where
the disks overlap, so c > 0, and a > 1.
Otherwise, if the weight of Di is ωi > 0, we have that

ki =
⌊
π

2αi

⌋
. Let p0i,j be the point diametrically opposed

to vji in Di. We associate to each vertex vicinity center

Di

ci
vjip0i,j

pri,j

p1i,j

p2i,j

p3i,j

p4i,j
pℓi,j

pℓ+1
i,j

pr+1
i,j

p2ri,j

p2r−1
i,j

Figure 4: Ring points associated to the vertex vicinity
center vji on the boundary of Di.

vji a set of 2r + 1 points on Di, noted as p0i,j , . . . , p
2r
i,j ,

each of which is called a ring point. The ring points
p0i,j , . . . , p

r
i,j are placed on the boundary of the half disk

to the right of
−−−→
vji p

0
i,j , from p0i,j to v

j
i in clockwise order.

The points pr+1
i,j , . . . , p

2r
i,j are placed symmetrically on

the other half of the disk. We impose the condition that
inside the vertex vicinity of each vertex vji , we do not

place ring points associated to vji . Thus, r is the largest

integer satisfying ∠p0i,jv
j
i p
r
i,j ≤ π

2 − αi. See Figure 4

for an illustration of the ring points associated to vji .

We define the angular distance between vji , and two
consecutive ring points pℓi,j and p

ℓ+1
i,j , for 0 ≤ ℓ < r, by

∠pℓi,jvji pℓ+1
i,j =

ωiε

a

(
1− 2ωiε

aπ

)ℓ
, for ε ∈

(
0,
aπ

2ωi

]
.

(2)

Based on previous discretization schemes (e.g., [2, 3]),
and without loss of generality, we may assume that the
points s and t are vertex vicinity centers or ring points.

From Equation (2), and using the definition of vertex
vicinity and the formula for the sum of the first terms
of a geometric series, we can obtain the number of ring
points associated to vji that we are adding to the bound-
ary of a disk Di with weight ωi > 0.

Proposition 3 Let Di be a disk with weight ωi > 0.
The number of ring points associated to vji inserted

on Di is upper-bounded by 2
1+log2

αi
π

log2 (1−
2ωiε

aπ )
+ 1.

Proof. By the definition of the ring points we know
that the angular distance between consecutive Steiner

points on half a disk is ∠pℓi,jv
j
i p
ℓ+1
i,j = ωiε

a

(
1− 2ωiε

aπ

)ℓ
.

So the angular distance from point p0i,j to each of the
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Steiner points pℓi,j , ℓ ∈ {1, . . . , r} is given by

∠p0i,jvji pℓi,j =
ℓ−1∑

m=0

ωiε

a

(
1− 2ωiε

aπ

)m

=
ωiε

a
· 1−

(
1− 2ωiε

aπ

)ℓ

1−
(
1− 2ωiε

aπ

)

=
ωiε

a
· 1−

(
1− 2ωiε

aπ

)ℓ
2ωiε
aπ

=
π

2

(
1−

(
1− 2ωiε

aπ

)ℓ)
.

The largest value of r such that ∠p0i,jv
j
i p
r
i,j ≤ π

2 − αi
can be found by solving the following inequality:

π

2

(
1−

(
1− 2ωiε

aπ

)r)
≤ π

2
− αi

=⇒ 1−
(
1− 2ωiε

aπ

)r
≤ 1− 2αi

π

=⇒
(
1− 2ωiε

aπ

)r
≥ 2αi

π

=⇒ r ≤ log
1− 2ωiε

aπ

2αi
π

=
log2

2αi

π

log2
(
1− 2ωiε

aπ

) =
1 + log2

αi

π

log2
(
1− 2ωiε

aπ

) .

Since we need to add ring points around the whole
disk Di, we need two times the number of points in the
previous equation. In addition, we need to take into
account vertex p0i,j , hence the final result. □

Observe that we do not need to place the number
of points from Proposition 3 around each vertex vicin-
ity center vji , since some of them are further away
than the ring points associated to neighboring vertex
vicinity centers. Hence, we create an annulus around
each point vji and we place ring points only inside
these annuli. The smallest circumference of the annuli,
i.e., the boundary of the vertex vicinity of vji , has ra-
dius 2Ri sinαi, and the largest circumference has radius
2Ri sin (2αi). An upper bound on the total number of
points placed on each disk Di with weight ωi > 0 is
given next.

Proposition 4 Let Di be a disk with weight ωi > 0.
The total number of vertex vicinity centers and ring
points added on Di is upper-bounded by 1

log2
aπ

aπ−2ωiε

π
αi
.

Proof. Let vji be a vertex vicinity center on the bound-
ary of a disk Di, for j ∈ {1, . . . , π

2αi
}. By Proposition 3

we place 2
1+log2

αi
π

log2 (1−
2ωiε

aπ )
+ 1 points associated to vji on

the boundary of Di. Since we are creating an annu-
lus where the largest circumference has radius 2 cosαi

αi

Ri

Di

ci

2αi

v
ri

2ri c
osαi

Figure 5: The annulus where the ring points from v are
placed is represented in grey.

times the radius of the small one (see Figure 5), out-
side this second disk, and around Di, we are placing

2
1+log2

2αi
π

log2 (1−
2ωiε

aπ )
+ 1 points.

Then, the idea is to calculate the number of Steiner
points inside the annulus:

2

(
1 + log2

αi

π

log2
(
1− 2ωiε

aπ

) − 1 + log2
2αi

π

log2
(
1− 2ωiε

aπ

)
)

= 2
log2

αi

π − log2
2αi

π

log2
(
1− 2ωiε

aπ

) =
2 log2

αi
π

2αi
π

log2
(
1− 2ωiε

aπ

)

=
2 log2

1
2

log2
(
1− 2ωiε

aπ

) =
−2

log2
aπ−2ωiε

aπ

=
2

log2
aπ

aπ−2ωiε

.

Note that in the previous equation we are not count-
ing the intersection points between Di and the largest
circumference around vji . In addition, the intersec-
tion points between Di and the smallest circumference
around vji coincide with the vertex vicinity centers of

vj−1i and vj+1
i . Finally, since the vertex vicinity cen-

ters belong to the set Vε(Gε) of nodes, and we have π
2αi

vertex vicinity centers, we get the desired result. □

The total number of nodes in Gε is O(nε ), and the

total number of edges is O(n
2

ε2 ), where the constants
hidden in the “big-O” notation depend on the geometric
parameters and weights of D, see the appendix. In case
that two nodes are not visible or are adjacent on the
boundary of a disk, we join them by arcs of the disks,
instead of using a straight-line segment. This way, we
ensure that if a shortest path between a pair of points
does not intersect the interior of the disks, then our
algorithm computes a shortest path exactly.
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4 Discrete path

If the source point s and the target point t are on the
boundary of the same diskD and the only disk SPw (s, t)
intersects is D, then we can compute SPw (s, t) exactly,
and in constant time. This result is obtained by taking
into account that there are only two possible shortest
paths from s to t, see Observation 1.

Now, suppose s is on the boundary of a disk D cen-
tered at c, and t is outside D. We prove that there
is a path π̃(s, t) whose length is at most

(
1 + ε

a

)
times

larger than the length of a shortest path from s to t
when intersecting only D. This path π̃(s, t) is a short-
est path through the vertices of the discretization. In
fact, we can compute a shortest path exactly in this
case. However, the result in Lemma 5 will be useful
to prove the approximation ratio when a shortest path
intersects more than one disk.

Lemma 5 Let s be a point on the boundary of a disk D
centered at c and weight ω ≥ 0, and let t be a point
outside D. If D is the only disk intersected by SPw (s, t),
then ∥π̃(s, t)∥ ≤

(
1 + ε

a

)
· ∥SPw (s, t)∥.

Proof. First, we will prove the case where ω > 0. Sup-
pose that a shortest path from s to t does not intersect
the interior of D. In this case, the approximate shortest
path intersects the arc of the disk from s to the tan-
gency point from t to D. Before this tangency point,
and along the boundary of D, there is a ring point.
This ring point is joined to t by an edge which is not
a straight-line segment. This means that in this case,
an approximate shortest path is also a shortest path.
Hence, ∥π̃(s, t)∥ = ∥SPw (s, t)∥ ≤

(
1 + ε

a

)
∥SPw (s, t)∥.

Now, suppose that SPw (s, t) intersects the interior of
D. Let q be the point where SPw (s, t) leaves the disk
and let θ be the angle ∠csq. Let p be the closest ring
point to q on the boundary of the disk, and let ∠csp be
θ+ε′, for some ε′ ≥ 0 and θ < π

2 . The case where ε
′ < 0

will be addressed later in the proof. In addition, we can
assume, without loss of generality, that D has radius
length 1. Let s′ be the point diametrically opposed to
s on the boundary of D, and let γ be the angle ∠s′ct,
see Figure 6.
Then, the length of the approximate path is

∥π̃(s, t)∥ = 2ω cos (θ + ε′)

+
√
1 + |ct|2 − 2|ct| cos (2(θ + ε′)− γ)

=
(
2ω cos θ +

√
1 + |ct|2 − 2|ct| cos (2θ − γ)

)

·
[
2ω cos (θ + ε′) +

√
1 + |ct|2 − 2|ct| cos (2(θ + ε′)− γ)

2ω cos θ +
√
1 + |ct|2 − 2|ct| cos (2θ − γ)

]
.

We would like to prove that:

2ω cos (θ + ε′) +
√

1 + |ct|2 − 2|ct| cos (2(θ + ε′)− γ)
2ω cos θ +

√
1 + |ct|2 − 2|ct| cos (2θ − γ)

θ

ε′

s
c

t

p

γ
s′

2ε′

2θ

q

Figure 6: Notation when t is outside the disk.

≤ ω cos θ + ε′

ω cos θ
.

Since cos (θ + ε′) ≤ cos θ, it is sufficient to prove that:

2ω cos θ +
√
1 + |ct|2 − 2|ct| cos (2(θ + ε′)− γ)

2ω cos θ +
√
1 + |ct|2 − 2|ct| cos (2θ − γ)

≤ ω cos θ + ε′

ω cos θ
.

Thus,

2ω2 cos2 θ + ω cos θ
√
1 + |ct|2 − 2|ct| cos (2(θ + ε′)− γ)

≤
√

1 + |ct|2 − 2|ct| cos (2θ − γ) · (ω cos θ + ε′)

+ 2ω2 cos2 θ + 2ε′ω cos θ

⇐⇒ ω cos θ
√
1 + |ct|2 − 2|ct| cos (2(θ + ε′)− γ)

≤
√
1 + |ct|2 − 2|ct| cos (2θ − γ)(ω cos θ + ε′)

+ 2ε′ω cos θ

⇐⇒
(√

1 + |ct|2 − 2|ct| cos (2(θ + ε′)− γ)

− 2ε′ −
√
1 + |ct|2 − 2|ct| cos (2θ − γ)

)
ω cos θ

≤
√
1 + |ct|2 − 2|ct| cos (2θ − γ)ε′.

The term to the right of the inequality represents the
length of a shortest path from s to t outside the disk,
multiplied by a positive value ε′, so this value is positive.
In addition, ω > 0, and since θ < π

2 , cos θ > 0. Then,
it is enough to prove that

√
1 + |ct|2 − 2|ct| cos (2(θ + ε′)− γ)− 2ε′

−
√
1 + |ct|2 − 2|ct| cos (2θ − γ) ≤ 0

⇐⇒
√
1 + |ct|2 − 2|ct| cos (2(θ + ε′)− γ)

≤ 2ε′ +
√
1 + |ct|2 − 2|ct| cos (2θ − γ)

⇐⇒ 1 + |ct|2 − 2|ct| cos (2(θ + ε′)− γ) ≤ 4ε′2 + 1

+ |ct|2 − 2|ct| cos (2θ − γ)
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+ 4ε′
√

1 + |ct|2 − 2|ct| cos (2θ − γ)
⇐⇒ − 2|ct| cos (2(θ + ε′)− γ) ≤ 4ε′2 − 2|ct| cos (2θ − γ)

+ 4ε′
√

1 + |ct|2 − 2|ct| cos (2θ − γ)
⇐⇒ 2|ct|(cos (2θ − γ)− cos (2(θ + ε′)− γ))

≤ 4ε′2 + 4ε′
√

1 + |ct|2 − 2|ct| cos (2θ − γ).

Since cos a − cos b = −2 sin a+b
2 sin a−b

2 for all angles
a, b, the previous inequality is equivalent to:

− |ct| sin
(
4θ − 2γ + 2ε′

2

)
sin (−ε′)

≤ ε′2 + ε′
√

1 + |ct|2 − 2|ct| cos (2θ − γ).

We know that sin a ≤ a, so it is sufficient to prove
that:

|ct| sin (2θ − γ + ε′)ε′ ≤ ε′2 + ε′
√
1 + |ct|2 − 2|ct| cos (2θ − γ)

|ct| sin (2θ − γ + ε′) ≤ ε′ +
√
1 + |ct|2 − 2|ct| cos (2θ − γ)

|ct| sin (2θ − γ + ε′)− ε′ ≤
√

1 + |ct|2 − 2|ct| cos (2θ − γ).

Now, ε′ is just on the left-hand side of the inequal-
ity, so we would like to know what is the largest value
|ct| sin (2θ − γ + ε′)− ε′ can take

∂|ct| sin (2θ − γ + ε′)− ε′
∂ε′

= |ct| cos (2θ − γ + ε′)− 1 = 0

⇐⇒ |ct| cos (2θ − γ + ε′) = 1

⇐⇒ ε′ = arccos

(
1

|ct|

)
+γ − 2θ.

We know that ε′ ≥ 0, so the maximum value is

obtained when ε′ = max
{
0, arccos

(
1
|ct|

)
+ γ − 2θ

}
.

Hence,

• If ε′ = 0, it is sufficient to prove that
|ct| sin (2θ − γ) ≤

√
1 + |ct|2 − 2|ct| cos (2θ − γ):

|ct|2 sin2 (2θ − γ) ≤ 1 + |ct|2 − 2|ct| cos (2θ − γ)
⇐⇒ |ct|2 sin2 (2θ − γ)− |ct|2 ≤ 1− 2|ct| cos (2θ − γ)
⇐⇒ − |ct|2 cos2 (2θ − γ) ≤ 1− 2|ct| cos (2θ − γ)
⇐⇒ 1− 2|ct| cos (2θ − γ) + |ct|2 cos2 (2θ − γ) ≥ 0

⇐⇒ (1− |ct| cos (2θ − γ))2 ≥ 0.

• If ε′ = arccos
(

1
|ct|

)
+γ−2θ, it is sufficient to prove

that |ct| sin
(
arccos

(
1
|ct|

))
−arccos

(
1
|ct|

)
−γ+2θ ≤

√
1 + |ct|2 − 2|ct| cos (2θ − γ):

|ct|
√

1− 1

|ct|2 − arccos

(
1

|ct|

)
− γ + 2θ

≤
√
1 + |ct|2 − 2|ct| cos (2θ − γ)

⇐⇒
√
|ct|2 − 1− arccos

(
1

|ct|

)
− γ + 2θ

≤
√
1 + |ct|2 − 2|ct| cos (2θ − γ)

⇐⇒ 2θ −
√
1 + |ct|2 − 2|ct| cos (2θ − γ)

≤ arccos

(
1

|ct|

)
+ γ −

√
|ct|2 − 1. (3)

Now, θ is just on the left-hand side of the inequality,
so we would like to know which is the largest value
2θ −

√
1 + |ct|2 − 2|ct| cos (2θ − γ) can take:

∂ 2θ −
√
1 + |ct|2 − 2|ct| cos (2θ − γ)

∂θ

= 2− 2|ct| sin (2θ − γ)√
1 + |ct|2 − 2|ct| cos (2θ − γ)

= 0

⇐⇒
√
1 + |ct|2 − 2|ct| cos (2θ − γ) = |ct| sin (2θ − γ)

⇐⇒ 1 + |ct|2 − 2|ct| cos (2θ − γ) = |ct|2 sin2 (2θ − γ)
⇐⇒1 = |ct| cos (2θ − γ).

Hence, 2θ −
√
1 + |ct|2 − 2|ct| cos (2θ − γ) ≤

arccos
(

1
|ct|

)
+ γ−

√
1 + |ct|2 − 2 = arccos

(
1
|ct|

)
+

γ −
√
|ct|2 − 1, which is (3), and that is what we

wanted to prove.

In both cases, we proved that ∥π̃(s, t)∥ ≤
ω cos θ+ε′

ω cos θ ∥SPw (s, t)∥ = (1+ ε′

ω cos θ )∥SPw (s, t)∥. We also
know that cos θ ≥ 1− 2

π θ when θ ≤ π
2 . Hence,

1 +
ε′

ω · cos θ ≤ 1 +
ε′

ω
(
1− 2

π θ
) = 1 +

πε′

ω(π − 2θ)
.

However, we are interested in obtaining a
(
1 + ε

a

)
-

approximation. We can obtain this approximation fac-

tor by setting ε′ to εω(π−2θ)
aπ . Note that ε′ represents the

maximum angular distance between consecutive ring
points. So, if we place the first Steiner point on the
boundary of the disk, diametrically opposed to s, θ = 0
and, in order to get a

(
1 + ε

a

)
-approximation, we would

like to have the following Steiner point at a distance εω
a

from the first Steiner point, which is true by Equation
(2). Following this procedure, one can prove that we
always obtain a

(
1 + ε

a

)
-approximation.

We also need to calculate the ratio when the closest
ring point to q is to the left of q with respect to SPw (s, t).
Suppose p′ is the closest ring point to q on the boundary
of the disk where ∠csp′ = θ + ε′ and ε′ ≤ 0. If the ap-
proximation path through p is shorter than through p′,
the algorithm that calculates the approximation path
will never go through p′, so we do not need to calculate
the ratio of the approximation path through p′. Other-
wise, since the length of the approximation path is on
the numerator, and the length of the shortest path does
not change, the ratio when taking the approximate path
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p

p′
q

t

s
c

θ

ε′

q′

γ

δ

Figure 7: The tangency point from t to the disk D is
after the Steiner point.

through p is larger. Also, note that in this case, if p is
before the tangency point q′ from t to D, the segment
from p to t will intersect the interior of the disk, see
Figure 7. Hence, we need to calculate the ratio in this
particular case.

The length of the approximate path is given by
∥π̃(s, t)∥ = ω|sp|+δ+|q′t|, where δ = ∠pcq′, see the yel-
low path in Figure 7. We know from before that ω|sp| =
2ω cos (θ + ε′). We also know that |q′t| =

√
|ct|2 − 1,

since q′ is the tangency point from t to D. In addition,
by using some trigonometric identities, we obtain that

δ = 2(θ + ε′)− arcsin

(√
|ct|2−1
|ct|

)
− γ. Thus,

∥π̃(s, t)∥ = 2ω cos (θ + ε′) +
√
|ct|2 − 1 + 2(θ + ε′)

− arcsin

(√
|ct|2 − 1

|ct|

)
− γ.

Our goal is to prove that:

∥π̃(s, t)∥
2ω cos θ +

√
1 + |ct|2 − 2|ct| cos (2θ − γ)

≤ ω cos θ + ε′

ω cos θ
.

Since cos (θ + ε′) ≤ cos θ, it is sufficient to prove that:

2(ω cos θ + θ + ε′)− arcsin

(√
|ct|2−1
|ct|

)
− γ +

√
|ct|2 − 1

2ω cos θ +
√
1 + |ct|2 − 2|ct| cos (2θ − γ)

≤ ω cos θ + ε′

ω cos θ

⇐⇒
(
2ω cos θ + 2(θ + ε′)− γ − arcsin

(√
|ct|2 − 1

|ct|

)

+
√
|ct|2 − 1− 2ω cos θ − 2ε′

−
√
1 + |ct|2 − 2|ct| cos (2θ − γ)

)
ω cos θ

≤
√

1 + |ct|2 − 2|ct| cos (2θ − γ)ε′.
We know that the term on the right-hand side of

the inequality is positive, also ω > 0, and since θ <
π
2 , cos θ > 0. Then, it is sufficient to prove that

A = 2θ − γ− arcsin

(√
|ct|2 − 1

|ct|

)
+
√
|ct|2 − 1

−
√
1 + |ct|2 − 2|ct| cos (2θ − γ) ≤ 0.

We now maximize the function A with respect to θ:

∂A

∂θ
= 2− 4|ct| sin (2θ − γ)

2
√

1 + |ct|2 − 2|ct| cos (2θ − γ)
= 0

⇐⇒ |ct| sin (2θ − γ) =
√

1 + |ct|2 − 2|ct| cos (2θ − γ)
⇐⇒ |ct|2 sin2 (2θ − γ) = |ct|2 + 1− 2|ct| cos (2θ − γ)
=⇒ −|ct|2 cos2 (2θ − γ) = 1− 2|ct| cos (2θ − γ)
⇐⇒ (1− |ct| cos (2θ − γ))2 = 0

=⇒ θ =

arcsin

(√
|ct|2−1
|ct|

)
+ γ

2
.

Thus,

2θ − γ − arcsin

(√
|ct|2 − 1

|ct|

)
+
√
|ct|2 − 1

−
√
1 + |ct|2 − 2|ct| cos (2θ − γ)

≤ arcsin

(√
|ct|2 − 1

|ct|

)
− arcsin

(√
|ct|2 − 1

|ct|

)

+
√
|ct|2 − 1−

√
1 + |ct|2 − 2|ct| 1|ct| = 0.

This proves that ∥π̃(s, t)∥ ≤
(
1 + ε

a

)
∥SPw (s, t)∥ when

s is on the boundary of a disk D with positive weight.
In the special case where ω = 0, we know the exact

weight of a shortest path since π − 2θ + γ = π =⇒
2θ = γ. Hence, ∥π̃(s, t)∥ =

√
1 + |ct|2 − 2|ct| cos 2ε′,

and ∥SPw (s, t)∥ = |ct| − 1. Thus,

∥π̃(s, t)∥
∥SPw (s, t)∥

=

√
1 + |ct|2 − 2|ct| cos 2ε′

|ct| − 1

≤
√

1 + |ct|2 − 2|ct|+ 4|ct|ε′2
|ct| − 1

=

√
(|ct| − 1)2 + 4|ct|ε′2

(|ct| − 1)2
=

√
1 +

4|ct|ε′2
(|ct| − 1)2

.

Now, we would like to prove that
√
1 + 4|ct|ε′2

(|ct|−1)2 ≤
1+ ε

a =⇒ 1+ 4|ct|ε′2
(|ct|−1)2 ≤

(
1 + ε

a

)2
. We know that |ct| ≥

111



36th Canadian Conference on Computational Geometry, 2024

d+1, and ε′ ≤ εd
2a(d+1) , where d is the minimum distance

from D to any other disk. Thus, since 4|ct|ε′2
(|ct|−1)2 is a

decreasing function for |ct| > 1, we have that

1 +
4|ct|ε′2

(|ct| − 1)2
≤ 1 +

4(d+ 1)ε′2

d2

≤ 1 +
4(d+ 1)

(
εd

2a(d+1)

)2

d2

= 1 +
ε2

a2(d+ 1)
≤ 1 +

ε2

a2
≤

1 +
ε2

a2
+

2ε

a
=
(
1 +

ε

a

)2
. □

Next, we generalize Lemma 5 to the case where
SPw (s, t) intersects an ordered sequence of disks of D.
Recall that each disk Di is centered at ci, has radius Ri,
and the weight inside the disk is ωi ≥ 0, for 1 ≤ i ≤ n.
In addition, Gε is the graph whose vertex set is the set
of vertex vicinity centers and ring points, and each pair
of points is joined by an edge, see Section 3.

Theorem 6 Let SPw (s, t) be a weighted shortest path
between two points s and t. There exists a path π̃(s, t)
in Gε such that ∥π̃(s, t)∥ ≤ (1 + ε) · ∥SPw (s, t)∥.

Proof. Let D = (Dj , . . . , Dk) be the ordered sequence
of disks intersected by SPw (s, t). We can suppose
that s ∈ Dj , and t ∈ Dk. The ordered sequence
of points where SPw (s, t) enters the disks is given by
(s = a1, a2, . . . , ak−j+1 = t), see Figure 8. The portions
SPw (ai, ai+1) are called inter-vertex vicinity portions.

By Observation 1, the subpaths SPw (ai, ai+1) either
intersect the interior of the disk Di, or coincide with an
arc of Di.

Nodes s = a1 and t = ak−j+1 are ring points, so
we let vℓ1 = s and vℓk−j+1

= t. For the remaining
points ai, we let vℓi be the closest vertex vicinity center
or ring point to ai in disk Di, see Figure 8. Consider
now an inter-vertex vicinity portion SPw (ai, ai+1). We
define the path π′(vℓi , vℓi+1) as the path from vℓi to
vℓi+1

through b2i, the point where π(ai, ai+1) leaves Di.
Using the triangle inequality, we get that

∥π′(vℓi , vℓi+1)∥ ≤ ∥vℓiai∥+ ∥π(ai, ai+1)∥+ ∥ai+1vℓi+1∥.

Moreover, the maximum distance between consecu-
tive Steiner points on the same disk is given by the last
two points on the same annulus. This, together with
the fact that ai belongs to the interior of the annulus of
some vertex vicinity center, and Equation (2), gives us

∥vℓiai∥ ≤ 2Ri sin

(
ωiε

2a

(
1− 2ωiε

aπ

) 1
log2

aπ
aπ−2εωi

)
min{1, ωi}.

An upper bound for ∥ai+1vℓi+1
∥ is obtained analo-

gously. Thus, we have the following inequality:

∥π′(vℓi , vℓi+1
)∥ ≤ Riωiε

a
+ ∥π(ai, ai+1)∥+

Ri+1ωi+1ε

a

Note that we are using the fact that sin θ ≤ θ when
θ ≥ 0, and (1 − x)y ≤ 1 when x, y ≥ 0. Also,
the inequality is true even in the case where ωi = 0
(resp., ωi+1 = 0), since ∥vℓiai∥ = 0 ≤ Riωiε

a (resp.,

∥ai+1vℓi+1
∥ = 0 ≤ Ri+1ωi+1ε

a ). Now, recall that a =
1+3c+

√
9c2+10c+1
2 > 1 since c =

π
2 max1≤j≤n{Rj}
min1≤j≤n{dj} > 0.

Thus, a can be written as the solution of the system of
equations given by a = bc

2 and b = 6a+2
a−1 . Then,

Riωiε

a
+ ∥π(ai, ai+1)∥+

Ri+1ωi+1ε

a

=
2ωiεRimin1≤j≤n{dj}
bπ2 max1≤j≤n{Rj}

+ ∥π(ai, ai+1)∥

+
2ωi+1εRi+1 min1≤j≤n{dj}

bπ2 max1≤j≤n{Rj}

≤ 2εdi
b

+ ∥π(ai, ai+1)∥+
2εdi+1

b
. (4)

Therefore, we obtain the path π′(s, t) = π′(s, vℓ2) ∪
π′(vℓ2 , vℓ3)∪ . . .∪ π′(vℓk−j

, t). For each i = 1, . . . , k− j,
we define the point pi to be the closest Steiner point
to b2i that is to the right of SPw (s, t) when oriented
from s to t if b2i is to the right of the segment
from ai to its diametrically opposed point on Di. Oth-
erwise, we let pi be the closest Steiner point to b2i
that is to the left of SPw (s, t). Now, we create
the path π′′(s, t) = π′′(s, vℓ2) ∪ π′′(vℓ2 , vℓ3) ∪ · · · ∪
π′′(vℓk−j

, t), where π′′(vℓi , vℓi+1
) = (vℓi , pi, vℓi+1

). We

know from Lemma 5 that ∥π′′(vℓi , vℓi+1
)∥ ≤

(
1 + ε

a

)
·

∥π′(vℓi , vℓi+1
)∥. Thus, using Equation (4),

∥π′′(s, t)∥ =
k−j∑

i=1

∥π′′(vℓi , vℓi+1
)∥

≤
(
1 +

ε

a

) k−j∑

i=1

∥π′(vℓi , vℓi+1
)∥

≤
(
1 +

ε

a

) k−j∑

i=1

(
∥π(ai, ai+1)∥+

2ε

b
(di + di+1)

)

(5)

≤
(
1 +

ε

a

) k−j∑

i=1

∥π(ai, ai+1)∥

+

(
1 +

1

a

)
2ε

b

k−j∑

i=1

(di + di+1). (6)

Recall that di is the minimum distance from disk Di

to any other disk Dj . Hence, it follows that
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ai=b2i−1

ai+1=b2i+1

ai−1=b2i−3

b2i
b2(i−1)

b2(i+1)

v`i
v`i+1

v`i−1pi
pi−1pi+1

Figure 8: The shortest path SPw (s, t) is represented in blue. The path π′(s, t) is represented as a dashed path. The
vertex vicinities are the small disks around vℓi−1

, vℓi and vℓi+1
.

di + di+1 ≤ (∥vℓiai∥+ ∥π(ai, ai+1)∥)
+
(
∥vℓi+1ai+1∥+ ∥π(ai+1, ai)∥

)

≤ 2∥π(ai, ai+1)∥+
2

b
(di + di+1).

The second inequality in the previous equation comes
from the fact that ∥vℓiai∥ + ∥vℓi+1ai+1∥ ≤ 2ε

b (di +
di+1) ≤ 2

b (di + di+1), see Equation (5). Hence, di +

di+1 ≤ 2b
b−2∥π(ai, ai+1)∥. This, when substituted in

Equation (6) implies that

∥π′′(s, t)∥ ≤


1 +

6a+2
a−1 ε+ 4aε+ 2ε

a
(

6a+2
a−1 − 2

)



k−j∑

i=1

∥π(ai, ai+1)∥

=(1 + ε) · ∥SPw (s, t)∥.

Finally, since the length of the shortest path π̃(s, t)
in Gε is at most as large as the length of π′′(s, t), we
obtain the desired result. □

If we use this discretization scheme for disks, the ap-
proximation factor that we achieve is better than ap-
proximating each disk by a c-gon, and then using the
existing methods for triangulations by a factor of ap-
proximately

√
1 + ε log2

2
ε . The reason might be be-

cause most of the discretization schemes we are aware
of (see, e.g., [1, 2, 3, 30]) are described in terms of a tri-
angulation and, in our case, we would only have disjoint
c-gons.

Remark 7 Using our discretization scheme for
weighted disks provides an approximate shortest path
using fewer Steiner points than when using other
schemes for triangulations.

Proof. First, let us consider that the disks are approx-
imated by regular c-gons circumscribing the disks. We
would like to know the value of c for which the length

α

a
b

d

ci

Di

Figure 9: c-gon circumscribing a disk.

of a path that coincides with the boundary of the c-
gon is a (1 + ε)-approximation of the length of a path
that coincides with an arc of a disk. For the rest of
the proof we assume that the c-gons are disjoint. Let
a be a corner of the c-gon circumscribing Di, let d be
the intersection between the segment cia and Di. Let b
be the midpoint of an edge containing a, see Figure 9.
Now, we want to compare the length of the segment ab
with the length of the arc d̂b. Let α be the angle ∠cibd,
and assume, w.l.o.g., that the c-gons have side length 2.
Then, d̂b = α

tanα = π
c cot

π
c . Hence,

|ab|
|b̂d|

=
1

π
c cot

π
c

=
sin π

c
π
c cos

π
c

≤
π
c

π
c

(
1− (π

c )
2

2

)

=
1

2−(π
c )

2

2

=
2

2−
(
π
c

)2 ,

and if c ≥
√

1+ε
2ε π, then

|ab|
|b̂d| ≤ 1 + ε. The lowest up-

per bound on the number of vertices of a discretization
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scheme is obtained in [3], giving in this case at most
C(P )
√

1+ε
2ε πn log2

2
ε√

ε
Steiner points, for some parameter

C(P ) > 0. However, using our approach, we are adding
at most C(D)nε , for some other parameter C(D) > 0.
Thus,

C(P )
√

1+ε
2ε πn log2

2
ε√

ε

C(D)nε
≥ C(P )π

C(D)
√
2

√
1 + ε log2

2

ε
(7)

We know that
√
1 + ε log2

2
ε > 1, since ε > 0, and that

C(P )π

C(D)
√
2
> 0, so the value in Equation (7) is at least 1

for small values of ε. This concludes the proof that we
are adding less points than if we approximate each disk
with a c-gon, and then we use existing algorithms that
work on polygons. □

5 Conclusions and open problems

We presented and analyzed a discretization scheme
of the 2D space containing a set of non-overlapping
weighted disks. Using this scheme, one can compute an
approximate shortest path when the disks on the space
have a non-negative weight assigned to them. The main
idea of the discretization is to place Steiner points on
the boundary of the disks.

In addition, we can solve exactly the special case
where the disks have a weight ω = 0 or ω ≥ π

2 by using
visibility graph techniques and Dijkstra’s algorithm in
O(n2) time. We can also show how to create a linear-
sized t-spanner to reduce the running time of the algo-
rithms that compute a weighted shortest path when the
disks have any non-negative weight assigned to them.
However, due to lack of space, we cannot include these
results here.

As future work, it would be interesting to reduce the
number of Steiner points that we place on the bound-
ary of the disks, or reduce the number of edges of the
associated graph. Finally, a more general version of the
problem is to consider some disks that are not mutually
disjoint.
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Appendix

This Appendix is devoted to provide the proof on the size of
the graph Gε.

Lemma 8 The number of nodes in Gε is at most C(D)n
ε
,

where C(D) <
2aπ3(max1≤j≤n{Rj}+1)

min{1,ω2}·min1≤j≤n{1,d2j ,R2
j}
, and ω is the min-

imum positive weight of D.

Proof. Proposition 4 gives us an upper bound on the num-
ber of vertex vicinity centers and ring points in each disk
with weight greater than 0, which is 1

log2
aπ

aπ−2ωiε

π
αi

. We

know that log2
1

1−x
≥ x, when x ≥ 0, so

1

log2
aπ

aπ−2ωiε

π

αi
=

π

αi log2
1

1− 2ωiε
aπ

≤ π

αi
2ωiε
aπ

≤ π

arcsin
(

min{di,Ri}min{1,ωi}
4Ri max{1,ωi}

)
2ωiε
aπ

≤ π(
min{di,Ri}min{1,ωi}

4Ri max{1,ωi}

)
2ωiε
aπ

=
2aπ2Ri max{1, ωi}

min{di, Ri}min{1, ωi}ωiε

≤ 2aπ2(Ri + 1)π
2

min{di, Ri}min{1, ωi}ωiε

<
2aπ3(Ri + 1)

min{di, Ri}min{ωi, ω2
i }ε

≤ 2aπ3(Ri + 1)

min{di, Ri}min{1, ω2
i }ε

.

Moreover, if the weight of Di is 0, then by Equation (1)
we are placing 2π

εdi
a(di+1)

Ri

points, so

2π
εdi

a(di+1)
Ri

=
2aπ(di + 1)

Riεdi
=





if Ri≤di︷︸︸︷
= 2aπ(Ri+1)

R2
i ε

if di<Ri︷︸︸︷
= 2aπ(di+1)

d2i ε

=
2aπ(min{di, Ri} + 1)

min{d2i , R2
i }ε

≤ 2aπ(Ri + 1)

min{d2i , R2
i }ε

<
2aπ3(Ri + 1)

min{d2i , R2
i }ε

.

Then, since we have n disks, the total number of vertex
vicinity centers and ring points is upper-bounded by C(D)n

ε
,

where C(D) <
2aπ3(max1≤j≤n{Rj}+1)

min{1,ω2}·min1≤j≤n{1,d2j ,R2
j}

, where ω is the

minimum positive weight of D. Thus, the estimate on the
number of nodes in Gε is O(n

ε
). Note that here we are taking

into account that a does not depend on ε.
The set Eε of edges is obtained by creating an edge (u, v)

between any two vertex vicinity centers or ring points. In
case u and v are adjacent on the disk, we add an arc between
them. In addition, if u and v are not visible, the edge is a
non-straight line segment. This edge is a shortest path from
u to v avoiding all the disks, see, e.g., the red path in Fig-

ure 6. Thus, the total number of edges in Gε is O(n2

ε2
). □
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Burning Simple Polygons

Justin Bruss∗ William Evans Jiaxuan Li

Abstract

Given a simple polygon P with n vertices and an integer
k, we wish to find a set S of k vertices of P that mini-
mize the maximum geodesic distance from any point in
P to its geodesically closest vertex in S. We describe a
dynamic programming algorithm that solves this prob-
lem in O(n7) time.

1 Introduction

We are given a simple polygon P defined by n vertices
V , ordered clockwise around P . We are also given a
positive integer k ≤ n. The problem is to find a set U
of k vertices in V that minimizes (over all size k subsets
of V ) the maximum geodesic distance (over all points
p ∈ P ) from U to p, where the distance from U to p
is d(U, p) ≡ minu∈U d(u, p) and d(u, p) is the geodesic
distance (length of the shortest path in P ) from u to p.
Alternatively, one can think of the set U ⊆ V as being
ignition points where we simultaneously ignite k fires
that totally burn the flammable polygon in the least
time.
Our problem is a restricted version (where U ⊆ V )

of the general geodesic k-center problem in a simple
polygon P where U ⊆ P . Oh et al. [7] described an
O(n2 log2 n)-time algorithm for the general problem in
a simple polygon for k = 2. Soon after, Cho et al. [3] an-
nounced an optimal O(n log n) algorithm for this prob-
lem. The general problem for k > 2 seems more diffi-
cult. Evans and Lin [4] introduced the polygon burn-
ing problem and showed it to be NP-hard for polygons
with holes. They also gave an algorithm that solves the
problem in O(kn2) time for a restricted class of convex
polygons. In this paper, we describe an algorithm to
solve the problem for simple polygons in O(n7) time.

Our approach starts by identifying a small set of
points in P , called the potential final burn points, de-
noted F , that contains all points that could be the last
to burn in P for any k and any U ⊆ V . The set F com-
prises precisely the vertices V , along with the points on
the boundary of P equidistant from two vertices of P ,
and the points within P equidistant from three vertices
of P . Thus F consists of points defined by one, two, or

∗Department of Computer Science, University of
British Columbia, justinbruss1@gmail.com will@cs.ubc.ca

jack.li.jxl@gmail.com. Research supported in part by NSERC
Discovery Grant.

three vertices of P . Consequently, |F| ∈ O(n3) and it
can be calculated in O(n4) time [6]. For a point p ∈ F
to be an actual final burn point of a set of U ⊆ V of k
ignition points, the vertex/vertices that define it must
be in U and there must be a way to choose the remain-
ing ignition points in U so that (1) U contains no vertex
of P closer to p than p’s distance, t(p), to its defining
points1 (i.e. p is the last point to burn) and (2) every
point in P is at distance at most t(p) to its closest point
in U (i.e. all of P burns). Given a particular value k,
our algorithm considers each p ∈ F , in increasing or-
der of t(p), as a candidate for the true final burn point
for some set U of k ignition points. Using dynamic
programming, our algorithm determines if such a set U
exists. The first such p is the geodesic k-center.

2 Properties and Definitions

Notation: Let P be a simple polygon with vertices V .
Let ∂P be the boundary of P and let ∂P (a, b), a, b ∈ ∂P
be the boundary of P clockwise from a up to b. For
u, v ∈ P , let π(u, v) be the shortest geodesic path in P
from u to v and let d(u, v) be the length of π(u, v). The
last vertex (or u if there is none) before v on π(u, v) is
called the anchor of v (with respect to u). Let b(u, v)
be the geodesic bisector of u and v in P . Given a
set of ignition points (sites) U ⊆ V , let Vor(U) be
the geodesic nearest-point Voronoi diagram of U in P
and let Vor(U)[u] be the Voronoi region associated with
u ∈ U in Vor(U). We also call Vor(U)[u] the burn region
associated with u.

Observation 1 Since we are considering burn regions
which are Voronoi regions of sites that are vertices of
P , every burn region contains a vertex of P . In fact,
burn regions are star-shaped2 around their ignition point
(from Aronov [1, Cor. 3.20]).

Definition 1 (Burn Path) A burn path π(u, p) is the
shortest geodesic path from an ignition point u to a point
p in the burn region associated with u.

Definition 2 (Final Burn Point) A final burn point
of a set of ignition points U ⊆ V is a point p ∈ P

1A point p may have different values of t(p) if it has different
sets of defining points.

2A set Q ⊂ P is star-shaped around p ∈ P (with respect to
the geodesic metric) if ∀q ∈ Q : π(p, q) ⊂ Q.
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satisfying
d(U, p) = sup

q∈P
d(U, q)

For simplicity, we will assume that P is in general po-
sition, meaning no vertex of P is equidistant from two
other vertices of P , i.e., no bisector b(u, v), u, v ∈ V con-
tains a vertex of P (from [1, Def. 3.21]). However, this
assumption can be removed (See Appendix A). Note
that P being in general position implies that all bisec-
tors intersect the boundary of P at exactly two points.

Lemma 1 Let u, v ∈ V . Then d(u, p) where p ∈ b(u, v)
is strictly convex in p.

Proof. See Appendix B for proof. □

Corollary 2 Given the open subset S of b(u, v) between
two points p and q in b(u, v)

max{d(u, p), d(u, q)} > sup
p′∈S

d(u, p′)

Proof. Since d(u, p′) is strictly convex in p′ ∈ b(u, v),
the maximum value of d(u, p′) is attained at the bound-
aries of a given subdomain. □

Lemma 3 Given a burn region R associated with ig-
nition point u, there exists p ∈ R such that d(u, p) =
supp′∈R d(u, p

′). Moreover, for all such p ∈ R, at least
one of the following is true:

1. p ∈ (V ∩R) \ {u}

2. p is the intersection of b(u, v) with ∂P for some
v ∈ V

3. p is the intersection of b(u, v) with b(u,w) for some
v, w ∈ V

Proof. See Appendix C for proof. □

Definition 3 (Potential Final Burn Point) A po-
tential final burn point is a point p ∈ P such that:
• p ∈ ⋂n∈N Vor(N)[n] for some N ⊆ V where 1 ≤

|N | ≤ 3.
• If N = {u}, p ∈ V \ {u}.
• If N = {u, v}, p is the intersection of b(u, v) with

∂P .
• If N = {u, v, w}, p is the intersection of b(u, v) with

b(u,w). (This condition, when |N | = 3, is redundant.)
We use F to denote the set containing all such po-

tential final burn points in P . For p ∈ F , we call its
corresponding N the set of defining ignition points of p.

Classifying points p ∈ F by the number of ignition
points used to define them, we obtain a constructive
definition of F :

b(u
, v
)

v

u

P

p

b(
u,
w
)

w q

Figure 1: p is the Type II potential final burn point
defined by u, v clockwise from u to v. q is the Type III
potential final burn point defined by u, v, w.

A Type I potential final burn point is defined by a
single ignition point (|N | = 1). All n vertices are Type
I potential final burn points.

Type II: A Type II potential final burn point is de-
fined by a pair of ignition points N = {u, v}. There are(
n
2

)
ways to choose distinct u, v ∈ V . For each pair, the

bisector b(u, v) intersects ∂P , yielding exactly two Type
II potential final burn points (Fig. 1). Thus, we have
up to 2

(
n
2

)
Type II potential final burn points.

Type III: A Type III potential final burn point is
defined by a triple of ignition points N = {u, v, w}.
There are

(
n
3

)
ways to choose distinct u, v, w ∈ V . For

each triple, if the corresponding Voronoi vertex exists
in P , it constitutes a Type III potential final burn point
(Fig. 1). (Note that potential final burn points can have
multiple valid sets of defining ignition points.)

It is clear that F comprises precisely the vertices V ,
along with the points on the boundary of P equidis-
tant from two vertices of P , and the points within P
equidistant from three vertices of P .

Lemma 4 F∗ ⊆ F where F∗ is the set of final burn
points of P for every possible set of ignition points U ⊆
V .

Proof. Concretely,

F∗ =
⋃

U⊆V
{p ∈ P |d(U, p) = max

q∈P
d(U, q)}.

Fix U ⊆ V and let a ∈ {p ∈ P |d(U, p) =
maxq∈P d(U, q)}. We must have a ∈ Vor(U)[u] for some
u ∈ U . Let R denote the burn region associated with u,
R = Vor(U)[u].

Let b ∈ R,

d(u, b) = d(U, b) b ∈ Vor(U)[u]

≤ max
q∈R

d(U, q) b ∈ R

≤ max
q∈P

d(U, q) R ⊆ P

= d(U, a) choice of a

= d(u, a) a ∈ Vor(U)[u]
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u

p

P

B

A

Figure 2: Enclosed regions A = R({u}, p, (p, u)) and
B = R({u}, p, (u, p)) defined by ignition point u and a
point p which lies on the boundary of P in Vor(U)[u]
(U ⊆ V ).

Therefore d(u, a) = supb∈R d(u, b) and a satisfies at least
one of the three statements in Lemma 3.
If a ∈ (V ∩R)\{u}, then we take N = {u}. If a is the

intersection of b(u, v) with ∂P for some v ∈ V , then we
take N = {u, v}. If a is the intersection of b(u, v) with
b(u,w) for some v, w ∈ V , then we take N = {u, v, w}.
In all three cases it is clear that a satisfies Definition 3
and is therefore in F .
Since each set in the union is a subset of F , we have

F∗ ⊆ F as desired. □

Note that for all final burn points p ∈ F∗, the sets of
defining points are covered by the sets of defining points
for the same p ∈ F since we use every possible set.

2.1 Enclosed Regions

Given a set of ignition points U ⊆ V , an enclosed region
is a region of P that is enclosed by a simple curve com-
posed of one or two shortest paths from ignition points
in U to some (shared) point p in their associated burn
regions, and a continuous part of the boundary of P
between the two end points of the curve. More specifi-
cally: Let u ∈ U be an ignition point and p ∈ ∂P be a
point in Vor(U)[u]. The region enclosed by ∂P (u, p) (or
∂P (p, u)) and π(u, p) is an enclosed region with enclos-
ing vertex u and enclosing point p (Fig. 2). Similarly,
let u, v ∈ U be ignition points such that Vor(U)[u] and
Vor(U)[v] intersect at some point p ∈ P . The region en-
closed by ∂P (u, v) (or ∂P (v, u)) and the shortest paths
π(u, p) and π(v, p) is an enclosed region with enclosing
vertices u, v and enclosing point p (Fig. 3).

Let R(N, p, (a, b)) denote the enclosed region of P
enclosed by π(N, p)∪∂P (a, b) where N is a set of one or
two enclosing vertices, p is the enclosing point associated
with the vertices, and a, b ∈ ∂P are the end points of
π(N, p). Note that the ordered pair (a, b), with a, b ∈
N ∪ {p}, determines which half of P is enclosed.

Lemma 5 (Isolation Property) Given an enclosed
region R = R(N, p, (a, b)) where the paths π(N, p) are
burn paths in Vor(U), no region in Vor(U) exists on both

v

u

P

p

B

A

Figure 3: Enclosed regions A = R({u, v}, p, (u, v)) and
B = R({u, v}, p, (v, u)) A and B defined by ignition
points u, v and a point p which lies in the intersection
of the burn regions associated with u and v in Vor(U)
(U ⊆ V ).

sides of
⋃
v∈N π(v, p) (other than the regions associated

with N).

Proof. If the paths π(N, p) are burn paths in Vor(U),
Vor(U) contains regions associated with the ignition
points in N . Furthermore,

⋃
v∈N π(v, p) is entirely con-

tained in
⋃
v∈N Vor(U)[v] and must separate P into two

halves. By Lemma 1, burn regions are simply con-
nected. If there exists a region in Vor(U) that is on
both sides of

⋃
v∈N π(v, p) that isn’t associated with ver-

tices in N , it would imply it is not simply connected or
that the region intersects other regions at more than
just the boundary which contradicts our general posi-
tion assumption. □

3 Algorithm Description

The input is a simple polygon P with vertices V , and
the maximum number of vertex ignition points k > 0
allowed to burn P .

Definition 4 (Properly Burned) Given a set of ig-
nition points U ⊆ V , an enclosed region R is considered
properly burned in time t if the burn paths enclosing R
exist in Vor(U) and R is entirely burned in time t.

3.1 Preprocessing

We first calculate and store the set of all Type II and
Type III potential final burn points (see Definition 3).
Let F2[u, v] be the Type II potential final burn point
p ∈ ∂P (u, v), if it exists, with associated ignition points
u, v ∈ V . Let F3[u, v, w]

3 be the Type III potential final
burn point p, if it exists, with associated ignition points
u, v, w ∈ V . Populating these tables takes time O(n4)
using the algorithm of Oh [6] which takes O(n) time to
compute the geodesic Voronoi diagram for a constant
number of sites. It takes time O(n4 log n) using the
simpler algorithm of Asano and Asano [2].

3Assume different permutations of u, v, w index the same way.
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3.2 Polygon Burning Algorithm

The Polygon Burning Algorithm returns the solution to
the Polygon Burning Problem in P by finding a set of
ignition points U ⊆ V , |U | ≤ k, such that the time taken
to burn the entirety of P is minimized. This is done by
iterating through every point p0 ∈ F in increasing order
of associated final burn time, finding the smallest set U
of ignition points that achieves that burn time, until we
find U such that |U | ≤ k.

(1) Let DPTable be a dynamic programming table, in-
dexed by a time t(p0) and an enclosed region R,
that stores the minimum size set of ignition points
required to properly burn R in time t(p0).

(2) For each potential final burn point p0 with asso-
ciated set of ignition points N = {u} (Type I),
N = {u, v} (Type II), or N = {u, v, w} (Type III),
in increasing order of t(p0) = d(u, p0), we attempt
to find the smallest set U ⊆ V of ignition points
that burn the entirety of P with final burn point p0
and the burn paths from N to p0 appear in Vor(U).
There are different initial enclosed regions for each
type of potential final burn point:

Type I: There are two enclosed regions associ-
ated with a Type I potential final burn point:
R({u}, p0, (u, p0)), R({u}, p0, (p0, u)). These corre-
spond to the halves of the polygon clockwise of u up
until p0 and clockwise of p0 up until u respectively
which are separated by the burn path π(u, p0).

Type II: Without loss of generality, assume p0 is
clockwise of u up to v. There are three enclosed
regions associated with a Type II potential final
burn point: R({u}, p0, (u, p0)), R({v}, p0, (p0, v)),
R({u, v}, p0, (v, u)). These correspond to 3 regions
of the polygon, one isolated by the burn path
π(u, p0), one isolated by the burn path π(v, p0), and
one isolated by the burn paths π(u, p0) and π(v, p0).

Type III: There are three enclosed regions asso-
ciated with a Type III potential final burn point
(note that we are assuming that u, v, w are in
clockwise order around P ): R({u, v}, p0, (u, v)),
R({v, w}, p0, (v, w)), R({w, u}, p0, (w, u)). These
correspond to 3 regions of the polygon which are
each enclosed by two burn paths from ignition
points to p0.

After determining the set of enclosed regions asso-
ciated with p0, we attempt to find the smallest set
of ignition points as follows:

(a) We determine the sets S1, S2, (S3) correspond-
ing to the optimal set of ignition points re-
quired to burn the enclosed regions associated
with p0 and N in time t(p0) using the ERA
algorithm in Section 3.3.

(b) If S1 = ∅ or S2 = ∅ (or S3 = ∅), this means
it is not possible for p0 to be a true final burn
point so we continue to the next potential final
burn point; otherwise

(c) let U ← S1 ∪ S2(∪S3)

Once we find U such that |U | ≤ k, we return U .

Lemma 6 If it is possible to burn P with a set of ig-
nition points U such that p0 is the final burn point and
the paths from N to p0 are burn paths in Vor(U) then
the algorithm returns the smallest such set. Otherwise
it continues to the next potential final burn point.

Proof. For each potential final burn point p0 defined by
a set of ignition points N , there exist known burn paths
from N to p0. Using these known paths, we define a set
of enclosed regions SR as in Step 2 such that each region
in SR is isolated from the rest by burn paths from N to
p0 and

⋃
SR = P . Let t(p0) = d(N, p0) (by definition,

each ignition point in N is equidistant to p0). Properly
burning all of the regions in SR in time t(p0) with a
set of ignition points U is equivalent to P being entirely
burnt in time t(p0), p0 being a final burn point in P ,
and burn paths π(N, p0) being burn paths in Vor(U).
This is because properly burning all regions in SR with
U implies:

• The known burn paths from N to p0 are burn paths
in Vor(U)

•
⋃
SR = P is entirely burned

• Each region in SR is burned in time less than or
equal to t(p0) which means p0, which is burned at
exactly time t(p0), is the last point to burn.

Suppose U∗ is a smallest set of ignition points that prop-
erly burns all of the regions in SR. Since each region
in SR is isolated from the rest by known burn paths,
U∗ must properly burn each region in SR optimally. By
Theorem 9, in Step 2a, we obtain optimal sets for prop-
erly burning each region in SR. Since U

∗ properly burns
each region optimally, the union U of the optimal sets
found in Step 2a has the same magnitude as U∗ which
implies U is optimal.

If it is not possible to burn P and maintain p0 as
the final burn point with burn paths from N to p0, By
Theorem 9, we will not be able to properly burn at least
one of the regions in SR which means we will continue
to the next potential final burn point in Step 2b. □

Theorem 7 This algorithm finds a set of ignition
points U , |U | ≤ k, such that for all points p ∈ P , the
maximum geodesic distance from U to p is minimized.

Proof. By Lemma 4, F∗ is a subset of FP . In addition,
the set of defining points for each p ∈ F∗ is covered
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by the set of sets of defining points for corresponding
p′ ∈ F . Suppose U∗, |U∗| ≤ k, is an optimal set of
ignition points that minimizes the maximum distance
from an ignition point to a point p ∈ P . U∗ will have
an associated final burn point p0 ∈ P . Since F covers
every possible set of initial ignition points that make p
the final point to burn in F (Lemma 4), if we look at
potential final burn point p0 with initial ignition points
N such that the burn paths from N to p0 exist as burn
paths in Vor(U∗), we will return a set U such that |U | =
|U∗| by Lemma 6.
Since U∗ is optimal and we explore potential final

burn points in increasing order of burn time, if we return
before we get to potential final burn point p0 with initial
ignition points N , we must have returned a set U , |U | ≤
k, with burn time equal to the burn time of U∗. □

3.3 Enclosed Region Algorithm (ERA)

The purpose of this algorithm is to fill in the dynamic
programming table by finding the set with the minimum
number of ignition points required to properly burn an
enclosed region R of P in time t(p0). If it is not possible
to properly burn R in time t(p0), the table is assigned
the empty set.
Each subproblem is defined by an enclosed region R =

R(N = {u, (v)}, p, (a, b)) and a time t(p0) to burn R.
Note that we assume d(N, p) ≤ t(p0).

(1) Return DPTable[t(p0), R] if it has already been cal-
culated; otherwise

(2) Determine if R is entirely burned in time t(p0) by
the set N of enclosing vertices in linear time (see
Section E). If R is entirely burned, we update the
dynamic programming table: DPTable[t(p0), R] ←
N and return N ; otherwise

(3) Let Sbest ← ∅ be the minimum set of ignition points
required to burn R.

(4) If |N | = 2, attempt to recursively find the optimal
sets SA and SB for enclosed regions A andB implied
by Case 2 of Lemma 12. If SA and SB are both non-
empty, Sbest ← SA ∪ SB .

(5) For each vertex v′ ∈ V ∩ ∂P (a, b), we attempt to
add v′ as the next enclosing vertex.

(a) Determine the enclosing point p′ and enclosing
regions A and B associated with adding v′ as
the next enclosing vertex (see Section 3.4). If
we cannot add v′ as the next enclosing vertex,
we continue to the next iteration of the loop;
otherwise

(b) Recursively find optimal ignition point sets SA
and SB that properly burn A and B respec-
tively in time t(p0).

(c) If SA = ∅ or SB = ∅, A and/or B could not be
properly burned in time t(p0) so we continue to
the next iteration; otherwise

(d) If |SA ∪ SB | < |Sbest| or Sbest = ∅, Sbest ←
SA ∪ SB .

(6) Update the dynamic programming table
DPTable[t(p0), R]← Sbest and return Sbest.

Lemma 8 In ERA Step 4, given that burn paths π(u, p)
and π(v, p) exist, properly burning A and B is equivalent
to properly burning R, subject to b(u, v) not intersecting
any region in R other than Vor(U)[u] ∪ Vor(U)[v].

Proof. If A and B are properly burned, burn paths
π(u, p′) and π(v, p′) exist and are burned in time t(p0).
This means burn paths π(u, p) and π(v, p) are burn
paths in Vor(U) since they are separated from A∪B by
π(u, p′)∪π(v, p′). Furthermore, Ru,v = R\(A∪B) which
is enclosed by π(u, p′), π(u, p), π(v, p′), and π(v, p) is
entirely burned by u and v (Obs. 5). This means
R = A∪B ∪Ru,v is entirely burned in time t(p0) which
implies R is properly burned. □

Theorem 9 ERA finds a minimum set of ignition
points to properly burn R = R(N = {u, (v)}, p, (a, b))
in time t(p0), if it is possible. Otherwise, ERA returns
the empty set.

Proof. Suppose there exists some optimal set U ⊆ V
of ignition points that properly burn R in time t.

• If R is entirely burned by N in time t(p0), N is the
optimal set since we don’t need to add more igni-
tion points and the enclosing vertices and enclosing
point of R are preserved by default (Step 2).

• If R is not entirely burned by N in time t, there
are three cases:

Case N = {u}: Without loss of generality, supposeR =
R({u}, p, (p, u)). By Lemma 11, there exists an ignition
point v′ ∈ U ∩ ∂P (p, u) and a point p′ ∈ b(u, v′) ∩
∂P (p, v′) such that ∂P (p, p′) is entirely in Vor(U)[u].
Since U ∩ ∂P (a, b) ⊆ V ∩ ∂P (a, b), at some point, we
will attempt to add v′ as the next enclosing vertex (ERA
step 5). Since the enclosed regions A and B implied by
adding v′ exist in the context of U , by Theorem 10, we
will obtain A and B such that properly burning A and
B is equivalent to R being properly burned with v′ as
the next enclosing vertex (ERA step 5a). We recursively
find optimal ignition sets SA and SB that properly burn
regions A and B. Since A and B are isolated from each
other in U by π(v′, p′), they must be burned optimally
in U or there would exist a set of ignition points more
optimal than U . This implies |SA ∪ SB | = |U |. Since U
is optimal, the set SA ∪ SB of ignition points returned
by the algorithm is optimal.
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Case N = {u, v} and b(u, v) intersects regions
other than Vor(U)[u] ∪ Vor(U)[v] in R: Without
loss of generality, suppose R = R({u, v}, p, (v, u)). By
Lemma 12 Case 1, there exists v′ ∈ U ∩ ∂P (v, u) and
p′ ∈ R such that p′ is the Voronoi vertex of u, v, v′ (it is
equidistant from all three vertices). In a similar manner
to the previous case, we will eventually attempt to add
v′ as the next enclosing vertex and find the regions A
and B implied by adding v′ as the next enclosing ver-
tex (Obs. 4). We recursively find the optimal sets SA
and SB that properly burn A and B. Since A and B
are isolated from each other by π(v′, p′), they must be
burned optimally in U which implies |SA ∪ SB | = |U |.
Since U is optimal, the set SA ∪ SB of ignition points
returned by the algorithm is optimal.

Case N = {u, v} and b(u, v) does not intersect
any region in R other than Vor(U)[u]∪Vor(U)[v]: In
Step 4, we find the regions A and B implied by this case
as shown in Case 2 of Obs. 4. Lemma 8 says that prop-
erly burning A and B is equivalent to properly burning
R in this case. Since it must be possible to properly burn
A and B (since U exists), we recursively find the optimal
sets SA and SB that properly burn A and B. Since A
and B are isolated from each other by b(u, v), they must
be burned optimally in U which implies |SA∪SB | = |U |.
Since U is optimal, the set SA ∪ SB of ignition points
returned by the algorithm is optimal.

If there exists no way to properly burn R with some
set U ⊆ V , for each v′, either there will be no way to find
A and B (Theorem 10 for Case 1,2, Lemma 8 for Case
3) or we will not be able to recursively find sets that
properly burn A and B which means Sbest will never be
updated. Since Sbest is never updated, we will fill the
table with the empty set. □

3.4 Next Enclosing Vertex Algorithm

Given an enclosed region R = R(N, p, (a, b)), a maxi-
mum time t(p0) allowed to burn R, and a potential next
enclosing vertex v′ ∈ ∂V (a, b), we determine if v′ can be
added as the next enclosing vertex and we find enclosed
regions A and B associated with adding v′. We assume
that the burn paths enclosing R are already burned in
time t(p0).

(1) If d(v′, p) < d(N, p), return ∅; otherwise
(2) There are two cases:

Case 1: N = {u}: Without loss of generality,
assume R is bounded by ∂P (p, u). We assume v′

is the vertex described in Lemma 11 which means
p′ = F2[u, v

′] since p′ is the intersection of b(u, v′)
with ∂P on the same side of ∂P as p.

(a) If d(v′, p′) > t(p0), return ∅; otherwise
(b) If ∂P (p, p′) is not covered by u in time t(p0)

(see Section E), return ∅; otherwise

(c) return A and B as in Obs. 3.

Case 2: N = {u, v}: Without loss of generality,
assume R is bounded by ∂P (v, u). We assume v′ is
the vertex described in Case 1 of Lemma 12 which
means p′ = F3[u, v, v

′] since it is equidistant from
all three vertices (if p′ does not exist, return ∅).

(a) If d(v′, p′) > t(p0), return ∅; otherwise
(b) return A and B as in Obs. 4.

Theorem 10 Given an enclosed region R =
R(N, p, (a, b)), a time t(p0) and v′ as the next
enclosing vertex, if it is possible, the Next Enclosing
Vertex Algorithm gives us two enclosed regions A and
B separated by π(v′, p′), such that A and B being
properly burned in time t(p0) by a set of ignition points
U is equivalent to R being properly burned in time t(p0)
and paths π(N, p′) and π(v′, p′) being burn paths in
Vor(U). If it is not possible the Next Enclosing Vertex
Algorithm returns nothing.

Proof. See Section D. □

3.5 Runtime Analysis

There are O(n3) possible values of t for indexing into
the dynamic programming table. At each step of the
recursion, we choose an enclosed region such that the
enclosing point is a potential final burn point of P .
This is true for the Polygon Burning Algorithm and in
each case of the Next Enclosing Vertex Algorithm. So
there are O(n3) possible enclosed regions meaning the
total size of the dynamic programming table is O(n6).
Each value in the table is filled in by one call to ERA.
Each iteration of the loop in ERA takes constant time
if we precalculate region coverage for vertices (O(n6)
with brute force) and the set of all pairwise distances
between v ∈ V and F (O(n4 log n) using [5]). Since
ERA performs O(n) iterations, the final run time of the
algorithm is O(n7).

4 Open Problems

It seems likely that the running time of this algorithm
can be improved. It is also likely that a slightly more
complicated algorithm could handle a constant number
of ignition points in the interior of polygon P .
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Appendix

A Removing the General Position Assumption

Assuming no vertex of P is equidistant to two other vertices
ensures that the (geodesic) bisector of any two vertices of
P is a 1D curve that intersects ∂P at exactly two points.
Without this general position assumption, we can get posi-
tive area intersections of Voronoi cells as shown in Figure 4.
To handle this, we define the bisector b(u, v) to be only the
1D curve portion of the intersection between Voronoi cells
of u and v in Vor(U) (including the two intersection points
on ∂P at the ends of the curve).

Observation 2 All points in P on the same side of b(u, v)
as u are at least as close to u as they are to v

Proof. If there exists a point p such that d(u, p) > d(v, p)
and π(v, p) crosses b(u, v) at a point x where d(u, x) = d(v, x)
then d(u, p) ≤ d(u, x) + d(x.p) = d(v, x) + d(x, p) = d(v, p)
is a contradiction. □

Assume b(u, v) intersects ∂P at some vertex w. If this
bisector appears when running ERA, it must be the case
that we are attempting to include both u and v in our solu-
tion which means we can assume any non-trivial intersection
region is covered by the ignition point on the same side of
b(u, v) as the intersection region by Obs. 2.

B Proof of Lemma 1

Lemma 1 Let u, v ∈ V . Then d(u, p) where p ∈ b(u, v) is
strictly convex in p.

Proof. The tangent to b(u, v) bisects the angle between
the directions to u and v of the shortest paths π(p, u) and
π(p, v)4. Let u′ and v′ be the anchor vertices along π(p, u)

4from [1, Lemma 3.22]

u

v

b(u, v)

A

P

w

Figure 4: Polygon P is not in general position since
b(u, v) intersects vertex w of P . In this case, all points
in region A are equidistant from both u and v.

and π(p, v) respectively. Let the angle θ be the angle be-
tween pu′ and pv′ clockwise from pv′ to pu′.

Let α = θ/2 be the angle between the tangent to the
bisector at p and pu′. α ∈ [0, π] since, if this were not the
case, then the shortest path from u to p would properly
intersect b(u, v). Consider point p′ ∈ b(u, v) infinitesimally
close to p in the direction such that p′ is clockwise from pv′

to pu′. We consider the segment of b(u, v) between p and p′

to be a straight line. Let β be the angle between the tangent
of b(u, v) at p′ and p′u′. We now have a triangle composed of
segments and angles pu′, α, pp′, β, p′u′, ε as shown in Fig. 5.
This implies:

d(u′, p) =
sinα

sinβ
d(u′, p′) Law of Sines

β = π − α− ε sum of angles

=⇒ d(u′, p) =
sinα

sin(α + ε)
d(u′, p′)

This implies d(u′, p) > d(u′, p′) for α < π/2 and d(u′, p) <
d(u′, p′) for α ≥ π/2 which implies the same for d(u, p) and
d(u, p′). Since alpha strictly increases as we move along
b(u, p) in the direction of p′ from p (increases by ε at each
step), d(u, p) is strictly decreasing for α < π/2 and strictly
increasing for α ≥ π/2. □

β

α

ε
u′p′

p

Figure 5: The triangle created by u′, p and p′ as in
Lemma 1.

C Proof of Lemma 3

Lemma 3 Given a burn region R associated with igni-
tion point u, there exists p ∈ R such that d(u, p) =
supp′∈R d(u, p′). Moreover, for all such p ∈ R, at least one
of the following is true:

1. p ∈ (V ∩R) \ {u}
2. p is the intersection of b(u, v) with ∂P for some v ∈ V
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p

u

v′

p′
R

Figure 6: An enclosed region R = R({u}, p, (p, u)) as
defined in Lemma 11

3. p is the intersection of b(u, v) with b(u,w) for some
v, w ∈ V

Proof. Fix u and its corresponding burn region R. Ex-
istence of p follows directly from 1) the function d(u, p) :
R −→ R is continuous and 2) R is closed and bounded in
R2 and hence compact. Let p ∈ R and suppose none of the
above is true.

Case 1: p is an interior point of R. In this case, a point
q ∈ R with d(u, q) > d(u, p) can be found by extending the
last segment in π(u, p) by an infinitesimally small amount
and taking the new endpoint as q.

Case 2: p is not an interior point of R. Then p ∈ b(u, v)
for some v ∈ V or p ∈ ∂P . If p is on some bisector then
Lemma 2 implies the existence of q ∈ R infinitesimally close
to p on the same bisector as p such that d(u, q) > d(u, p).

Suppose p ∈ ∂P and the anchor vertex p′ doesn’t change
at π(u, p). We must have |p′q| > |p′p| for all q lying on at
least one side of p on the same polygon edge. Then we can
find q ∈ R on the polygon edge infinitesimally close to p such
that |p′q| > |p′p| while maintaining p′ as the anchor vertex
along π(u, q). Then d(u, q) = d(u, p′) + |p′q| > d(u, p′) +
|p′p| = d(u, p) and d(u, p) ̸= supp′∈R d(u, p′).

Alternatively, if p ∈ ∂P and the anchor vertex does change
at π(u, p). Let p′ denote the anchor vertex and p′′ denote
the second to last vertex on π(u, p). Similarly, we must
have |p′′q| > |p′′p| for all q lying on at least one side of p
on the same polygon edge. We can find q ∈ R infinites-
imally close to p such that |p′′q| > |p′′p| and the anchor
vertex along π(u, q) is either p′ or p′′. If the anchor vertex
is p′′ then by argument similar to the previous case, we are
done. Otherwise, applying the triangle inequality under Eu-
clidean distance, we have d(u, q) = d(u, p′′) + |p′′p′|+ |p′q| ≥
d(u, p′′) + |p′′q| > d(u, p′′) + |p′′p| = d(u, p).

d(u, p) ̸= supp′∈R d(u, p′) in all cases if p satisfies none of
the above statements. Combined with the fact that some
p ∈ R must satisfy d(u, p) = supp′∈R d(u, p′), the lemma is
true. □

D Algorithm Correctness

Lemma 11 (see Fig. 6) Given an enclosed region R =
R({u}, p, (p, u)), if R does not lie entirely in Vor(U)[u], there
exists an ignition point v′ ∈ ∂P (p, u) such that the following
properties hold:

• Vor(U)[v′] ⊂ R

p

u

v′

p′

R

A

B

Figure 7: The enclosed regions implied by the existence
of v′ and p′ in Obs. 3. A = R({v′}, p′, (p′, v′)), B =
R({u, v′}, p′, (v′, u)).

v

u

p

v′
p′

R

Figure 8: An enclosed region R = R({u, v}, p, (v, u))
that falls into Case 1 of Lemma 12.

• p′ ∈ ∂P (p, v′) ∩ b(u, v′)

• ∂P (p, p′) ⊂ Vor(U)[u]

The symmetric claim holds for R = R({u}, p, (u, p)).

Proof. Since R does not lie entirely in Vor(U)[u], there ex-
ists a set S of one or more burn regions in R associated
with ignition points in U \ {u}. Furthermore, by Lemma 5,
since π(u, p) separates P , the ignition points must all exist in
∂P (p, u). By Obs. 1, there exist points along ∂P (p, u) that
are in

⋃
S. Since p ∈ Vor(U)[u], as we travel along ∂P (p, u)

from u to p, we must eventually get to a point p′ where
p′ ∈ ⋃

S and, for all points b ∈ ∂P (p, p′), b ∈ Vor(U)[u]. We
choose v′ to be the ignition point associated with a region
in S that contains p′. Because Vor(U)[v′] does not contain
u, it is a proper subset of R. □

Observation 3 (see Fig. 7) Given the enclosed region R =
R({u}, p, (p, u)), the existence of p′ and paths π(u, p′) and
π(v′, p′) in R implies the existence of two new enclosed re-
gions derived from Vor(U):

• A = R({v′}, p′, (p′, v′))
• B = R({u, v′}, p′, (v′, u))

The symmetric claim holds for R = R({u}, p, (u, p)).

Lemma 12 Given an enclosed region R =
R({u, v}, p, (a, b)), if R does not lie entirely in
Vor(U)[u] ∪ Vor(U)[v], there are two possible cases:

• Case 1 (Fig. 8): If b(u, v) intersects some region other
than Vor(U)[u]∪Vor(U)[v] in R, there exists an ignition
point v′ ∈ U such that the following properties hold:
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v

u

p

v′

p′

R

B

A

Figure 9: The enclosed regions implied by the ex-
istence of v′ and p′ in Case 1 of Obs. 4. A =
R({v, v′}, p′, (v, v′)), B = R({u, v′}, p′, (v′, u)).

– Vor(U)[v′] ⊂ R

– Vor(U)[v′] intersects Vor(U)[u] ∩ Vor(U)[v] at
some point p′ ∈ R

• Case 2: b(u, v) does not intersect any region in R other
than Vor(U)[u] ∪ Vor(U)[v]. The following properties
hold:

– There exists burn paths π(u, p′) and π(v, p′) where
p′ is the point at the intersection of b(u, v) with ∂P
in R

Proof. Case 1: If b(u, v) intersects regions other than
Vor(U)[u]∪Vor(U)[v], there exists a region Vor(U)[v′] at the
point p′ on b(u, v) at the boundary of Vor(U)[u]∪Vor(U)[v].
This point, by definition, is the Voronoi vertex associated
with vertices u, v, v′ and therefore is in all three associated
regions. Since π((, u), p) ∪ π(v, p) separates R from the rest
of P , Vor(U)[v′] ⊂ R.

Case 2: b(u, v) intersects ∂P ∩ R at some point p′ since,
if this were not the case, we could draw a path from u to
v through R that does not intersect b(u, v). Since b(u, v)
does not intersect any region in R other than Vor(U)[u] ∪
Vor(U)[v], p′ ∈ Vor(U)[u] ∪ Vor(U)[v]. This implies there
exists burn paths π(u, p′) and π(v, p′) in R. □

Observation 4 Without loss of generality, assume R is en-
closed by ∂P (v, u).

In Case 1 of Lemma 12, the existence of p′ and burn paths
π(u, p′), π(v, p′), and π(v′, p′) in R implies the existence of
two new enclosed regions derived from Vor(U) (Fig. 9):

• A = R({v, v′}, p′, (v, v′))
• B = R({u, v′}, p′, (v′, u))

In case 2 of Lemma 12, the existence of p′ and burn paths
π(u, p′) and π(v, p′) implies the existence of two new enclosed
regions derived from Vor(U)

• A = R({v}, p′, (v, p′))
• B = R({u}, p′, (p′, u))

Observation 5 The region Ru,v = R \ (A ∪B) is enclosed
by burn paths π(u, p′), π(u, p), π(v, p′), and π(v, p). Further-
more, Ru,v lies entirely in Vor(U)[u]∪Vor(U) and is isolated
from A ∪B by π(u, p′) ∪ π(v, p′).

Theorem 10 Given an enclosed region R = R(N, p, (a, b)),
a time t(p0) and v′ as the next enclosing vertex, if it is pos-
sible, the Next Enclosing Vertex Algorithm gives us two en-
closed regions A and B separated by π(v′, p′), such that A
and B being properly burned in time t(p0) by a set of ig-
nition points U is equivalent to R being properly burned in
time t(p0) and paths π(N, p′) and π(v′, p′) being burn paths
in Vor(U). If it is not possible the Next Enclosing Vertex
Algorithm returns nothing.

Proof. In both cases, A and B are separated by π(v′, p′)
(Obs. 3 & 4). This implies that if A and B are properly
burned, v′ must be an ignition point.

If d(v′, p) < d(N, p), p would not be in the Voronoi re-
gions associated with enclosing vertices in N which means
the enclosing vertices and enclosing point of R would not be
preserved if v′ is chosen as an ignition point (Step 1). In ad-
dition, if v′ implies an enclosing point p′ that is not burned
by v′ in time t(p0), v′ cannot be the next enclosing vertex
(Step 2a for both cases).

• Case 1: Without loss of generality, assume R =
R({u}, p, (p, u)).

p′ ∈ ∂P (p, v) since if this was not the case, it would
imply d(v′, p) < d(u, p) since b(u, v′) would properly
intersect π(u, p) which would imply p is closer to v′

than u. If A and B are properly burned in time t(p0),
it must be the case that the burn path π(u, p′) exists.
Let Ru be the region enclosed by burn paths π(u, p′)
and π(u, p) and ∂P (p, u). By Obs. 1 (star-shaped prop-
erty), Ru lies entirely in Vor(U)[u]. This means π(u, p′)
separates π(u, p) from A∪B which implies that π(u, p)
is preserved. ∂P (p, u) must be burned by u in time
t(p0) (Step 2b). Since burn paths π(u, p′) and π(u, p)
exist and ∂P (p, p′) can be burned by u in time t(p0),
by Lemma 1, Ru is entirely burned by u in time t(p0).
This means R = A ∪B ∪Ru is entirely burned in time
t(p0) which implies R is properly burned.

• Case 2: Without loss of generality, assume R =
R({u, v}, p, (v, u)).

p′ ∈ R since if this was not the case, similar to the previ-
ous argument, v′ would be too close to p. If A and B are
properly burned in time t(p0), it must be the case that
burn paths π(u, p′) and π(v, p′) exist. This implies that
burn paths π(u, p) and π(v, p) are preserved since they
are isolated from A and B by π(u, p′)∪π(v, p′) (Obs. 5.
Since p and p′ are burned by u and v in time t(p0), the
segment S of b(u, v) between p and p′ is burned by u
and v by Lemma 1. Let Ru,v be the region enclosed by
burn paths π(u, p′), π(u, p), π(v, p′), and π(v, p). By
Obs. 5, R \ (A ∪ B) ⊂ Ru,v. Similar to Case 1, since
S is burned by u and v, the region enclosed by burn
paths π(u, p) and π(u, p′) and S is entirely burned by
u (and similar for v) (Lemma 1). This implies Ru,v is
entirely burned by u and v in time t(p0). This means
R = A∪B∪Ru,v is entirely burned in time t(p0) which
implies R is properly burned.

In both cases, if either A or B cannot be properly burned
in time t(p0), since each region is isolated by known burn
paths, R cannot be entirely burned in time t(p0) with v′ as
the next enclosing vertex. □
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E Determining if an enclosed region is entirely
burned by a set of enclosing vertices in time t(p0)

This method takes the arguments to an enclosed region R =
R({N}, p, (a, b)) and a time t to burn the enclosed region
with N . We assume that p is burned by N in time t.
Implementation:
There are two cases depending on |N |:

• |N | = 1: If d(u, v′) ≤ t for all v′ ∈ (V ∩∂P (a, b))∪{p},
return true; else return false.

• |N | = 2: It must be the case that N = {a, b}. Assume,
without loss of generality that u = a and v = b.

Let p′ be the Type II potential final burn point associ-
ated with u and v (clockwise from u to v).

If d(u, u′) ≤ t for all u′ ∈ (V ∩ ∂P (u, p′)) ∪ {p, p′} and
d(v, v′) ≤ t for all v′ ∈ V ∩ ∂P (p′, v), return true; else
return false

In both cases, we check all potential points p as in
Lemma 3. If all of these points are within t of N , we know
that R is entirely covered or we would violate the lemma. If
one of the points isn’t covered, then R is not covered by N .
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Maximum Overlap Area of Several Convex Polygons Under Translations

Hyuk Jun Kweon∗ Honglin Zhu†

Abstract

Let k ≥ 2 be a constant. Given any k convex polygons
in the plane with a total of n vertices, we present an
O(n log2k−3 n)-time algorithm that finds a translation of
each of the polygons such that the area of intersection of
the k polygons is maximized. Given one such placement,
we also give anO(n)-time algorithm which computes the
set of all translations of the polygons which achieve this
maximum.

1 Introduction

Shape matching is a critical area in computational ge-
ometry, with overlap area or volume often used to mea-
sure the similarity between shapes when translated. In
this paper, we present a quasilinear time algorithm to
solve the problem of maximizing the overlap area of sev-
eral convex polygons, as stated in the following theorem.

Theorem 1 Let P0, P1, . . . , Pk−1 be convex polygons,
with a total of n vertices, where k is a constant.
Then in O(n log2k−3 n)-time, we can find a placement
(v0,v1, . . . ,vk−1) maximizing the area of

(P0 + v0) ∩ · · · ∩ (Pk−1 + vk−1).

Once we have found a placement (v0,v1, . . . ,vk−1)
that maximizes the overlap area, we can compute the
set of all such placements in linear time.

Theorem 2 With the notation in Theorem 1, suppose
that we have found a placement (v0,v1, . . . ,vk−1) max-
imizing the overlap area. Then in O(n)-time, we can
compute the set of all placements that maximize the
overlap area. This set is represented in terms of O(n)
linear constraints without redundancy.

It is important to note that a greedy method may not
yield the optimal result. To illustrate this, consider the
following polygons.

1. An equilateral triangle with height 1

2. An upside-down equilateral triangle with height 1

∗Department of Mathematics, University of Georgia,
kweon@uga.edu, This author is funded by The AMS-Simons
Travel Grant program.
†Department of Mathematics, Massachusetts Institute of Tech-

nology, honglinz@mit.edu

3. A rectangle with height 1 and sufficiently small
width ε

If we first place the two triangles to maximize their in-
tersection, and then place the rectangle to maximize the
overlap with the combined shape, the resulting overlap
area is approximately (2/3)ε. However, the true maxi-
mum overlap area of all three shapes is approximately ε.
This example highlights the necessity of our algorithm.

Suppose that we have k polytopes in Rd with n ver-
tices in total. Clearly, the overlap volume function un-
der translation is a piecewise polynomial function. To
find the maximum overlap volume under translation, we
can compute the maximum on each piece. For example,
Fukuda and Uno presented an O(n4)-time algorithm for
maximizing the overlap area of two polygons in R2 [9,
Theorem 6.2]. They also gave an O((kndk+1)d)-time
algorithm for the problem with k possibly non-convex
polytopes in Rd [9, Theorem 6.4].

If the polytopes are convex, then the overlap volume
function is log-concave. This follows immediately from
two properties: the 0-1 indicator functions of convex
sets are log-concave, and the product of two log-concave
functions is again log-concave. With this additional
structure, one may apply a prune-and-search technique
and make the algorithm much faster. For example, de
Berg et al. gave an O(n log n)-time algorithm to find
the maximum overlap of two convex polygons in R2,
which is highly practical due to the small constant hid-
den in the order notation [7, Theorem 3.8]. Ahn, Brass
and Shin gave a randomized algorithm for finding max-
imum overlap of two convex polyhedrons in expected
time O(n3 log4 n) [1, Theorem 1]. Ahn, Cheng and
Reinbacher [2, Theorem 2] find an O(n log3.5 n)-time
algorithm for the same problem after taking a generic
infinitesimal perturbation. The last two results cited
from [1] and [2] have also been generalized to higher-
dimensional cases within the same papers.

On the other hand, there are few known results for
problems involving several convex shapes. In this re-
gard, Zhu and Kweon proposed an O(n log3 n)-time al-
gorithm to find the maximal overlap area of three con-
vex polygons [16, Theorem 1.2]. This result is based on
an O(n log2 n)-time algorithm that finds the maximum
overlap area of a convex polyhedron and a convex poly-
gon in R3 [16, Theorem 1.1]. The main algorithm of
this paper is a strict generalization of both [7, Theorem
3.8] and [16, Theorem 1.2].
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2 Notation and Terminology

In this paper, we use the notation Supp f to refer to the
closed support of a function f , i.e., the closure of the set
of points where f is nonzero. For two sets A,B ∈ Rd, we
define their Minkowski sum and difference as A + B =
{a + b | a ∈ A,b ∈ B} and A− B = {x | x + B ⊂ A},
respectively.

We consider closed polytopes unless otherwise speci-
fied. When referring to a polytope P , its (geometric) in-
terior consists of the set of points not on the facets, while
its (geometric) boundary comprises the set of points on
the facets. On the other hand, the topological interior
of P ⊂ Rn is the set of points in P that have an open
ball entirely contained in P . The topological bound-
ary of P consists of points that are on the interior of
P . For example, if P is a polygon in R3, then its ge-
ometric boundary consists of the edges, which are one-
dimensional, while its topological boundary corresponds
to the polygon itself.

The computation model is based on the real RAM
model, yet the base field R can be substituted with any
ordered field R. Specifically, we assume that within R,
the binary operations +, −, ×, and /, as well as the
binary relations < and =, can be precisely computed in
constant time.

This generalization is important since we employ the
technique of symbolic infinitesimal translation, similar
to [7]. Whenever a new infinitesimal number ε > 0
is introduced, we change our base field from R to the
functor field R(ε). One may have concerns about this,
since operations in R(ε) cannot be generally performed
in constant time. However, as our algorithm only com-
putes quadratic functions, we use εn only for n ≤ 2.
Furthermore, we introduce fewer than 2k infinitesimal
numbers. Therefore, we may assume that operations in
R(ε) can be executed in constant time. The assump-
tion regarding the constant-time operations in R(ε) is
technical and not significant in the context of the con-
ceptual framework. Therefore, we will not delve into a
meticulous explanation of this aspect.

3 Configuration Space

The aim of this section is to define the configuration
space, the domain of the overlap area function, and
discuss its properties. Throughout the paper, we take
k convex polygons P0, P1, . . . , Pk−1, where k is a con-
stant. Let v0, . . . ,vk−1 ∈ R2 be vectors of indetermi-
nates. The overlap area of

I = (P0 + v0) ∩ (P1 + v1) ∩ · · · ∩ (Pk−1 + vk−1)

is invariant under the map

(v0, . . . ,vk−1) 7→ (v0 + x, . . . ,vk−1 + x).

Therefore, we define the configuration space as a (2k −
2)-dimensional quotient linear space

C :=
{(v0, . . . ,vk−1) : vi ∈ R2}
{(x, . . . ,x) : x ∈ R2} .

One may also define the configuration space by fix-
ing one polygon, but this definition loses symmetry
and makes the algorithm more complicated. Any el-
ement of C will be called a placement. We denote
(v0; . . . ; vk−1) ∈ C as a placement that corresponds to
(v0, . . . ,vk−1) ∈ (R2)k.

We define the overlap area function Π: C → [0,∞) as

Π(v0; . . . ; vk−1) := |(P0 + v0) ∩ · · · ∩ (Pk−1 + vk−1)| .

and then its support Supp Π is compact. To compute
Π(v0; . . . ; vk−1) in linear time, we use the following the-
orem:

Theorem 3 (Shamos) Let P and Q be convex poly-
gons of m and n vertices, respectively. Then P ∩Q can
be computed in O(m+ n)-time.

Proof. This was first proved by Shamos [15, Section
5.2]; see also [14, Section 7.6]. �

The vertices (x0, y0), . . . , (xr−1, yr−1) of the overlap I
can be expressed as linear functions in v0, . . . ,vk−1 in
a generic setting. Ordering them in counter-clockwise
direction, the area of I can be computed using the
shoelace formula:

|I| = 1

2

∑

i∈Z/rZ
(xiyi+1 − xi+1yi),

where the indices are taken modulo m. Therefore, Π is
a piecewise quadratic function of v0, . . . ,vk−1.

Note that Π may not be quadratic in two cases:

(I) an edge of a polygon Pi + vi contains a vertex of
another polygon Pj + vj and

(II) edges of three distinct polygons Pi + vi, Pj + vj
and Pk + vk intersect at one point.

Each of these events defines a polytope in C of codi-
mension 1. Following [7], we call such a polytope as an
event polytope. An event polytope defined by (I) (resp.
(II)) is called of type I (resp. of type II). A hyperplane
containing a type I (resp. type II) event polytope is also
called of type I (resp. of type II). There are O(n2) type
I hyperplanes and O(n3) type II hyperplanes.

4 Linear Programming

Let L ⊂ C be an r-flat. The goal of this section is to
provide an O(n)-time algorithm that finds a placement
v ∈ L such that

Π(v) 6= 0.

128



CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

If no such placement exists, the algorithm returns
None.

When working with two polygons, Supp Π is simply
the Minkowski sum P0 + (−P1), where −P1 is the poly-
gon P1 reflected about the origin. However, when work-
ing with more than two polygons, the problem becomes
more complex. To tackle this problem, we use linear
programming with Meggido’s solver.

Theorem 4 (Megiddo [11]) If the number of vari-
ables is fixed, a linear programming problem with n con-
straints can be solved in O(n)-time.

Let ni be the number of vertices of Pi. Then Pi is
defined by ni linear inequalities:

fi,a(x) ≥ 0 (for a < ni).

The codimension of the r-flat L ⊂ C is 2k−r−2. Thus,
L is defined by 2k − r − 2 linear equations:

gb(v) = 0 (for b < 2k − r − 2).

Then a placement v = (v0; . . . ; vk−1) ∈ C a point x ∈
R2 and satisfy the constraints

{
fi,a(x− vi) ≥ 0 (for i < k and a < ni) and

gb(v) = 0 (for b < 2k − r − 2).
(1)

if and only if x ∈ (P0 + v0) ∩ · · · ∩ (Pk−1 + vk−1) and
v ∈ L. Therefore, we obtain the lemma below.

Lemma 5 We have v ∈ L∩Supp Π if and only if (x,v)
satisfies (1) for some point x in a plane.

Hence, in O(n)-time, we can get v ∈ L ∩ Supp Π,
by solving any linear programming with the constraints
(1). One problem is that v might be on the (topological)
boundary of Supp Π.

Lemma 6 Let M be the solution set of linear con-
straints {

pi(x) ≥ 0 (for i < n) and

qj(x) = 0 (for j < m)
(2)

where x ∈ Rd and d is constant. Then we can compute
the maximal affinely independent finite subset S of M
in O(m+ n)-time.

Proof. The proof can be found in the appendix. �

Theorem 7 In O(n)-time, we can either return v ∈ L
such that Π(v) 6= 0, or return None if none exists.

Proof. Let M ⊂ R2 × L be the solution set of the
constrains (1). Then Π(v) 6= 0, if and only if (x,v) is
an topological interior point of M ⊂ R2 × L for some
x ∈ R2. Applying Lemma 6, we get the maximal affinely
independent set S of M .

If |S| ≤ r + 2, then dimM < 2 + dimL, and M has
no topological interior point, so we return None. If
|S| = r + 3, then

(xavg,vavg) =
1

|S|
∑

(x,v)∈S
(x,v)

is an topological interior points of M ⊂ R2 ×L. Hence,
we return vavg. �

5 Decision Problem

We aim to find the maximum of Π on an r-flat L ⊂ C us-
ing an induction on r. To do so, we apply a prune-and-
search technique on the set of event polytopes. How-
ever, this technique requires solving a decision problem:
given a hyperplane H ⊂ L, we must determine on which
side of H the maximum of Π|L lies. In this section, we
provide an algorithm for this decision problem under
certain induction hypotheses.

Theorem 8 The square root of Π: C → [0,∞) is con-
cave on its support.

Proof. This follows from the Brunn–Minkowski in-
equality [13][4]; see also [9, Theorem 3.3]. �

Now, we assume the following hypothesis for some non-
negative function T (n) in the rest of this section.

Hypothesis 9 Let L ⊂ C be an (r − 1)-flat. Then we
can find v ∈ L maximizing Π|L in O(T (n))-time.

We can partition L into open polytopes on which Π
is quadratic. Therefore, the maximum v ∈ L of Π|L is
a placement.

Theorem 10 Given an r-flat L and its hyperplane
H ⊂ L, let M ⊂ L be the set of maximum points of
Π|L. We can determine which side of H contains M in
O(T (n))-time.

Proof. Let ε be an positive infinitesimal smaller than
any positive number in the base field in R. For any
t ∈ R(ε), let

h(t) = max
v∈tn+H

Π(v).

Let N ⊂ R(ε) be the set of all maximum points of h(x).
It suffices to decide on which side N lies with respect
to 0. By Theorem 8, the function h : R(ε) → [0,∞) is
unimodal.

By Hypothesis 9, we can compute the sequence

S =
(
h(−εs+1), h(0), h(εs+1)

)

in O(T (n))-time. If h(0) = 0, then all interior points of
Supph lie in the same side with respect to 0. In this
case, apply Lemma 7 and attempt to get one point of
Supph. If h(0) 6= 0, there are three remaining cases.
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x

y = h(x)

x

y = h(x)

Figure 1: Two possible examples of the graph of h

1. If S is strictly increasing, then N ⊂ (0,∞).

2. If S is strictly decreasing, then N ⊂ (−∞, 0).

3. If S is not strictly monotonic, then 0 ∈ N .

This completes the proof. �

This proof highlights the necessity of infinitesimal
translations for our algorithm. Given that infinitesimal
numbers are introduced only in this step, we introduce
no more than dim C = 2k − 2 infinitesimal numbers.

6 Two Polygons

The goal of this section is to present a linearithmic time
algorithm for finding a translation that maximizes the
overlap area of two convex polygons under translations.
This problem was previously studied by de Berg et al.
[7, Theorem 3.8], but our approach is different and al-
lows for handling multiple polygons.

In this section, we only have two convex polygons
P = P0 and Q = P1 with n and m vertices, respectively.
We consider only one translation vector v = v1 − v0,
and since C is two-dimensional, we refer to event poly-
topes and hyperplanes as event line segments and lines,
respectively. Since there are no type II line segments,
all event line segments can be defined by one of the
following two events:

1. an edge of a polygon P contains a vertex of polygon
Q+ v and

2. an edge of a polygon Q + v contains a vertex of
polygon P .

The first type of event lines segment will be called of
type (0, 1) and the second type of event lines will be
called type (1, 0) line segments. The same rules apply
to event lines.

Type (0, 1) lines are organized into n groups, each
with m parallel lines. Our goal is to efficiently prune
this set, requiring an appropriate representation. We
use ‘arrays’ to denote sequential data structures with

P
Q

Figure 2: Event line segments. The parallel lines of one
group are highlighted in red.

constant time random access, and assume the size of
each array is predetermined.

The n groups of parallel lines are represented by
sorted arrays A0, A1, . . . , An−1. Each array Ai holds
the y-intercepts and a single slope value for the lines in
the i-th group. For vertical lines in Ai, we store the
x-intercepts instead.

Definition 11 A slope-intercept array A consists of
sorted arrays A0, A1, . . . , An−1, with each Ai associated
with a slope that is a potentially infinite number. Its
number of groups is n, and its size |A| is the sum of the
sizes of Ai. Another slope-intercept array A′ is a pruned
array of A if it consists of A with identical slopes.

We can use [16, Theorem 1.4] to prune a slope-
intercept array A, but the description is complicated
and the result is weaker. Instead, we rely on a stronger
version, which we prove in the appendix.

Theorem 12 For a slope-intercept array A with n
groups of lines, we can partition the plane R2 into four
closed quadrants T0, . . . , T3 using one horizontal line `0
and one non-horizontal line `1. Additionally, for each
i < 4, we can compute pruned array Pi of A that include
all lines intersecting the interior of Pi and have size at
least (3/4)|A|, all in O(n)-time.

Now, we will represent the set of type (0, 1) event
lines using a slope-intercept array.

Lemma 13 We have n linear functions f0, . . . , fn−1
and m vertices v0, . . . , vm−1 of a convex polygon, both
ordered counterclockwise by their gradient vectors and
arrangement, respectively. In O(m + n)-time, we can
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find indices a(0), . . . , a(n−1) such that vertex va(i) min-
imizes fi(vj) for all j < m.

Proof. In O(m)-time, we can find a(0) by computing
all f0(vj). Now, suppose that a(i − 1) is computed.
Then compute the sequence

fi(va(i−1)), fi(va(i−1)+1), fi(va(i−1)+2), . . .

until it increases after some index a′. Then fi(va′)
maximizes fi, so a(i) = a′. By repeating this pro-
cess, we can find all a(0), a(1), . . . , a(m − 1). Observe
that va(0), va(1), . . . , va(n−1) are sorted counterclockwise.
Since we only perform one rotation, this process requires
O(m+ n)-time. �

Lemma 14 In O(m + n)-time, we can construct a
slope-intercept array of 2n groups of size mn represent-
ing the set of all type (0, 1) lines

Proof. The proof can be found in the appendix. �

Theorem 15 Let P and Q be convex polygons, with m
and n vertices, respectively. In O((m+ n) log(m+ n))-
time, we can finds a translation v ∈ R2 maximizing the
overlap area

Π(v) = |P ∩ (Q+ v)|.

Proof. For any line ` ⊂ R2, we can compute a point
v ∈ ` maximizing Π|` in O(m+n)-time by [3, Corollary
4.1]. Using Theorem 10, we can determine on which
side of ` the set of maxima of Π lies in O(m+ n)-time.

By constructing a slope-intercept array A of (m+ n)
groups with Lemma 14, we can represent all event lines
in O(m + n)-time. Applying Theorem 10 to `0 and `1
obtained from Theorem 12, we can prune A to about
1/8 of its size, and this step requires O(m + n)-time.
After O(log(m+ n)) steps, only O(1) lines remain, and
we can find a placement v that maximizes the overlap
area Π(v) directly. �

7 Several Polygons

The aim of the section is to give an O(n log2k−3 n)-time
algorithm to compute v ∈ C maximizing Π. We first
restrict the domain of Π into an r-flat L ⊂ C and prove
a slightly stronger statement below by induction on r.

Theorem 16 Let L ⊂ C be an r-flat. Then we can find
v ∈ L maximizing Π|L in O(n logr−1 n)-time.

The proof of the base case can be obtained by modi-
fying the proof of [3, Corollary 4.1].

Lemma 17 Let ` ⊂ C be a line. Then in O(n)-time,
we can find v ∈ ` maximizing Π|`.

Proof. The proof can be found in the appendix. �

Therefore, we assume that r > 1 and the following
induction hypothesis is true.

Hypothesis 18 Let L ⊂ C be an (r− 1)-flat. Then we
can find v ∈ L maximizing Π|L in O(n logr−2 n)-time.

We will first find an r-simplex TI ⊂ L such that TI
has the maximum point of Π|L and no type I hyper-
plane intersects the interior of TI . Recall that type I
hyperplanes are defined by the following event.

(I) an edge of a polygon Pi + vi contains a vertex of
another polygon Pj + vj

If i and j are specified, then it will be called a type (i, j)
hyperplane. Then type I hyperplanes are grouped into
k(k − 1) groups, each of which is the set of type (i, j)
hyperplanes. Any type (i, j) hyperplane H is defined by
a linear equation of the form

n · (xi − xj) = c

for some n ∈ R2 and c ∈ R. Consider the projection

πi,j : C → R2

x 7→ xi − xj .

Then πi,j(H) ⊂ R2 is a line. Such a line will also be
called of type (i, j). Thus, we will find a triangle Ti,j ⊂
L such that no type (i, j) lines intersect the interior of
Ti,j .

Proposition 19 In O(n logr−1 n)-time, We can find a
triangle Ti,j ⊂ R2 such that

1. a maximum point of Π|L lies on π−1i,j (Ti,j)∩L, and

2. no type (i, j) lines intersects the interior of Ti,j.

Proof. The proof is similar to that of Theorem 15 and
can be found in the appendix. �

Now, define

TI :=
⋂

i,j<d

π−1i,j (Ti,j) ⊂ L. (3)

Then TI is defined by 3k(k−1) ∈ O(1) linear functions,
and by construction, no type I hyperplanes intersect
the interior of TI . Our goal now is to find an r-simplex
T ⊂ TI such that T has the maximum point of Π|L and
no event polytopes intersect the interior of T .

To achieve this, we first note that only O(n) type
II hyperplanes intersect the interior of TI . Thus, we
can obtain T by repeatedly applying Chazelle’s cutting
algorithm.

Definition 20 (Matoušek [10]) A cutting of Rd is a
collection C of possibly unbounded d-simplices with dis-
joint interiors, which together cover Rd. Let S be a set
of n hyperplanes in Rd. Then a cutting C is a (1/2)-
cutting for S if the interior of each simplex intersects at
most n/2 hyperplanes.
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Theorem 21 (Chazelle [5]) With the notation pro-
vided in Definition 20, where d is constant, a (1/2)-
cutting of size O(1) can be computed in O(n)-time. In
addition, the set of hyperplanes intersecting each sim-
plex of the cutting is reported in the same time.

Proposition 22 In O(n logr−1 n)-time, we can find an
r-simplex T ⊂ L such that

1. the maximum point of Π|L lies on T , and

2. no event polytope intersects the interior of T .

Proof. Take TI as defined in (3). By construction, no
type I hyperplane intersects the interior of TI ⊂ L.
Therefore, the set of pairs of intersecting edges of Pi
and Pj does not depend on the placement v ∈ TI . More-
over, every edge of Pi intersects at most two edges of
Pj . Therefore, there are at most

(
k

3

)
4n ∈ O(n)

type II polytopes intersecting the interior of TI . In
O(n)-time, we can compute the set S containing all such
type II hyperplanes by sampling a placement v in the
interior of TI .

To find a simplex T satisfying the conditions of
Proposition 22, we first set T = TI . Then we define
S as the set of hyperplanes in L containing a facet of
T or a type II polytope that intersects the interior of
T . We can compute a (1/2)-cutting C of size O(1) for
S in O(n)-time using Theorem 21. Using Theorem 10,
we can then find a simplex T ′ ∈ C containing the maxi-
mum point of Π|L in O(n logr−2 n)-time. We set T = T ′

and repeat this process O(log n)-times until no type II
polytopes intersect the interior of T . �

We can now prove Theorem 16.

Proof. We can find T as in Proposition 22 and compute
Π|T , which is a quadratic polynomial. Then we can
directly compute the maximum point of Π|T . �

Theorem 1 Let P0, P1, . . . , Pk−1 be convex polygons,
with a total of n vertices, where k is a constant.
Then in O(n log2k−3 n)-time, we can find a placement
(v0,v1, . . . ,vk−1) maximizing the area of

(P0 + v0) ∩ · · · ∩ (Pk−1 + vk−1).

Proof. This is a corollary of Theorem 16 with r = 2k−
2. �

8 Set of Maxima

Our next step is to determine the set M ⊂ C of place-
ments v ∈ C that maximize the overlap area Π. Once

we identify at least one such placement, the problem be-
comes easy, as every maximal overlap is the same up to
translation. To accomplish this, we rely on the equality
condition of the Brunn-Minkowski inequality.

Theorem 23 (Minkowski) Let A and B be compact
subsets of R2 with nonzero area. Then

∣∣∣∣
1

2
A+

1

2
B

∣∣∣∣
1/2

≥ 1

2
|A|1/2 +

1

2
|B|1/2,

and the equality holds if and only if A and B are homo-
thetic.

We define I(v) for any placement v ∈ C, as follows:

I(v) := (P0 + v0) ∩ · · · ∩ (Pk−1 + vk−1).

Lemma 24 Let v,u ∈ C be two placements that both
maximize Π. Then I(u) and I(v) are equivalent up to
translation.

Proof. The proof can be found in the appendix. �

We then fix a maximal overlap Imax ⊂ R2. The set of
all vi such that Imax ⊂ vi+Pi is given by the Minkowski
difference

(−Pi)− (−Imax) = {x ∈ R2 | x + (−Imax) ⊂ −Pi}
= {x ∈ R2 | Imax ⊂ x + Pi}.

We define N :=
∏
i<m(Pi − Imax) and let π : (R2)k → C

be the natural quotient.

Lemma 25 The restricted map π|N : N → M is an
affine isomorphism.

Proof. By construction M = π(N). Suppose there ex-
ist two distinct u,v ∈ N such that

u = v + (x,x, . . . ,x)

for some x ∈ R2. This implies that Imax = I(v) and
Imax = I(u) = I(v) + x. As a result, we must have
u = v. �

Since each Pi and Imax contain at most n vertices,
we can represent (−Pi) − (−Imax) using O(n) linear
constraints without redundancy. This computation can
be completed in O(n)-time. Consequently, by employ-
ing standard linear algebra techniques, we can describe
M ⊂ C using O(n) linear constraints without redun-
dancy in O(n)-time.

Theorem 26 In O(n)-time, we can represent M ⊂ C
using O(n) linear constraints without redundancy.
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Proof. Let vi = (xi, yi) for each i < m. A linear func-
tion f(v0, . . . ,vk−1) can be written as an affine combi-
nation of v1 − v0, . . . ,vk−1 − v0 if and only if

∑

i<m

∂

∂xi
f = 0 and

∑

i<m

∂

∂yi
f = 0.

Every edge of Imax should be part of an edge of Pi for
some i < m. Consider two nonparallel edges. They
yield two linear equations:

a · vi = c and b · vj − d.

Here, vi and vj are column vectors, and a and b are
row vectors. Let

v′ =

(
x′

y′

)
:=

(
a
b

)−1(
a · vi − c
b · vj − d

)
.

Then

∑

i<m

∂

∂xi
v′ =

(
1
0

)
and

∑

i<m

∂

∂yi
v′ =

(
0
1

)
,

so we replace every vi by vi−v′ in the linear constraints.
As a result, each constraint is expressed in terms of
v1 − v0, . . . ,vk−1 − v0. �

Theorem 2 is an immediate corollary of Theorem 26.
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A Appendix

The below is the proof of Lemma 6.

Proof. By Theorem 4, we can assume that M 6= ∅. More-
over, by eliminating variables, we may also assume that
m = 0. To compute the maximal affinely independent set,
we start with an empty set S and gradually add points to
it. At each step, we look for a new point that is not in the
affine hull of the current set S.

To do this, we first select a linear functional h that is non-
zero but evaluates to zero on all points in S. We can find such
a functional in constant time since d is a constant. We then
find the minimum and maximum values of h subject to the
constraints in M , denoted by xmin and xmax, respectively.

If |S| ≤ dimM , then h(xmin) < h(xmax). Therefore, for
some x ∈ {xmin,xmax}, the set S∪{x} should be also affinely
independent. In this case, we replace S by S ∪ {x}. If not,
we terminate the process. �

x0 x1

xmin

xmax

x0 x1

x2

xavg

Figure 3: Finding a maximal affinely independent set
and the topological interior points.

The below is the proof of Lemma 14

Proof. Let P be a polygon with n linear inequalities
fi(x) ≥ 0, sorted counterclockwise by the gradients of ∇fi.
Let `i be the line defined by fi = 0, and let v0, . . . , vm−1

be the vertices of Q sorted counterclockwise and indexed
modulo m. Then the set of all type (0, 1) lines is

S = {−vj + `i | i < n and j < m}.

By using Lemma 13, we can determine the indices a(i)
and b(i) for each i, such that va(i) (resp. vb(i)) is the vertex
of Q that minimizes (resp. maximizes) fi(vj) for all j < m.
This computation can be done in O(m + n)-time. We can
then construct two arrays:

A2i := (−va(i) + `i,−va(i)+1 + `i, . . . ,−vb(i)−1 + `i)

and

A2i+1 := (−vb(i) + `i,−vb(i)+1 + `i, . . . ,−va(i)−1 + `i),

whose intercepts are sorted. Note that we do not need to
compute the entries of Ai explicitly; once we have computed
a(i) and b(i), we can perform random access in O(1)-time us-
ing the formulas above. The resulting arrays A0, . . . , A2n−1

provide a slope-intercept array representing the set of all
type (0, 1) lines. �

The below is the proof of Theorem 17.

`i

P

va(i)

vb(i)

Q

Figure 4: Visualization of why A2i and A2i+1 are sorted.

Proof. We parameterize ` by

f(t) = (f0(t), f1(t), . . . , fk−1(t)),

where fi : R→ R2 are linear functions. We define cylinders

Ci := (x, y, z) ∈ R3, |, (x, y) ∈ fi(z) + Pi.

Pj

(fj(t), t)

Cj

Figure 5: Depicting the cylinder Ci obtained from Pi
and `.

We can compute C = C0 ∩ C1 ∩ · · · ∩ Ck−1 in O(n)-
time using Chazelle’s algorithm [6]. Let Ht ⊂ R3 be the
hyperplane defined by z = t. Then we have |C ∩ Ht| =
|(P0 + f0(t)) ∩ · · · ∩ (Pk−1 + fk−1(t))|. We can find t max-
imizing |C ∩ Ht| in O(n)-time using [3, Theorem 3.2]. For
such a t, the maximum point of Π|` is f(t) ∈ `. �

The below is the proof of Proposition 19.

Proof. The proof is similar to that of Theorem 15. Let
M ⊂ L be the set of placements maximizing Π|L. To deter-
mine on which side of a line ` the set πi,j(M) lies, we apply
Theorem 10, which takes O(n logr−2 n)-time.

We can represent all type-(i, j) lines by a slope-intercept
array A in O(n)-time, as shown in Lemma 14. Applying
Theorem 12 to obtain lines `0 and `1, we can prune A
to about 1/8 of its size using Theorem 10. This step re-
quires O(n logr−2 n)-time. After O(logn) steps, only O(1)
lines remain, and then we triangulate the remaining re-
gion. This gives a triangle Ti,j with the desired properties
in O(n logr−1 n)-time. �

The below is the proof of Lemma 24.

Proof. Since P0, . . . , Pk−1 are convex,

1

2
I(u) +

1

2
I(v) ⊂ I

(u + v

2

)
.
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Therefore,

∣∣∣∣
1

2
I(u) +

1

2
I(v)

∣∣∣∣ ≤
∣∣∣I

(u + v

2

)∣∣∣ ≤ |I(v)|.

As a result, I(u) and I(v) are homothetic by Theorem 23.
Since |I(v)| = |I(u)|, this implies that I(u) and I(v) are
equivalent up to translation. �

B Partitioning with Two Lines

In this section, we prove Theorem 12. While the main theo-
rems can be derived solely from [16, Theorem 1.4], this ap-
proach is somewhat unsatisfactory. Specifically, it requires
three queries at every step and prunes only 1/18 of the lines,
leading to a slowdown factor of 27/4. Moreover, the state-
ment of [16, Theorem 1.4] is much more difficult to describe.

To provide a more convenient (at least in the authors’
taste) proof, we instead prove the dual statement. This is
the problem of partitioning a set of points in the plane with
two lines such that each quadrant contains at least 1/4 of
the points. We begin by presenting Megiddo’s linear time
algorithm for a special case of the ham sandwich problem
[12, Section 2].

Theorem 27 Given two finite sets of points in the plane
with a total of n points, and with disjoint convex hulls, we
can compute a line that bisects both sets in O(n)-time.

The following corollary is a slightly stronger result than
Megiddo’s original main theorem [12].

Corollary 28 Given a set of n points in a projective plane
P2, we can compute a horizontal line `0 and a non-horizontal
line `1 in O(n)-time, such that each closed quadrant defined
by the two lines contains at least bn/4c points in O(n)-time.

Proof. First, we can assume that there are no points on
the line at infinity by applying the perturbation (a; b; c) 7→
(a; b; c+ εb). An appropriate value for ε can be computed in
O(n)-time. Additionally, we can disregard a single point at
(1; 0; 0), as it is contained in all closed quadrants.

Next, we identify the horizontal line that passes through
the median y-coordinate of the points, denoted as `0. If `0
contains at least half of the points, we can select any non-
horizontal line `1 that passes through the median point m of
`0. As a result, we assume that `0 contains fewer than half
of the points.

We put the points above the line `0 in a set A. Moreover,
we also put points on `0 from left until A has at least half
of the points. Then B is the set of remaining points. Since
the convex hulls of A and B are disjoint, we can apply The-
orem 27 to compute the line `1 that simultaneously bisects
both sets. Since `0 contains less than half of the points, `1
should not be horizontal. This divides the plane into four
closed quadrants, each containing at least bn/4c points. �

An intersecting aspect is that Theorem 28 offers a linear-
time algorithm for its own weighted version. It is important
to note that this approach heavily relies on the following
well-established result.

`0

`1

Figure 6: The red represents A and the blue represents
B

Lemma 29 Given n distinct real numbers with positive
weights, we can determine the weighted median of these num-
bers in O(n)-time.

Theorem 30 Given n weighted points in a projective plane
P2 with positive weights λ0, . . . , λn−1, we can compute a hor-
izontal line `0 and a non-horizontal line `1 in O(n)-time such
that each closed quadrant defined by the two lines contains
at least 1/4 of the total weight.

Proof. Once again, we can assume that there are no points
on the line at infinity by applying perturbation (a; b; c) 7→
(a; b; c + εb) and ignoring a single point at (1, 0, 0). Let `0
be the weighted median horizontal line. If `0 contains at
least half of the total weight, then we can choose any non-
horizontal line `1 passing through the weighted median point
m of `0. Therefore, we assume that `0 contains less than half
of the total weight.

We start by putting all points above the line `0 into a set
A, and adding points on `0 from left to right until A has at
least half of the total weight. We modify the weight of the
last point p so that the total weight of A is exactly half of
the total weight, and set B as the remaining points and p
with the remaining weight.

Since `0 contains less than half of the total weight, any
ham sandwich cut of A and B must not be horizontal. We
can then find two lines `′0 and `′1 as in Theorem 27. Let v0
be their intersection, and let v1 be the intersection of `′1 and
the line at infinity.

Without loss of generality, we may assume that the y-
coordinate of `0 is at most that of `′0. We then take a line
`1 passing through v0 and bisecting the weight of B. If `1
also bisects the weight of A, then this is the desired line.
Otherwise, we may assume without loss of generality that
the left side of `1 contains more weight. Then any ham
sandwich cut of A and B must pass through the left side of
`′0 with respect to v0.

We can repeat this process with v1. Then we determine
which side of the line at infinity a ham sandwich cut of A
and B must pass through with respect to v1. After this,
we identify one quadrant that does not intersect any ham
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`′0

`0

`′1 `1

v0

p

v1 at infinity

Figure 7: The red represents A and the blue represents
B

sandwich cut of A and B. Thus, we can merge the points in
that quadrant into two points, one for A and one for B, and
repeat the entire process.

Every step, the number of points become 3/4 and we get
at most 3 new points. Thus, in O(n)-time, at most 12 points
remains. Then we can get a ham sandwich cut of A and B by
brute force. The ham sandwich theorem implies that such a
cut exists. �

Theorem 31 Let A be an array of arrays A0, . . . , An−1 of
points. Suppose that for each i < m, points on Ai lie on the
same horizontal line and are sorted from left to right. Then,
in O(n)-time, we can find `0 and `1 such that for each i < 4,
we can obtain a pruned array Pi of A with |Pi| ≥ |A|/8 and
Pi contained in the ith quadrant.

Proof. We can simply choose median points of each of Ai,
and let the weight be the size of Ai. Then we can apply
Theorem 30 and get the answer. �

Again, an intersecting aspect is that Theorem 31 offers its
own optimized version.

Lemma 32 Let S be a collection of m sorted arrays. Given
x, we can compute the rank of x in O(n log |S|)-time using
binary search on each array.

Proof. We can apply binear search on each array and get
the answer. �

Lemma 33 Let S be a collection of m sorted arrays. Then
we can find the ith element of S in O(n log |S|)-time.

Proof. This follows from [8, Theorem 3]. �

Theorem 34 Let A be an array of arrays A0, . . . , An−1 of
points. Suppose that for each i < m, points on Ai lie on
the same horizontal line and are sorted from left to right.
Then, in O(n log |S|)-time, we can find `0 and `1 such that
for each i < 4, we can obtain a pruned array Pi of A with
|Pi| ≥ |A|/4 and Pi contained in the ith quadrant.

Proof. The proof is almost same are that of Theorem 30.
However, we need to use Theorem 31 for pruning points,
Lemma 33 for bisecting B, and Lemma 32 for counting
points of A. �

Let (P2)∨ be the dual projective space, which is the space
parametrizing lines on P2. Consider the map

(P2)∨ → P2

ax+ by + cz = 0 7→ (c; b; a).

Then Theorem 12 is exactly the dual theorem of Theorem 34
under this map.
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Well-Separated Multiagent Path Traversal

Gleb Dilman∗ David Eppstein† Valentin Polishchuk‡ Christiane Schmidt§

Abstract

We consider moving points along a given path, with
a fixed speed, so that no two points ever come closer
than 1 (in the space into which the path is embedded,
not only along the path) while they follow the path (all
points traverse the path from start to finish). Since the
motion of any point along the path is fully determined
as soon as the point enters the path, our only decisions
are the times when to send the points at the start of
the path. We give algorithmic results for the problem of
scheduling as many points as possible, i.e., maximizing
the throughput.

1 Introduction

We study the problem of sending entities/agents along
a given path so that the agents stay well separated dur-
ing the motion. Such problem may arise, e.g., in an
amusement park where the given path represents a ride
followed by circular cabins or any entities which may
deviate from the path (the path may live in 3D and the
entities may represent 3D cabin volumes). Maximizing
the cabin throughput maximizes the profit of the ride
owner, and will also maximize the customers adrenaline,
as a dense packing of the cabins implies many near
misses along the ride. Similar problem appears when
putting large items on a conveyor. Last but not least,
the separation may be dictated by privacy or safety con-
cerns, e.g., due to the fear of infection spread between
two people or making two entities vulnerable to a sin-
gle point threat/eavesdropper, which affects a certain
radius around it.

For the most part, we focus on 2D; however our so-
lutions work in arbitrary dimensions. We use realRAM
model of computation – standard in computational ge-
ometry.

1.1 Related Work

To our knowledge, the considered problem was not stud-
ied before; however, a large body of work on similar

∗School of Pedagogic Skills Center, gleb.dilman@gmail.com
†Computer Science Department, the University of California,

Irvine, eppstein@uci.edu
‡Communications and Transport Systems, ITN, Linköping
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questions exist:
• The Fréchet distance between two curves is the

length of the shortest leash needed for the person on
one curve to walk the dog following the other curve;
computing the distance is a classical motion coor-
dination problem (in Section 2 below, we make use
of the “free space diagram” from the paper [1] that
introduced Fréchet distance). More related to our
problem is the recent work on flipped Fréchet [10],
i.e., walking the dog while maximizing the person–
dog separation. The main difference from our setup
is that in both classical and flipped Fréchet settings;
the person and the dog are very powerful—they can
move with infinite acceleration; on the contrary, our
agents move with same speed—the only decision is
when to start moving (and even these starting times
are not arbitrary, in some versions of our problem).
• Agents (aircraft or trains, modeled by disks and

segments, resp.) following each other ducks-in-a-
row along given paths were considered in the CCCG
paper [16] (and also in [17]); the trains and aircraft
are still more powerful than our agents because
they have infinite acceleration (but their speed is
bounded). Heuristics were given in [11].
• Wire routing and moving a disk through a domain

(the former is hard [13] while the latter can be done
in polynomial time [6,7]) is also related to our prob-
lem. Finding paths for a “snake” (the Minkowski
sum of a segment and a disk, i.e., of a train and an
aircraft in terms of [16]) was also studied in [13]:
the problem is hard for long snakes, but is FPT-
tractable w.r.t. the snake length (i.e., the problem
is “length-tractable”), which is reminiscent of our
results: we show that our problem is hard, but ad-
mits a PTAS if the path length is small.
• Finding separated trajectories is a well studied

problem in robotics and computational geometry
[2, 4, 8, 12, 14, 18, 19]; our work is different in that
we do not find the agents’ paths (the path—one for
all agents—is given in the input, not sought in the
output; our problem is purely a scheduling one).
• From non-geometric literature, remotely related to

our paper is the work [5] on sets of words, avoiding
a set of forbidden Hamming distance subsequences
(the solution to our problem will hinge on defin-
ing forbidden intervals between the path-following
agents). Another non-geometric, scheduling prob-
lem is the “pinwheel problem” in which the goal
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is to attend to a set of tasks while ensuring that
each task is visited with a certain frequency: it was
shown in [9] that there always exists a feasible pe-
riodic schedule – a result resembling our proof that
for our problem a periodic schedule can be arbi-
trarily close to the optimum.
• Finding (large) gaps between agents in a periodic

motion is the subject of the Lonely runner conjec-
ture [20].

1.2 Problem Formulation and Notation

In the problem input we have a polygonal path P (pos-
sibly with self-intersections) which we call the thread ;
let n be the number of edges of P and let ` ∈ R+ be
the length of the longest edge. We treat the thread as
a directed path; let s be its starting point. A bead is
a radius-1/2 disk whose center moves with unit speed
along P (starting from s). A schedule is a sequence
S = (t1, t2, . . . ) of beads inter-release times: that is,
according to S, the beads are released at s at times
0, t1, t1+t2, t1+t2+t3, . . . . For convenience, we start the
beads numbering from 0 (bead 0 is released at time 0).

A schedule is feasible if the beads never collide with
each other while following P , i.e., at any time, the dis-
tance between the centers of any two beads is at least 1.
The goal is to find schedules with high throughput, i.e.,
long-term average number of sent beads, or equivalently,
to minimize the long-term average of the release times,
i.e., limm→∞

∑m
j=1 tj/m (the reciprocal of the through-

put). We will restrict attention only to feasible sched-
ules for which the limit exists.

Periodic schedules A schedule is periodic if it repeats
itself, i.e., if for some p we have tj+p = tj ∀j; the min-
imum p for which this holds is called the period of the
schedule. If the period p = 1 (i.e., if the interval between
consecutive beads release is constant), the schedule is
called uniform.

1.3 Results

Section 2, we present an O(n3`)-time algorithm for find-
ing optimal uniform schedules (see the paragraph above
for the definiton of uniform and periodic scheudles); in
Section 3, we extend the algorithm to periodic sched-
ules of period p = O(1) (the runtimes of the algorithms
have p in the exponent). In Section 4, we prove that
periodic schedules (with long but bounded period) are
as good as arbitrary (i.e., possibly aperiodic) schedules.
As a corollary we obtain that the optimal (possibly ape-
riodic) schedule may be approximated arbitrarily well
by a periodic one, implying a PTAS for short paths.
Finally, in Section 5, we prove hardness of (even ap-
proximating) the problem when the period is large.

In summary, we show that our problem is hard in
general, but can be solved in polynomial time for short-
period schedules; for arbitrary schedules, the problem
admits a PTAS if the thread is short.

An applet to play with sending the beads (also
along several paths) is available at https://www.

cs.helsinki.fi/group/compgeom/necklacegame/: to
send a bead, click on the bead at the beginning of the
path. Figure 1 shows snapshots of the game.

2 Uniform Schedules

Let t = t1 = t2 = . . . be the common value for the beads
inter-release times in a uniform schedule; our goal is to
minimize t. Consider two beads, with the second one
following the first one at distance t along P (Fig. 2),
and let e1, e2 be the edges of the thread on which the
beads are situated at some moment in time (we do not
assume that P ’s edges are numbered – the indicies 1
and 2 in e1, e2 are not ordinal numbers; in particular,
it is possible that e1 = e2, or that e1 is farther than e2
from s). Let Fe1,e2 be the set of “bad” timings t, i.e.,
the set of values for t that lead to collision of the beads
while they are on e1, e2.

Lemma 1 Fe1,e2 is a single interval (possibly empty).

Proof. Let x1, x2 encode the locations of the beads on
e1, e2 resp. at some moment of time, i.e., bead i is at
distance xi from the starting point of ei (recall that
P and hence its edges are directed). Let C ⊆ [0, |e1|]×
[0, |e2|] be the set of (x1, x2) pairs for which the distance
between the beads is at most 1; C is the free space [1] for
the Fréchet distance between the edges. It is well known
that C is a connected subset of the (x1, x2)-plane (in
fact, as was proved in [1], C is convex – the convexity of
C follows from the convexity of the distance function).
Since t = d−x2 +x1 where d be the distance (along P )
from the startpoint of e2 to the start point of e1, the
beads motion is described by a (45o-sloped) line in the
(x1, x2)-plane. The beads do not intersect iff the line
does not intersect C, which happens for a contiguous
range of t. �

For an interval I = [a, b] ⊂ R and a natural num-
ber k, let I/k = [a/k, b/k] denote the “scaled down”
copy of I. Having t outside Fe1,e2 ensures that two con-
secutive beads will not collide on e1, e2, i.e., that for
any j the bead j does not collide with bead j + 1. To
make sure that bead j does not collide with bead j + 2,
the time interval 2t between the beads releases should
lie outside Fe1,e2 , or equivalently t /∈ Fe1,e2/2. Similarly,
for the bead j to avoid bead j + 3, it should hold that
t /∈ Fe1,e2/3. In general, to ensure no collisions of beads
on e1, e2 we should have t /∈ Fe1,e2/k for any natural k.
Overall, to avoid beads collisions on any pair of edges
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Figure 1: Left: 5 beads (blue) moving along the path. Right: a collision
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C

Figure 2: Left: beads at x1, x2 on edges e1, e2; the part of P between the edges (dashed) has length d− |e2|. Right:
Fe1,e2 = [tmin, tmax] is defined by the tangents (dotted) to C (drawn with ipelet [15]).

of the thread, t should be outside all possible forbidden
intervals Fσ/k where σ ranges over all pairs of edges
of P and k ∈ N (Fig. 3).

Theorem 2 An optimal uniform schedule can be found
in O(n3`) time.

Proof. Let Fσ = [aσ, bσ] for a pair σ of edges. It suffices
to consider only those k for which aσ/k ≥ 1, since for
a larger k, [aσ, bσ]/k ⊂ [0, 1] and any t < 1 is clearly
infeasible. Since the length of the thread is at most n`,
any t > n` is feasible, implying k ≤ aσ ≤ n`. Thus, the
O(n3`) forbidden intervals for t (over all O(n2) pairs
of edges and all k ≤ n`) can be constructed in time
O(n3`). The optimal t is the smallest one not covered
by the intervals: it is the left endpoint of one of the
intervals. �

3 Periodic Schedules

Figure 4 gives a motivation for considering periodic
schedules: they can perform arbitrarily better than uni-
form. We first consider schedules with period 2, defined
by the two repeating beads inter-release times t1, t2; our
goal is to minimize t1 + t2. The constraint is that no
two beads ever collide—on any pair of the thread edges.
Therefore, just as with uniform schedules (Section 2),
for every pair σ of P ’s edges we compute the forbidden
interval Fσ between two beads on the edges. Let B =⋃
σ Fσ be the union of all forbidden intervals, treated as

a sequence of (maximal) pairwise-disjoint segments on
the real line: B = [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [af , bf ] ∪ . . .
where a1 = 0, 1 ≤ b1 < a2 < b2 < a3.... The number
of the segments is at most the number of edge pairs,
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Figure 4: P is shaped as a hammer with thin handle of
length ` � 1 and the head of perimeter `. A uniform
schedule must have t > ` (so that beads do not collide on
the opposite sides of the handle). A periodic schedule
can send a length-` train of b`/

√
2c beads with inter-

release times
√

2 (so the beads do not collide at the 90o

turns of P ), wait until the train fully leaves P (time 4`),
and repeat. Thus the uniform schedule has throughput
Θ(1/`) while the throughput of the periodic schedule is
constant (the long-term average of the release times is
> ` for uniform schedules and Θ(1) for a periodic one).

O(n2).
In a period-2 schedule, the interval (the distance along

the thread) between beads of the same parity is k(t1+t2)
for an integer k ≥ 1. The interval between beads of
different parity is either k(t1 + t2) + t1 (from an even
bead to an odd) or k(t1 + t2) + t2 (from an odd to an
even bead) for k ≥ 0. Thus for a feasible schedule it is
necessary and sufficient that

(k + 1)(t1 + t2), k(t1 + t2) + t1,

k(t1 + t2) + t2 /∈ B ∀k = 0, 1, . . . , n`/2
(1)

(as with uniform schedules, t1, t2 ≥ 1, and it suffices
to consider inter-release times that do not exceed the
maximum thread length, n`, i.e., (k + 1)(1 + 1) ≤ n`).

For any one forbidden segment [af , bf ] from B and
any fixed k, the inequalities af ≤ (k + 1)(t1 + t2) ≤
bf define a slab of forbidden pairs in the (t1, t2)-plane
(Fig. 5). Similarly, the inequalities af ≤ k(t1+t2)+t1 ≤
bf and af ≤ k(t1 + t2) + t2 ≤ bf each define a slab.
Overall, i.e., for segments [af , bf ] for all O(n2) f ’s and
O(n`) k’s, the requirements (1) define O(n3`) slabs. We
build the arrangement of the slabs and find the vertex
of the arrangement minimizing t1 + t2 in O(n6`2) time

t1

t2

∗

Figure 5: The requirements (1) define slabs of forbidden
(t1, t2) pairs (gray). The optimal schedule (marked with
the asterisk) minimizes t1 + t2 for points outside the
slabs (white).

(by going through all the vertices).
The above algorithm extends to schedules of any

length p:

Theorem 3 An optimal schedule with period p can be
found in O((n3p`)p) time.

Proof. Let b, b′ ∈ Z+
0 , b < b′ be two beads, identified

with their positions in the schedule (recall that we start
numbering the beads from 0). If b ≡ b′ mod p, then in
a period-p schedule the interval (the distance along the
thread) between the beads is (k + 1)(t1 + t2 + · · ·+ tp)
for an integer k ≥ 0. More generally, if b ≡ r mod p and
b′ ≡ r′ mod p, the distance is

D(r.r′, k) = tr′+1 + tr′+2 + · · ·+ tp+

+k(t1 + · · ·+ tp) + t1 + t2 + · · ·+ tr
(2)

Thus for a feasible schedule it is necessary and suffi-
cient that

D(r, r′, k) /∈ B
∀k = 0, 1, . . . , n`/p, ∀r, r′ = 0, 1, . . . p− 1

(3)

For any one segment [af , bf ] from B and any fixed
r, r′, k the inequalities af ≤ D(r, r′, k) ≤ bf define a
slab of forbidden schedules in the (t1, t2, . . . , tp)-space—
overall, i.e., for segments [af , bf ] for all O(n2) f ’s,
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Figure 6: Length-L segments (gray) correspond to
beads in the maximum-throughput schedule; we will re-
move the segments marked with asterisks.

O(n`/p) k’s and O(p2) pairs (r, r′), the requirements (1)
define O(n3p`) slabs in the p-dimensional space. We
build the arrangement of the slabs and find the vertex
of the arrangement minimizing t1 + t2 + · · ·+ tp. �

4 Arbitrary Schedules

Let τ be the value of optimal throughput over arbi-
trary, possibly aperiodic schedules. We show that peri-
odic schedules can achieve a throughput arbitrarily close
to τ :

Theorem 4 For any ε > 0 there exists a periodic
schedule whose throughput is at least τ − ε.

Proof. Let L denote the length of P . Identify each
bead with the length-L segment on the real line, span-
ning the time during which the (center of) the bead tra-
verses P (Fig. 6). Consider the segments in the optimal
(possibly aperiodic) schedule S. Choose an integer Z >
2Lτ2/ε and draw vertical lines t = ZL, t = 2ZL, . . .
at the regular spacing ZL. We claim that no such line
intersects the interior of more than x = 2Lτ segments.
Indeed, the segments intersecting any one line cover at
most 2L of the time. If there existed a line intersecting
a set of more than x segments, we could have laid such
sets one after another, obtaining a (periodic) schedule
with throughput at least x/2L > τ , contradicting the
global optimality of S.

Now remove from S the segments whose interior is
intersected by one of the drawn vertical lines. By the
above, the fraction of the removed segments is less than
x/Z, implying that the throughput of the schedule with
the remaining segments is greater than τ−τx/Z > τ−ε.
It follows that at least one set of segments between the
lines has throughput > τ = ε; (in fact, such sets should
appear infinitely often, but for us it is enough to) take
one such set and repeat it – this results in a periodic
schedule with throughput > τ − ε. �

It follows from the proof of Theorem 4 that to get a
schedule with throughput τ(1 − x/Z) > τ(1 − ε/τ) it
is enough to find an optimal schedule in a length-ZL
interval. Since the number of beads sent during the
interval is O(ZL) = O(L2τ2/ε), it suffices to consider
schedules with period O(L2τ2/ε). Taking δ = ε/τ , we
conclude that a (1− δ)-approximation to the maximum

throughput can be obtained by considering schedules
with period p = O(L2τ/δ) = O(L3/δ) since τ < L.
From Theorem 3,

Theorem 5 A (1− δ)-approximation to the maximum

throughput can be found in O((nL/δ)O(L3/δ)) time.

In particular, for threads with constant length, our
problem has a PTAS.

5 Hardness of Approximating Arbitrary Schedules

Our result is based on a known inapproximability results
for maximum clique by Arora et al. [3]:

Theorem 6 (Arora et al. [3]) There is a constant
c > 0, such that approximating the maximum clique size
in an N -vertex graph to within a factor N c is NP-hard.

We combine this result for the maximum clique prob-
lem with an approximation-preserving reduction from
maximum clique to our problem, that is, the problem
of determining the optimal schedule of beads. Hence,
from a given graph G in which we aim to find a maxi-
mum clique we will construct a thread P , such that the
optimal release times for P correspond to a maximum
clique in G. Thus, the approximation ratio for the opti-
mal schedule of beads for P cannot be better than the
approximation ratio for maximum clique in G (given by
Theorem 6).

For the construction of P from G, we define a set
I of maximal intervals of the timeline such that, if a
bead is released at time 0, it is safe to release another
bead within one of these intervals (and inter-release

times
∑i+k
j=i tj /∈ I, i = 1, 2, . . . ; k = 0, 1, ... are infea-

sible). We call I the set of safe intervals. Assum-
ing that we can construct I as desired, we describe
the approximation-preserving reduction from maximum
clique in Section 5.1, and we detail the construction of
I in Section 5.2.

5.1 Reduction from Maximum Clique

Let G be the graph in which we want to solve the max-
imum clique problem, let |V (G)| = N , and let the ver-
tices be labeled 1, . . . , N . We use a greedy algorithm to
construct a set U = {u1, u2, . . . uN , uN+1} of integers,
such that uj1 ± uj2 ± uj3 ± uj4 ± uj5 ± uj6 6= 0 for any
6 indicies j1, . . . , j6 ∈ {1, . . . , N + 1}. We start with
u1 = 2 (see Section 5.2 on why we do not start with 1)
and consider integers of increasing value, adding them
to U whenever they do not yield an infeasible linear
combination with the numbers previously added to U .
For integers 1, . . . , k, we need to pick at least k1/5 inte-
gers for U in order to exclude the other numbers due to
infeasible linear combinations. Thus, uN ∈ O(N5).
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We construct a thread P with safe intervals around
{ui | 1 ≤ i ≤ N} ∪ {ui − uj | i > j and ij ∈ E(G)} and
a semi-infinite interval starting at uN+1. That is

I =

N⋃

i=1

(ui − ε, ui + ε)∪
⋃

ij∈E(G);i>j

(ui − uj − ε, ui − uj + ε) ∪ [uN+1,∞), ε > 0

(4)

Any optimal schedule with release times smaller than
uN+1 can be repeated at intervals of time uN+1. Hence,
we obtain a finite problem: Find the largest subset of
the finite parts of I all of whose differences are in I.

Let K = {vk1 , vk2 , . . . , vk|K|} be the set of vertices in
a clique with k1 < k2 < ... < k|K|, then release times
0, t1, t1 + t2, . . . with

j∑

i=1

ti = ukj , j = 1, . . . , |K| (5)

yield a feasible schedule of |K| + 1 release times: the
inter-release times (for j1 < j2) are (t1 + t2 + . . . +
tj2) − (t1 + t2 + . . . + tj1) = ukj2 − ukj1 ∈ I, because
(vkj1 , vkj2 ) ∈ E(G). Moreover, any feasible schedule for
P for which all release times are 0 or elements of U must
be of this form.

Additionally, for a clique K in G the set
{0, uk|K|} ∪j=1,...,k|K|−1

{uk|K| − uj} is a feasible set
of release times. There also exist feasible schedules
with release times of the form uki − ukj . The re-
lease time uki − ukj is compatible with uki (because
uki − (uki − ukj ) = ukj ∈ I) and with a single other
time ukj − ukj∗ (because (uki − ukj ) − (ukj − ukj∗ ) =
uki−ukj∗ ∈ I if ij∗ ∈ E(G)), but not with more release
times of this form. Hence, the schedules that do not
stem from cliques in G have bounded size. Thus, if we
aim for cliques larger than that, the release times in an
optimal schedule must stem from a clique in G.

Using Section 5.2, we construct a thread P with nP =
3 + 7 · N + 7 · |E(G)| edges with |I| = f(nP ) = N +
|E(G)|+ 1 safe intervals. With Theorem 6 we yield:

Theorem 7 There exists a constant c > 0, such that
approximating the optimal schedule of beads in a thread

with nP edges to within a factor n
1/2−c
P is NP-hard.

Proof. Suppose there exists an algorithm A that can

schedule beads optimally within a factor ρ ≤ n
1/2−c
P .

Then we can construct an algorithm A′ for the maxi-
mum clique problem in G:

1. Use Lemma 8 to construct P from the given graph
G (the input for the maximum clique problem).

2. Use algorithm A to schedule beads on P .

Figure 7: Gadget to exclude the interval [x−b, x]. The
black lines are the horizontal edges of P adjacent to the
gadget. The total length of the (gray) gadget is x.

3. Construct a maximum clique for G from the release
times for P .

Then the approximation ratio for A′ for the maxi-
mum clique problem is the same as for algorithm A for
scheduling beads (ρ). Hence, we have:

ρ ≤ n1/2−cP = O((N +M)1/2−c) = (N1−2c) (6)

which yields a contradiction to Theorem 6. �

5.2 Construction of the Set of Safe Intervals

We aim to exclude all but the set of safe intervals given
in Equation (4). We use a long horizontal path to which
we add several gadgets to exclude certain intervals. Be-
tween each pair of consecutive gadgets we have a hori-
zontal edge of length uN+1 in P :
• To exclude (0, u1 − ε] use a path of length u1 − ε

that runs on itself, i.e., u1−ε
2 up and u1−ε

2 down.
• To exclude intervals of the form [x − b, x] we use

the gadget shown in Figure 7: The total length of
the gadget (shown in gray) is x, we have two ver-
tical edges of length b

2 each within a distance of 1,
and part of a slanted square with four edges, total
length x − b, and a distance > 1 between parallel
edges. For example, if we aim to exclude the in-
terval [ui + ε, ui+1 − ε] from the safe intervals, we
choose x = ui+1−ε, b/2 = ui−ε, which excludes the
interval [x−b, x] with x−b = ui+1−ε−2∗(ui−ε) =
ui + ε. Each of these gadgets also excludes the in-
terval (0,

√
2], thus, we choose u1 > 1.

Each gadget except for the first has one horizontal
edge and six edges within the gadget. The gadget ex-
cluding the interval (0, u1 − ε] has three edges. Hence,
for a graph G with N vertices, constructing the set I
of safe intervals from Equation (4), that is, excluding
all “unsafe” intervals, we use n = 3 + 7 ·N + 7 · |E(G)|
edges. This yields:

Lemma 8 Given a graph G with |V (G)| = N, |E(G)| =
M , we can construct in polynomial time a thread P with
nP = 3+7 ·N +7 · |E(G)| vertices, and C(G) ≤ S(P ) ≤
C(G)+1, where C(G) is the maximum clique size in G,
and S(P ) the length of an optimum finite schedule for P .
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6 Conclusion

We gave pseudopolynomial-time algorithms and hard-
ness results for scheduling uniform motion of well sepa-
rated agents along a given path; our algorithms extend
to the case of agents following multiple (constant num-
ber of) paths. An open problem is the existence of a
polynomial-time solution.
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Carving Polytopes with Saws in 3D

Eliot W. Robson∗ Jack Spalding-Jamieson† Da Wei Zheng‡

Abstract

We investigate the problem of carving an n-face trian-
gulated three-dimensional polytope using a tool to make
cuts modelled by either a half-plane or sweeps from an
infinite ray. In the case of half-planes cuts, we present
a deterministic algorithm running in O(n2) time and a
randomized algorithm running in O(n3/2+ε) expected
time for any ε > 0. In the case of cuts defined by
sweeps of infinite rays, we present an algorithm running
in O(n5) time.

1 Introduction

Stone carving is one of the earliest known representa-
tional works of art, and has been known to predate
even the earliest human civilization. This is the prac-
tice of taking a single solid piece of material and re-
moving pieces until achieving a desired final shape. To
ensure durability of the finished product, the base ma-
terial is often very durable and can be difficult to carve
with tools. As a result, it is desirable to minimize the
amount of work that must be done to achieve the final
carving, and is useful to be able to determine what kind
of objects can be carved out with the tools being used.

1.1 2D Cutting

The two-dimensional case of cutting material was first
studied by Overmar and Welzl [13]. In this work, the
authors modeled cuts as lines in the plane, giving al-
gorithms for computing the cheapest sequence of cuts
in special cases. This was generalized by Demaine, De-
maine, and Kaplan [8] to the case of cutting with line
segments in the plane where they gave an algorithm
with 2.5 approximation factor. This approximation fac-
tor was later improved by Dumitrescu and Hasan [9]. In
2009, Bereg, Daescu, and Jiang [3] presented a PTAS
for the problem of minimum length when cutting convex
n-gons out of convex m-gons with straight line cuts.

An analogous problem has been studied for ray cuts
[6, 14], where the cutting object is a ray instead of a
line or line segment. These results focus on carving

∗Department of Computer Science, University of Illinois
Urbana-Champaign, erobson2@illinois.edu

†David R. Cheriton School of Computer Science, University of
Waterloo, jacksj@uwaterloo.ca

‡Department of Computer Science, University of Illinois
Urbana-Champaign, dwzheng2@illinois.edu

Figure 1: A polytope containing a cavity that can be
carved with ray sweeps but not half-planes.

both convex and simple polygons, and minimizing the
length of cuts. In Section 3, we study a more general
version of the decision variant of this problem, where
we find maximum ray-carveable regions not crossing a
set of disjoint polygons.

1.2 3D Cutting

Surprisingly, we found very little work on 3D generaliza-
tions of these problems, the only ones being guillotine
cuts (cuts that go all the way through) used to cut a
convex polygon out of a sphere [2], and work on cutting
styrofoam with hot wire [12].

We explore carving three-dimensional shapes with
models of two different classes of cuts:

• Straight-cuts with tools like circular saws or table
saws, modelled using half-plane cuts (see Figure 3).

• Tools with the ability to pierce up to a specific
depth such as waterjets or laser cutters, modelled
using ray sweeps (see Figure 1).

Note that straight-cuts can also be performed with a
wide variety of other tools, such as band saws, the long
edge of chainsaws, or even jigsaws. Some tools also allow
for additional types of cuts that we do not model, such
as using the tip of a chainsaw, or rounded cuts using
a band saw. However, straight-cuts can be performed
with every sufficiently large saw, and moreover they are
the only useful type of cut for carving polytopes exactly,
since polytopes do not have rounded edges.

For simplicity, we only consider 3D polytopes P with
n vertices. We make no assumptions of general posi-
tion in this work, although we only consider polytopes
without self-intersections or degenerate faces. In other
words, we only consider polytopes that are uniquely de-
fined by their connected interiors.

We will assume we are always given a polytope P
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Figure 2: A polytope that can be carved with rays, but
with exactly one face that cannot be carved by half-
plane cuts.

Figure 3: Non-convex polytopes with holes that can be
carved using half-planes.

along with a triangulation of each face. If not, we may
triangulate each face in linear time [4] with no impact
on the final running time. We henceforth refer to the
resulting triangles as the facial triangles. We will use
n denote the complexity of P , i.e. the number of facial
triangles. Note that this is asymptotically proportional
to the number of vertices of P .

1.3 Our Contributions

In our paper, we consider a polytope P and determine
if there exists a finite set of cuts K such that for any
set C ⊃ P , the “carved” set C \ K has a connected
component (i.e., maximal connected open subset) equal
to int (P ) (the interior of P ). Essentially, the excess
connected components (“material”) can be “removed”
to leave only the intended shape. We also wish this to
be independent of C (i.e. C is not given as input to the
algorithm) so that the produced set of cuts can be used
to carve an object, regardless of the initial material.

In Section 2 we consider the set of cuts to be half-
planes, which can include complicated polytopes with
holes as in Figure 3. We are able to characterize the
shapes that can or cannot be carved, and use this to de-
rive a simple deterministic algorithm that runs in O(n2)
time. Furthermore, we also discuss a randomized algo-
rithm that runs in O(n3/2+ε) time for any ε > 0.

In Section 3, we model ray cuts as a finite set of ray
sweeps that consist of bounded continuous movement of
a ray on a plane. Sweeps are meant to model cuts one
could perform or program a machine to perform, rather
than simply being the set of shapes that are excluded

by a infinite union of rays. This model allows for a more
general class of cuts than half-plane cuts, as in Figure 1
and Figure 2. We are able to characterize the shapes
that can be carved with ray sweeps, and in this case we
present an algorithm that runs in O(n5) time.

2 Half-Plane Cuts

In this section, we study half-plane cuts which model
cuts that can be performed with tools such as circular
saws or table saws. Formally, a half-plane is defined by a
plane in R3 and the region on one side of a line contained
in that plane. A polytope P is carveable if there is a set
of half-plane cuts H, so that for any P -containing set
C ⊃ P , the set C\(∩H∈HH) has a connected component
(i.e., maximal connected open subset) equal to int (P )
(the interior of P ).

This model is equivalent to that of an open question
posed by Demaine et al. [8, 7th open problem]. They
ask if there exists an algorithm to cut three dimensional
polyhedra using an infinitely long rectangle that can
only slice straight.

2.1 Characterization of Carveable Polytopes

For a set S, we denote the convex hull of S by CH (S).
We give a complete characterization of the polytopes P
which can be carved in this model.

Theorem 1 For a triangulated polytope P , the follow-
ing are equivalent:
(a) P is carveable.
(b) For each facial triangle T in P , there is a sin-

gle half-plane HT containing T such that HT ∩
int (P ) = ∅.

(c) For each facial triangle T in P , let LT denote the
plane containing T . There is a single half-plane H
containing T and not containing CH

(
int (P ) ∩ LT

)

whose boundary line passes through a vertex of
CH

(
int (P ) ∩ LT

)
, and also passes through a vertex

v of T .

Essentially, the transformation from (a) to (b) indi-
cates that it suffices to consider one cut per facial tri-
angle, and the transformation from (b) to (c) indicates
that it suffices to consider only a limited set of potential
cuts for each facial triangle.

Proof.
(a)⇒ (b) Assume that P can be carved by a set of half-

planes W . For a facial triangle T lying on the plane
LT , let WT ⊂ W be the subset of half-planes on
LT . Then, by definition, T ⊂ ⋃w∈WT

w. We claim
that there exists a half-plane H ⊃ T such that H ∩
int (P ) = ∅. Then

⋃
w∈WT

w is the complement of an
open convex set on LT . Denote this open convex set
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on LT as S. Note that S contains int (P )∩LT , since
each w ∈ WT does not intersect int (P ). As S and
T are disjoint convex sets, there exists a separating
line l between S and T on LT , which induces a half-
plane H with boundary l containing T satisfying H∩
int (P ) = ∅, as desired.

(b)⇒ (a) Take all f cuts of the form HT . This divides
the exterior of P in any P -containing set C, and does
not intersect P , leaving it as a connected component.

(b)⇒ (c) Let T be a facial triangle of P , and let
LT denote the plane containing T . Assume that
LT ∩ int (P ) 6= ∅. Let HT be a half-plane on LT
containing T and not intersecting P , i.e. HT ∩T = T
and HT ∩ int (P ) = ∅. A half-plane H ′T ⊃ HT

can be found such that H ′T touches the bound-
ary of CH

(
int (P ) ∩ LT

)
by translating HT . An-

other half-plane H ′′T can be found by rotating H ′T
around the boundary of CH

(
int (P ) ∩ LT

)
until the

result touches a vertex of T . H ′′T is then tangent to
CH

(
int (P ) ∩ LT

)
, and some vertex v of T is on its

boundary.
(c)⇒ (b) Trivial. �

We now present observations about facial triangles T
and CH

(
int (P ) ∩ LT

)
, where LT is the plane on which

T lies. The first is stated in somewhat greater generality.

Observation 1 Let L be a plane, and let E be the
set of line segments defining edges of P that cross L.
That is, each line segment e ∈ E has two endpoints
which are strictly separated by L (i.e. the endpoints of
e lie on opposite sides of L). Then, CH

(
int (P ) ∩ L

)
=

CH (E ∩ L).

This is because the boundary of int (P ) ∩ L consists of
vertices that defined by the intersections of E with L.

We make an additional observation about polytopes
that are not carveable.

Observation 2 Let v be a vertex of P on facial triangle
T contained in the plane LT . If there exists three edges
e1, e2, e3 of P such that v ∈ CH

(
{e1, e2, e3} ∩ LT

)
, then

the polytope P is not carveable.

This directly follows from Theorem 1(c), as
CH

(
{e1, e2, e3} ∩ LT

)
⊆ CH

(
int (P ) ∩ LT

)
.

2.2 Quadratic Time Decision Algorithm

Using the characterization from Theorem 1(c) and the
observations, we show a simple quadratic time algo-
rithm exists for determining if a polytope is carveable.

Theorem 2 Given a triangulated polytope P with f fa-
cial triangles, there is an algorithm to determine if P
can be carved by half-planes that runs in O(n2) time.
If the answer is in the affirmative, the algorithm also
outputs a set of n half-planes that carve P .

v

`↑i (q)

`↓i (q)

H↓
i (q)

H↑
i (q)

Ei ∩ LT

Figure 4: The tangents of v and the halfplanes H↑i (v)

and H↓i (v). The figure is drawn on the plane LT .

Proof. Let T be a facial triangle, and let LT be the
plane containing T . By Observation 1, we can com-
pute the set of edges E of P that cross L to compute
CH

(
int (P ) ∩ LT

)
in O(n log n) total time. If the re-

gion is empty, then any half-plane containing T can be
output. Otherwise, by characterization (c) from The-
orem 1, we must determine if there exists a half-plane
H containing T and tangent to CH

(
int (P ) ∩ LT

)
, such

that the boundary line of H passes through a vertex v of
T . Note that each vertex v of T induces up to two lines
going through v and tangent to CH

(
int (P ) ∩ LT

)
. It

suffices to consider each of them. It is possible to com-
pute tangents in O(log n) time per vertex once we have
explicitly computed the convex hull.

However, we can shave the log factor (pun intended),
and do this in O(n) time per facial triangle with a dif-
ferent algorithm. The tangent to CH

(
int (P ) ∩ LT

)
on

LT through a vertex v is a line through a vertex v and
a vertex of X = E ∩ LT . Let lx,v be the line passing
through a point x in X and a vertex v of T . There are at
most O(n) such lines since |E| = O(n). If lx,v is a sepa-
rating line w.r.t. the plane LT between X \ {x} and the
other two vertices of T , then the half-plane H contain-
ing T with boundary lx,v satisfies all of our conditions.
Otherwise, if no such line exists, then no half-plane sat-
isfying our conditions exists, and P cannot be carved
using half-planes by Theorem 1.

It is not immediately clear how we can efficiently
check each of these lines. However, observe that only the
“extreme” lines lx,v for any specific v can be candidate
separating lines. This can be accomplished by perform-
ing what is essentially an iteration of the gift wrapping
algorithm for convex hulls [7, Section 1.1]. Maintain
a “current” line lx′,v. Iterate through all the points
x ∈ X. If x lies clockwise (resp. counter-clockwise) rel-
ative to the ray from v to x′, set x′ ← x.

If v lies outside of CH (X), this procedure is guar-
anteed to find the tangents to CH (X) passing through
v as candidate lines, and we can check in linear time
whether the candidate lines separate T and X. If v lies
within CH (X), then no such line exists, so we conclude
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Figure 5: A construction for family of polytopes carve-
able using half-planes (to increase the size, add more
pillars). For a member of this family with n facial trian-
gles, the algorithm described in Theorem 2 takes Θ(n2)
time.

that the polytope P is not carveable.
This algorithm shows how to find a half-plane for each

facial triangle in O(n) time or deduce one doesn’t exist.
The whole algorithm runs in O(n2) time, since there are
O(n) facial triangles. �

Figure 5 demonstrates that there exists a family of
polytopes that can be carved using half-planes, for
which the runtime of the algorithm described in The-
orem 2 is Θ(n2). In the next section we show a faster
algorithm for deciding if a polytope is carveable.

2.3 Subquadratic Time Decision Algorithm

At a high level, our quadratic time algorithm iterates
through a set Q of queries consisting of pairs q = (v, T ),
where v is a vertex on a facial triangle T in the polytope.
Each query q = (v, T ) asks for tangents of CH (E ∩ LT )
that go through v, lying on the plane LT that contains
T . Since we have |Q| = O(n) queries and the polygon
we are querying can be different for different planes LT
and can also itself have size O(n), this seems to require
quadratic time. However, we note that the polygons
are related: They all come from the original polytope
P . Surprisingly, we show that we can solve this problem
faster by answering all of these queries simultaneously.

We present a reduction from the decision problem
of whether a polytope P is carveable using half-planes
to the problem of detecting intersections between half-
planes and line segments in R3. The reductions solves
each query of Q on an increasingly large random subset
of the edges E that define the polytope P , by comput-
ing the violations between half-planes induced by the
previous tangents, and using the randomized analysis
of Clarkson–Shor [5] to bound the number of violations.
The violations are found by solving a problem involving
intersections between half-planes and line segments.

Lemma 3 Let T (n, k) be the time complexity of an al-
gorithm for detecting intersection between n half-planes

and n line segments in R3 with at most k intersec-
tions. Then, for any parameter 2 ≤ r < n, there is
a randomized algorithm that decides if a polytope P
is carveable by half-planes that runs in expected time
O((log n/ log r) · (T (O(n), O(nr log n)) + nr log n)) with
high probability.

Proof. We use a bottom-up sampling approach. Let
E0 be the edges (i.e. line segments not including end
points) defining the polytope P . We choose E0 ⊃ E1 ⊃
E2 ⊃ · · · ⊃ Ek = ∅ to be a series of uniformly random
samples of the edges: To get Ei+1 from Ei, we take each
edge e ∈ Ei with probability 1

r for some parameter r.
We stop at the first value k such that Ek = ∅. Note
that with high probability (w.h.p.) k = Θ(log n/ log r),
as |E0| = O(n).

Throughout the algorithm, for each query q = (v, T )
pair (with T contained in a plane LT ), we maintain two

half-planes H↑i (q), H↓i (q) ⊂ LT \ CH (Ei ∩ LT ). Their
boundaries are, respectively, the upper and lower tan-
gents of CH (Ei ∩ LT ) passing through v. Note that
it is possible that CH (Ei ∩ LT ) is empty (i.e. when

i = k), so in this case, we let H↑i (q) = H↓i (q) = LT .

See Figure 4 for an illustration. Let Hi = {H↑i (q) | q ∈
Q} ∪ {H↓i (q) | q ∈ Q}.

To compute Hi from Hi+1, we create an instance of
intersection detection between the line segments Ei \
Ei+1 and the half-planes Hi+1.

We analyze what intersections can occur for the half-
planes defined by a query q = (v, T ). We observe that
on the plane LT , since Ei+1 is a 1/r sample of Ei, LT ∩
Ei+1 is also a 1/r sample of LT ∩ Ei. By a standard
analysis of Clarkson and Shor [5], this implies that the

number of points of LT ∪Ei that lie within H↑i+1(q) and

H↓i+1(q) is at most O(r log n) w.h.p. Note that this is

exactly the intersections between Ei \Ei+1 and H↑i+1(q)

and H↓i+1(q), and thus the total number of intersections
between Ei \ Ei+1 and Hi+1 is O(nr log n).

For a query q = (v, T ), three types of events may
occur:

1. Ei+1∩LT was empty and Ei∩LT is non-empty.
In this case, we can inspect the points of Ei∩LT (of
which there at most O(r log n) w.h.p.) and either

compute H↑i (q) and H↓i (q) or deduce that P is not
carveable in linear time in the size of Ei ∩LT as in
Theorem 2.

2. Ei∩LT contains a point that lies in both H↑i+1

and H↓i+1. Let e denote the edge that induces this

point. Let e↑ and e↓ be the edges of Ei+1 that
defined H↑i+1 and H↓i+1 respectively. Observe that

e, e↑, e↓ are the triple of edges that certify that P
is not carvable by Observation 2.

3. The points of Ei ∩ LT either lie in H↑i+1(q) or

H↓i+1(q). In this case, we can compute H↑i (q) and
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H↓i (q) from Ei∩LT in linear time following a similar
procedure to find the most extreme halfplane as in
Theorem 2.

In all cases, either we conclude that the polytope P
is not carveable or we compute Hi. If we have com-
puted H0, we have extreme half-planes for every ver-
tex of every facial triangle T . At this point, we can
conclude that no vertex of any facial triangle T lies
within CH

(
int (P ) ∩ LT

)
, but it is still possible that

some portion of the interior of a facial triangle T inter-
sects CH

(
int (P ) ∩ LT

)
. However, as we computed the

extreme half-planes for every vertex, we can check in
O(1) time whether one of these half-planes is a separat-
ing half-plane satisfying Theorem 1(c).

To analyze the runtime, we use an algorithm for in-
tersection detection between half-planes and line seg-
ments O(log n/ log r) times with O(n) half-planes and
O(nr log n) intersections. Step 1 and 3 of the above
run in time linear in the number of intersections, i.e.
O(nr log n) total time. �

Since line segment intersection can be reduced to ray
shooting among halfplanes, the algorithm of Agarwal
and Matoušek[1] for ray shooting imply that T (n, k) =
O(n3/2+ε + n1/2+ε · k) for any ε > 0. Thus we conclude
the following corollary by choosing r = O(1).

Corollary 4 For any ε > 0, there exists a Las Vegas
algorithm to determine if a polytope P is carveable by
half-planes that runs in time O(n3/2+ε) with high prob-
ability. Furthermore, if P is carveable this algorithm
outputs a set of cuts to carve P .

We note that using the intersection reporting data struc-
ture between triangles1 and line segments in R3 by Ezra
and Sharir [11] gives a better runtime of T (n, k) =
O(n3/2+ε + k log n), but does not improve the overall
runtime of our algorithm. It is plausible to believe that
this exponent of 3/2 is the best we can hope for due to
lower bounds for Hopcroft’s problem in 3D [10].

3 Ray Sweeps

In this section, we consider cutting material with rays.
This models cuts that can be performed with various
kinds of tools, such as a powerful waterjet 2, or a laser
cutter 3. Given a target polytope P , we wish to devise
a set of cuts to carve P out of arbitrary initial material
C ⊃ P . In particular, C is cut into pieces, and one
of the pieces is int (P ) (and the remaining are leftovers
which can be discarded). However, we would like this
to be independent of C, so we may use the same set of
cuts to carve P from different pieces of initial material.
We also classify shapes P that admit such a carving.

1A half-plane can be simulated by a sufficiently large triangle.
2https://youtu.be/pemgwRrCs78
3https://youtu.be/J2oyk3ck8Z8

Figure 6: A polytope for which all faces are exter-
nally visible that cannot be cut with ray sweeps, since
ray sweeps require bounded length. In particular, the
shaded face would require a ray sweep of infinite length
(i.e., a space-filling curve).

3.1 Model

We would like our model to capture the finite set of cuts
that can be made using the tools described previously,
and they are commonly operated by moving in a sweep-
ing motion to separate material. Thus, we define our
cuts as a set of ray sweeps. Consider a ray R defined by
an endpoint a and interior point b. A sweep is an inter-
polation where a or b (or both) travel along an arbitrary
continuous path of bounded length.

The reason we require bounded length is because
without it, our model would allow us to cut entire faces
using the endpoint of a ray, via space-filling curves. Fig-
ure 6 is an example of a polytope which cannot be cut
using ray sweeps, specifically because of the bounded
length requirement. Without this requirement, any
polytope for which all faces are entirely externally visi-
ble could be carved. We use this more restrictive model
because it is more representative of how an actual ma-
chine could be used to get flat faces.

Given a (triangulated) polytope P , we determine if
there is a set of ray sweeps R such that, for any P -
containing set C ⊃ P , the set C \ (∩R∈RR) has a con-
nected component (i.e., maximal connected open sub-
set) equal to int (P ). If such a set of ray sweeps exists,
then we also will be able to output it.

As in subsection 2.2, since we only allow finitely many
sweeps of bounded length (and hence do not permit
space-filling curves), it suffices to ask if each facial tri-
angle can be cut independently. Thus, in this section,
we attempt to solve the following two-dimensional prob-
lem: Given a triangle T ⊂ R2 on the plane, and a set
BT ⊂ R2 which is the disjoint union of simple polygons,
is there a set of ray sweeps R inside the plane such that
T ⊂ ⋃R∈RR and each R ∈ R has R ∩ int (BT ) = ∅?
If we can solve this 2D problem in time t(k), where k
is the number of vertices forming the polygons of BT ,
then we can classify triangulated polytopes P that can
be carved using ray sweeps in time O(n · t(n)).

In fact, we show that sweeps of a special form suffice:
A linear ray sweep is one for which the endpoint a can
be linearly interpolated between two points, and the
interior point b is constant.
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Figure 7: An example of the angle sweep performed in
the proof of Theorem 5 around a vertex v. The events
are denoted with the red lines/rays, and the valid ray
sweeps are coloured.

3.2 2D Cuttable Regions

Compared to Section 2, our approach in this section is
reversed. Rather than directly checking if each triangle
can be carved, we first map out the carveable regions
along the plane containing the triangle, and then after-
wards we check if the triangle itself is contained within
those regions.

Theorem 5 Given a set B ⊂ R2 which is the disjoint
union of simple polygons with a total of k vertices, there
is an O(k2 log k) time algorithm that can find a set of
linear ray sweeps with total complexity O(k2), the union
of which is exactly the union of all rays R ⊂ R such that
R ∩ int (B) = ∅.

Proof. For each vertex v of B, we compute a set of lin-
ear ray sweeps Av, each of which passes through v, and
none of which intersect int (B). At a high level, this al-
gorithm rotates a line passing through v, and maintains
the maximal rays in both directions through the line (if
any) that include v and do not intersect int (B).

For the vertex v in B, in order to compute Av, we
perform an angle sweep around v, where we rotate a
line that at all times passes through v. The events of
our angle sweep are the set of other vertices in B. Com-
pute the ray starting from v through every other vertex
in B, and sort all other vertices in B by the angles of
those rays (with an arbitrary branch cut). The other
vertices form the events of our angle sweep. Now, per-
form an angle sweep that continuously sweeps a line l,
while maintaining a data structure containing the order
of all edge interiors in B (i.e., edges without their end-
points) intersected crossed by l, along with their order
relative to v along l. Any standard binary search tree
suffices for this purpose. Note that the wording crossed
implies that it is okay for l to intersect an edge interior
to which it is parallel. Between two events, we check if
along l there is a ray from v to infinity that does not
intersect any edge interiors in B (i.e., we check if v is
either the first or last element along l according to our

Figure 8: An example of a pentagon that cannot be
cut with ray sweeps for a given set of obstacles. The
bordering linear ray sweeps are shown.

data structure). If so, we have found a linear ray sweep
between these two events. Extend the ray backwards to
the first/last element along l (depending on the direc-
tion) at both events. The linear ray sweep then linearly
interpolates between those two extended rays, using v
as a pivot point. See Figure 7 for an illustration.

To show the correctness of this algorithm, first ob-
serve that any ray passing through a vertex of B is con-
tained in one of the linear ray sweeps. Then, we claim
that any valid ray V ∗ not intersecting a vertex of B can
be cut using rays which intersect at least one vertex of
B. To see this, let V ⊆ V ∗ be a ray with endpoint
p ∈ V ∗, an arbitrary point cut by V ∗. Consider rotat-
ing V around p until it hits a vertex (possibly many) of
B, call this new ray V ′. Observe that V ′ intersects a
vertex of B as desired, and still contains p. Since p was
an arbitrary point of V ∗, the claim follows. Hence, our
algorithm produces linear ray sweeps that together cut
all rays not intersecting B.

Since there are k vertices and each angle sweep takes
O(k log k) time both to sort and to perform, this algo-
rithm runs in O(k2 log k) time in total. �

3.3 Decision Algorithm

Theorem 6 Let B be a set of interior-disjoint simple
polygons in R2 with a total of k vertices, let T be a
triangle in R2. Then, in O(k4) time, we can check if
there is a set of ray sweeps R such that T ⊂ ∪R∈RR
so that each ray sweep R ∈ R has R ∩ int (B) = ∅. If
there is, then we can also output it in the same time
complexity.

Proof. Apply Theorem 5 to get a set of O(k2) lin-
ear ray sweeps whose union is equal to the set of all
area that can be carved via rays that do not intersect
int (B). Take the arrangement of all lines containing
each ray or line segment forming the boundary of each

150



CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

ray sweep. This arrangement can be computed as a
doubly-connected edge list in O(k4) time using a stan-
dard incremental construction [7, Theorem 8.6].

For each edge in the graph formed by the arrange-
ment, we include information about which ray sweep
boundaries contain this edge. Then, we can traverse
the cells of the arrangement with a depth-first search,
while maintaining the current set of regions in which
the current cell is contained, updating as we traverse
each edge. We record, for each cell, whether or not it
is part of any region. In this way, we obtain informa-
tion about which cells are included in the union of the
regions in O(k4) time (linear in the complexity of the
arrangement).

Finally, consider each cell of the arrangement. Check
if the cell intersects T . If so, check if it is marked as
being in the interior of at least one linear ray sweep that
can be carved. If it is not, then T cannot be carved. If
we determine that all cells intersecting T can be carved,
then T itself can also be carved. The time complexity
to check if each cell intersects T is also O(k4), and hence
the total time complexity of this algorithm is O(k4), as
desired. �

Corollary 7 Let P be a triangulated polytope with n
faces. Then, there is an algorithm running in O(n5)
time which can determine if P can be carved with ray
sweeps. Moreover, if it can, then the algorithm can out-
put a set of linear ray sweeps carving P .

Proof. Consider each of the facial triangle T of P sep-
arately. Let LT be the plane containing T , and com-
pute the set of disjoint open polygonal regions BT =
LT ∩ int (P ). If BT is empty, then T can be cut with
a single ray sweep. If BT is non-empty, apply Theo-
rem 6 to determine if T can be cut with ray sweeps.
Maintain a list of ray sweeps used, to be output if all
triangles can be cut with ray sweeps. There are n facial
triangles, hence this algorithm runs in O(n5) time. �

4 Conclusion

In this paper we discussed two models (half-planes and
ray sweeps) of carving three-dimensional polytopes. We
focused on the decision variant of each, while retaining
the ability to generate a list of cuts when the input poly-
topes are carveable. Interestingly, even when a polytope
P is not carveable our algorithms can all be modified to
find a minimal carveable polytope that contains P . This
could be quite useful in real-world applications, where
a small number of additional cuts could be made using
a more specialized tool.

There are several natural resulting open questions
from our work:

• Is there a deterministic algorithm for half-plane
carving running in subquadratic time?

• Is there a faster algorithm for 2D ray sweep carv-
ing that makes use of the triangles to be carved
directly?

• Are there efficient algorithms for optimization vari-
ants of our problems? Either minimizing total
length of cuts or minimizing the number of cuts.
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Improved upper bounds for the Heilbronn’s Problem for k-gons

Rishikesh Gajjala∗ Jayanth Ravi

Abstract

The Heilbronn triangle problem asks for the placement
of n points in a unit square that maximizes the smallest
area of a triangle formed by any three of those points.
In 1972, Schmidt considered a natural generalization of
this problem. He asked for the placement of n points
in a unit square that maximizes the smallest area of
the convex hull formed by any four of those points. He
showed a lower bound of Ω(n−3/2), which was improved
to Ω(n−3/2 log n) by Leffman.

A trivial upper bound of 3/n could be obtained and
Schmidt asked if this can be improved asymptotically.
However, despite several efforts, no asymptotic improve-
ment over the trivial upper bound was known for the
last 50 years, and the problem started to get the tag of
being notoriously hard. Szemerédi posed the question
of whether one can, at least, improve the constant in
this trivial upper bound. In this work, we answer this
question by proving an upper bound of 2/n + o(1/n).
We also extend our results to any convex hulls formed
by k ≥ 4 points.

1 Introduction

Given a constant k ≥ 3 and a set P = {P1, P2, . . . , Pn}
of n ≥ k points on the unit square [0, 1]2, let Ak(P )
be the area of the smallest convex hull among all con-
vex hulls determined by subsets of k points in P. The
supremum value of Ak(P ) over all choices of P is de-
noted by ∆k(n). The Heilbronn triangle problem asks
for the value of ∆3(n).

The Heilbronn triangle problem is one of the funda-
mental problems in discrete geometry and discrepancy
theory and has a rich history. Paul Erdős proved that
∆3(n) = Ω

(
1
n2

)
. This was believed to be the upper

bound for some time until Komlós, Pintz and Szemerédi
[12] proved that

∆3(n) = Ω

(
log n

n2

)

Over a series of works, the upper bounds were improved
by Roth [16, 17, 18, 19] and Schmidt [20]. The current
best-known upper bound is due to Komlós, Pintz and

∗Indian Institute of Science, Bengaluru,
rishikeshg@iisc.ac.in

Szemerédi [11]

∆3(n) = O
(
2c
√
logn

n8/7

)

This has been recently claimed to be improved by Co-
hen, Pohoata and Zakharov [7] to O

(
n−8/7−1/2000

)
.

There has also been work on several variants of this
problem. Jiang, Li and Vitany [10] and Benevides, Hop-
pen, Lefmann and Odermann [4] studied the case in
which the points were randomly distributed. The prob-
lem was also explored in higher dimensions by placing
n points in d-dimensional unit cubes [0, 1]d instead of a
unit square [1, 2, 3, 6, 13, 15].

Schmidt asked about the value of ∆k(n) and proved
that ∆4(n) = Ω

(
1
n1.5

)
[20]. Bertraln-Kretzberg,

Hofmeister and Lefmann generalized this result to k-

gons by proving that ∆k(n) = Ω

(
1

n
k−1
k−2

)
[5]. This was

improved by Lefmann[14] to

∆k(n) = Ω

(
(log n)

1/k−2

n1+
1

k−2

)

2 Our results

A trivial upper bound of ∆4(n) ≤
3

n
can be obtained by

subdividing the unit square into squares of side length√
3

n
using the pigeonhole principle. However, despite

several efforts to improve this upper bound (asymptot-
ically) since it was posed in 1972, there has been no
progress! Szemerédi asked if at least the constants in
this upper bound can be improved [21]. In this work,
we answer this question by proving the following theo-
rem.

Theorem 1 ∆4(n) ≤
2

n
+ o

(
1

n

)

We also generalize our result to general k-gons for any
constant k ≥ 4.

Theorem 2 ∆k(n) ≤
k − 2

n
+ o

(
1

n

)
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3 Convex quadrilaterals: Proof of Theorem 1

We solve a more general problem by having the points
on a unit rectangle (instead of a unit square). Given a
set P = {P1, P2, . . . , Pn} of n ≥ 3 points on the unit
rectangle [0, d] × [0, d−1] and k ≤ n, let A′k(P ) be the
minimum area of the convex hull determined by a set of
k points in P for any 0 < d ≤ 1. The supremum value
of A′k(P ) over all choices of P is denoted by ∆′k(n). It
is easy to see that by definition

∆k(n) ≤ ∆′k(n)

For k = 4, when there are n points, in the argument to

obtain a trivial bound of ∆′4(n) ≤
3

n− 1
, we partition

the unit rectangle into at most (n− 1)/3 smaller rect-
angles. This would guarantee that there exists a small
rectangle containing at least 4 points. Naturally, one
can also extend this idea to make sure there are at most(
n− 1

n′ − 1

)
smaller rectangles and force n′ ≥ 4 points

into one rectangle. This gives us a relation between
∆′4(n) and ∆′4(n

′), which is formalized in Observation
3.

Observation 3 For 4 ≤ n′ ≤ n,

∆′4(n) ≤
⌊
n− 1

n′ − 1

⌋−1
∆′4(n

′)

Proof. Partition the unit area into a grid with⌊
n− 1

n′ − 1

⌋
rectangles of area

⌊
n− 1

n′ − 1

⌋−1
. Since there

are n points and

⌊
n− 1

n′ − 1

⌋
≤ n− 1

n′ − 1
rectangles, by the

pigeonhole principle, one of the smaller rectangles (with
their boundary included) has at least n′ points. There-
fore, there always exists n′ points within an area at

most

⌊
n− 1

n′ − 1

⌋−1
. It now follows by a scaling argu-

ment that there exist four points within an area at most⌊
n− 1

n′ − 1

⌋−1
∆′4(n

′). □

When n′ = 4, this gives the trivial bound of ∆′4(n) ≤
3

n− 3
≈ 3/n as expected. We can do slightly better by

tuning the value of n′ to be 6. We start with finding
the exact value of ∆′4(6).

Observation 4 ∆′4(6) = 1/2

Proof. Let C be the centre of the rectangle [0, d] ×
[0, d−1] and P be a set of any six points in [0, d]×[0, d−1].
Pick an arbitrary point P ∈ P and extend the line seg-
ment PC into a line. The extended line PC cuts the
rectangle [0, d]× [0, d−1] into two convex parts, and by

symmetry, both these parts have the same area, i.e.,
1/2. From the pigeonhole principle, at least 3 of the re-
maining 5 points lie on one side of the extended line PC.
Therefore, 4 points (including P ) exist, which are con-
tained in a convex shape whose area is 1/2. Therefore,
∆′4(6) ≤ 1/2.

(0,0)

(0,0.5d−1)

(0,d−1)

(d,0)

(d, 0.5d−1)

(d, d−1)

Figure 1: ∆′4(6) ≥ 1/2

It may be noted the bound of 1/2 is achieved in Figure
1. Therefore ∆′4(6) ≥ 1/2 □

Corollary 5 ∆4(n) ≤
1

2

⌊
n− 1

5

⌋−1
≤ 2.5

n− 5

Proof. By substituting n′ = 6 in Observation 3 and
using Observation 4, we get

∆′4(n) ≤
⌊
n− 1

5

⌋−1
∆′4(6) =

1

2

⌊
n− 1

5

⌋−1
≤ 2.5

n− 5

□

We will now extend the idea of Observation 4 to all
n of the form 2s + 2 for any s ≥ 2, i.e., for all n of

such form, we prove ∆4(n) ≤
2

n− 2
in Theorem 8 using

Observation 6 and Lemma 7.

Observation 6 For any point P in a convex polygon
C, there exists a line through P which partitions C into
two halves of equal area.

Proof. Let A be the area of C. Pick any arbitrary line
L through P and let the areas of the convex polygons
on both of its sides of L be L1 and L2 such that L1 ≤
A/2 ≤ L2. By rotating the line by 180◦ around P , we
get L2 ≤ 1/2 ≤ L1. Since L1 changes continuously as a
function of the angle of rotation θ, by the intermediate
value theorem, it must have achieved 1/2 in between for
some θ. □

Lemma 7 If a convex polygon of area ∆ has 2i · β + 2
points, then there is a convex polygon of area ∆/2 which
contains at least 2i−1 · β + 2 points.
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Proof. Pick one of the 2i · β + 2 points arbitrarily, say
P . From Observation 6, there is a line L through P
cutting the polygon into two halves. Note that by the
pigeonhole principle, one of the halves would have at
least 2i−1 · β + 1 points. By including P in this region,
we get a convex polygon of area ∆/2, containing at least
2i−1 · β + 2 points. □

We first introduce some new notation. Given a set
Q = {Q1, Q2, . . . , Qn} of n ≥ 3 points on an arbitrary
convex object C of unit area, let ACk(Q) be the minimum
area of the convex hull determined by some k points in
Q. The supremum value of ACk(Q) over all choices of Q
is denoted by ∆Ck(n). Let ∆′′k(n) denote the supremum
value of ∆Ck(n) over all convex objects of unit area. It
is easy to see that by definition

∆k(n) ≤ ∆′k(n) ≤ ∆′′k(n)

Theorem 8 If n = 2s +2 for some integer s > 0, then

∆4(n) ≤ ∆′4(n) ≤
1

2s−1
=

2

n− 2

Proof. Let Q = {Q1, Q2, . . . , Qn} be a set of n points.
We will prove a stronger statement of

∆′′4(n) ≤
1

2s−1

Observation 9 For every i ∈ [0, s − 1], there exists a

convex polygon of area at most
1

2i
which has at least

2s−i + 2 points from Q.

Proof. We prove this by induction on i. When i = 0,
the claim is true by definition. Suppose there exists a

convex polygon of area at most
1

2i
with at least 2s−i+2

points from Q, then from Lemma 7, for i < s− 1, there

exists a convex polygon of area at most
1

2i+1
with at

least 2s−(i+1) + 2 points from Q □

By substituting i = s− 1 in Observation 9, Theorem 8
follows. □

One may note that this would give an upper bound
of ≈ 2/n for many arbitrarily large n of the form 2s+2.
However, there are also several arbitrarily large n of the
form, say, 2s+1, for which this bound is not useful. We
fix this using Observation 3.

Corollary 10 ∆4(n) ≤
2

n
+ o

(
1

n

)

Proof. For every n, there exists some i such that

2i−1 + 2 ≤ n < 2i + 2

Let n′ = 2⌈0.5i⌉ + 2. From Theorem 8,

∆′4(n
′) ≤ 2

n′ − 2
<

2

n′ − 1

⌊
n− 1

n′ − 1

⌋
>

n− 1

n′ − 1
− 1 ≥ n− n′

n′ − 1

From Observation 3,

∆′4(n) ≤ ∆′4(n
′)

⌊
n− 1

n′ − 1

⌋−1
≤ 2

n′ − 1
· n
′ − 1

n− n′ =
2

n− n′

=
2

n
+

2n′

n(n− n′) =
2

n
+O

(
1

n1.5

)

□

(0,0)

(0,0.5d−1)

(0,d−1)

(0.5d,0)

(0.5d,0.5d−1)

(0.5d,d−1)

(d,0)

(d, 0.5d−1)

(d, d−1)

Figure 2: ∆′4(9) ≥ 1/4

From Figure 2, it is easy to see that ∆′4(9) ≥ 1/4.
We conjecture that the other direction is also true, i.e.,
∆′4(9) ≤ 1/4

Conjecture 1 ∆′4(9) = 1/4

If true, Conjecture 1 would directly imply that

∆4(n) ≤
2

n− 8
from Observation 3 by picking n′ to be

9. We also note that finding the exact values of ∆k(n)
is of independent interest and has been well studied for
k = 3 [8, 9, 22].

One may note that our analysis will extend to gen-
eral convex figures with unit area (instead of just unit
squares), i.e.,

∆′′4(n) ≤
2

n
+ o

(
1

n

)

4 Convex k-gons: Proof of Theorem 2

In this section, we extend our proofs for k = 4 to give
upper bounds on ∆k(n) for any constant k.

Proposition 11 (Analogue of Observation 3) For
n′ ≤ n,

∆′k(n) ≤
⌊
n− 1

n′ − 1

⌋−1
∆′k(n

′)
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Proof. The proof of Proposition 11 directly extends
from Observation 3. □

Theorem 12 (Analogue of Theorem 8) If n =
2s(k)− 2s+1 + 2 for some integer s > 0, then

∆k(n) ≤ ∆′k(n) ≤
1

2s
=
k − 2

n− 2

Proof. Let Q = {Q1, Q2, . . . , Qn} be a set of n points.
We will prove a stronger statement of

∆′′k(n) ≤
1

2s

Observation 13 For every i ∈ [0, s], there exists a

convex polygon of area at most
1

2i
with at least 2s−i(k)−

2s+1−i + 2 points from Q.

Proof. We prove this by induction on i. When i = 0,
the claim is true by definition. Suppose there exists

a convex polygon of area at most
1

2i
with at least

2s−i(k)−2s+1−i+2 points from Q, then from Lemma 7,
for i < s, there exists a convex polygon of area at most
1

2i+1
with at least 2s−(i+1)(k) − 2s+1−(i+1) + 2 points

from Q. □

By substituting i = s in Observation 13, Theorem 12
follows. □

Corollary 14 ∆k(n) ≤
k − 2

n
+ o

(
1

n

)

Proof. For every n, there exists some i such that

2i−1(k)− 2i + 2 ≤ n < 2i(k)− 2i+1 + 2

Let n′ = 2⌈0.5i⌉(k)− 2⌈0.5i⌉+1 + 2. From Theorem 12,

∆′k(n
′) ≤ k − 2

n′ − 2
<

k − 2

n′ − 1

⌊
n− 1

n′ − 1

⌋
>

n− 1

n′ − 1
− 1 ≥ n− n′

n′ − 1

From Proposition 11,

∆′k(n) ≤ ∆′k(n
′)

⌊
n− 1

n′ − 1

⌋−1
≤ k − 2

n′ − 1
· n
′ − 1

n− n′ =
k − 2

n− n′

= (
1

n
+

n′

n(n− n′) ) · (k − 2) =
k − 2

n
+O

(
1

n1.5

)

□

Conjecture 2 ∆′k(α(k− 1)) =
1

2(α− 1)
for α ≤ k− 1

One can prove that ∆′k(α(k−1)) ≥ 1

2(α− 1)
by placing

the points in the corners of a α×(k−1) grid. We conjec-
ture that this is, in fact, the optimal placement. When
α = 2, this is indeed true by Lemma 7. Conjecture 1
is a special case of Conjecture 2 when k = 4. If true,
Conjecture 2 would imply an upper bound of ≈ k/(2n)
One may notice that Conjecture 2 can not be ex-

tended to α ≤ k−1, as at least k points become collinear
in that case.
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average-case area of heilbronn-type triangles. Ran-
dom Struct. Algorithms, 20(2):206–219, 2002.

156



CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

[11] J. Komlós, J. Pintz, and E. Szemerédi. On heil-
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The exact balanced upper chromatic number of the n-cube over t elements ∗

Gabriela Araujo-Pardo† Silvia Fernández-Merchant‡ Adriana Hansberg§ Dolores Lara¶

Amanda Montejano‖ Déborah Oliveros∗∗

Abstract

We consider colorings of the cube Cnt defined as the set
of lattice points in [0, t − 1]n. The geometric lines of
this cube are all the subsets of t collinear points; these
are the lines typically used in multidimensional tic-tac-
toe. Given a coloring, a geometric line is rainbow if all
its points have different colors. The coloring is balanced
if the color class sizes differ in at most one. In this
paper, we determine the exact value of the balanced up-
per chromatic number of Cnt , for any positive integers
n and t ≥ 4n − 2. That is, we find the largest integer
k for which there is a balanced k-coloring of Cnt with-
out rainbow geometric lines. This problem is related
to the impossibility of the existence of a rainbow Ram-
sey counterpart of the famous Hales–Jewett theorem in
Ramsey theory.

1 Introduction

The n-cube on t elements, denoted by Cnt , is the set
of lattice points with integer coordinates in the interval
[0, t − 1]. The geometric lines of this cube are all the
subsets of t collinear points. They satisfy that, for each
0 ≤ i ≤ t−1, the ith coordinates of the t points are either
all equal or all different. These correspond to the lines
typically used in multidimensional tic-tac-toe games [6].
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We consider colorings of the points of Cnt . Given a col-
oring, we say that a geometric line is rainbow if its t
points are colored with t different colors. A coloring is
balanced if each color is used almost the same number
of times, more precisely, if all color class sizes differ by
at most one. (When the color classes are exactly the
same size, these colorings are also called equinumerous
[19].) A coloring is rainbow-free if none of its geometric
lines are rainbow. The largest integer k for which there
is a balanced rainbow-free k-coloring of Cnt is called the
balanced upper chromatic number of Cnt . In this paper,
we determine the balanced upper chromatic number of
Cnt , for every n ≥ 2 and every t ≥ 4n− 2.

To place this problem in a general context, we look
back in history. Starting in the 1930s, Paul Erdős and
George Szekeres [13] popularized what is now known
as Ramsey theory [15]. This theory is based on Ram-
sey’s idea that any sufficiently large structure contains
a regular substructure [24] or, in the words of Theodore
Motzkin, “complete disorder is impossible” [23]. An in-
teresting branch of this area is what is known in the lit-
erature as rainbow or anti Ramsey theory (see [9, 10, 12]
and many other references cited in [19]), which studies
the existence of special rainbow (totally multicolored)
subsets, provided that the color ground set is sufficiently
large and that all colors are well represented. In con-
trast, Ramsey theory (in the context of colorings) stud-
ies the existence of special monochromatic (one color)
subsets in colorings of large enough sets.

Many results in Ramsey theory have a rainbow Ram-
sey version. For example, van der Waerden’s theorem
[25, 26] states that, for n large enough, any k-coloring
of the integers {1, 2, 3, . . . , n} contains a monochromatic
arithmetic progression of a given length t. The rainbow
Ramsey versions of this result usually impose the con-
dition that each color appears with a minimum density.
The equinumerous version for 3-term arithmetic pro-
gressions and 3 colors was proved in [20]. This result
was originally conjectured in [19], where they explore
other rainbow variants. In particular, they propose this
interesting problem: for fixed t ≥ 3, find the minimum
number of colors k such that, for every n, any balanced
k-coloring of the set {1, 2, . . . , kn} has a rainbow arith-
metic progression of length t. This is similar to the line
of work of this paper (see more below).

A deviation of this trend occurs when looking at the
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famous Hales-Jewett theorem [6, 16] (a generalization
of van der Waerden’s theorem) that establishes the ex-
istence of monochromatic geometric lines for any k-
coloring of the cube Cnt and n large enough. (This the-
orem is actually stronger guaranteeing the existence of
a monochromatic combinatorial line. The set of combi-
natorial lines is a subset of the set of geometric lines as
defined above, see Section 1.1 or [6] for a precise defini-
tion.) The rainbow Ramsey version of this result would
state that, given k and t (k ≥ t), any k-coloring of Cnt
contains a rainbow geometric line, for any n suficiently
large. However, this has been disproved even for bal-
anced colorings [19, 22] (see the note after Inequality
(2) in Section 1.2). Given this impossibility, a natural
direction is to investigate how large the number of colors
k needs to be in order to guarantee a rainbow geometric
line in any balanced k-coloring of Cnt . This threshold is
settled in this paper for any n and t ≥ 4n − 2. (Note
that as long as the number of colors in a balanced color-
ing is larger than the balanced upper chromatic number
of Cnt , the existence of a rainbow geometric line is guar-
anteed.)

The balanced upper chromatic number has been stud-
ied for cyclic projective planes, projective spaces, for
the desarguesian projective planes, and for the cube
[4, 8, 22]. A similar parameter has been studied in the
setting of hypergraphs for general (not necessarily bal-
anced) colorings [3, 5, 27] and for mixed colorings [21].
Similar approaches involving arithmetic structures are
handled in [1, 11, 14, 18].

1.1 The n-cube and its geometric lines

We consider the n-cube over t elements, denoted by Cnt ,
defined as the set of points (ordered n-tuples) on the set
{0, 1, . . . , t− 1}. That is,

Cnt = {x = (x1, x2, . . . , xn) : 0 ≤ xi ≤ t− 1, xi ∈ Z}.

We typically use “bold fonts” to represent the points
x of Cnt as above. A geometric line in the n-cube Cnt
consists of exactly t collinear points x0,x1,x2, . . .xt−1
of Cnt . Formally, a set of t distinct points of Cnt is a
geometric line if there is an order of the points, such
that when we write their coordinates in the following
array

x0 =(x0,1, x0,2, . . . x0,j , . . . x0,n−1, x0,n)

x1 =(x1,1, x1,2, . . . x1,j , . . . x1,n−1, x1,n)

x2 =(x2,1, x2,2, . . . x2,j , . . . x2,n−1, x2,n)

...
...

...

xt−1 = (xt−1,1,xt−1,2, . . . xt−1,j , . . . xt−1,n−1,xt−1,n)

each of the n columns satisfies one of the following con-
ditions:

(a) The entries are all equal to some fixed value a ∈
{0, 1, . . . , t− 1}.

(b) The entries appear in increasing order
0, 1, . . . , t− 1.

(c) The entries appear in decreasing order t − 1, t −
2, . . . , 1, 0.

(The lines satisfying only conditions (a) and (b) are
called combinatorial lines). Hence, each line in Cnt
can be identified with a vector ⟨l1, l2, . . . , ln⟩, where
the entries correspond to the types, (a), (b) or (c),
of each column. That is, for every 1 ≤ i ≤ n,
li ∈ {b, c, 0, 1, 2, . . . , t − 1}. Note that columns of
type (a) are indicated by the actual fixed value li
to be used. For example, the line L with a vector
⟨21, b, 37, 6, b, c, 6, 34, 2, 10⟩ is identified as the following
line in C10

41 .

x0 = (21, 0, 37, 6, 0, 40, 6, 34, 2, 10)

x1 = (21, 1, 37, 6, 1, 39, 6, 34, 2, 10)

x2 = (21, 2, 37, 6, 2, 38, 6, 34, 2, 10)

...
...

...

x38 = (21, 38, 37, 6, 38, 2, 6, 34, 2, 10)

x39 = (21, 39, 37, 6, 39, 1, 6, 34, 2, 10)

x40 = (21, 40, 37, 6, 40, 0, 6, 34, 2, 10)

It is important to observe that there must be at least
one column of type (b) or (c) so that the t points are
different. By convention, to avoid describing the same
line in two different ways, we always assume that the
first column of type (b) or (c) must be of type (b). The
set of geometric lines of Cnt is denoted by L(Cnt ). Since
each geometric line is contained in a straight line in Rn,
two distinct points in Cnt belong to at most one geo-
metric line, and two different geometric lines intersect
in at most one point. The number of geometric lines is
known to be

|L(Cnt )| =
(t+ 2)n − tn

2
. (1)

as shown in [6]. Note that this fact can easily be
seen using our description of the geometric lines above.
There are (t+ 2)n vectors ⟨l1, l2, . . . , ln⟩ with entries in
{b, c, 0, 1, 2, . . . , t− 1} and tn of them have all entries in
{0, 1, 2, . . . , t − 1}. We divide by 2 because in half of
these (t+ 2)n − tn vectors (having at least one entry in
{b, c}) the first entry in {b, c} is b and in the other half
it is c.
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1.2 The problem and main result

We consider the following coloring problem. Let H be a
hypergraph whose hyperedges have at least two vertices.
The balanced upper chromatic number of H, denoted by
χb(H), is defined as the largest integer k for which there
is a balanced k-coloring of the vertices of H without
rainbow edges [4].
In the rest of the paper, we associate the n-cube over

t elements to the hypergraph whose set of vertices is Cnt
and set of hyperedges is L(Cnt ). In order to simplify
the exposition, we abuse the notation refering to this
t-uniform hypergraph simply as Cnt and to its balanced
upper chromatic number as χb(C

n
t ). Our goal is to de-

termine χb(C
n
t ) for any positive integer n and t large

enough (with respect to n).
As Cn1 is a single point, we consider t ≥ 2. Observe

that any two points in the cube Cn2 are in a line. Then,
for any positive integer n, χb(C

n
2 ) = 1. In general, if we

have fewer colors than points on a line, then no line is
rainbow. Hence, χb(C

n
t ) ≥ t − 1. The nontrivial lower

bound

χb(C
n
t ) ≥

(
t

2

)n
(2)

was obtained in [22] for any even t ≥ 4. Note that
this implies that given k ≥ t, for any sufficiently large
n (namely, any n such that (t/2)n > k) there are bal-
anced k-colorings of Cnt without rainbow lines, showing
the impossibility of the rainbow Ramsey version of the
Hales-Jewett theorem stated in the introduction.
On the other hand, assigning different colors to all

points generates a tn-coloring in which all lines are rain-
bow. This gives the trivial upper bound χb(C

n
t ) ≤

tn− 1. To avoid rainbow lines, we need to have at least
two points of the same color in each line. In this case,
we say that the color blocks the line. In particular, any
coloring with at most |L(Cnt )| − 1 color classes of size
two and all other classes (if any) of size one would fail
to block all the lines. Provided that tn ≥ 2|L(Cnt )|, the
smallest of such colorings has tn − |L(Cnt )| + 1 colors
and thus

χb(C
n
t ) ≤ tn − |L(Cnt )|. (3)

This implies the following upper bound.

Proposition 1 Let n and t be positive integers such

that t ≥ 2
n
√
2− 1

. Then

χb(C
n
t ) ≤

3tn − (t+ 2)n

2
.

Proof. This is a direct application of Identity (1) and
Inequality (3), noting that the former holds provided
that tn ≥ 2|L(Cnt )| = (t+ 2)n − tn, which is equivalent

to t ≥ 2
n
√
2− 1

. □

Surprisingly, this upper bound is best possible for t
large enough as shown by our main result.

Theorem 2 For integers n ≥ 2 and t ≥ 4n − 2, the
balanced upper chromatic number of Cnt is

χb(C
n
t ) =

3tn − (t+ 2)n

2
.

We prove this theorem in Section 2 and finish the
paper with a series of remarks and open questions in
Section 3.

2 Proof of Theorem 2

In order to prove Theorem 2, we reach the upper
bound in Proposition 1 by providing an explicit bal-

anced ( 3t
n−(t+2)n

2 )-coloring of Cnt with no rainbow lines,
for every n ≥ 2 and t ≥ 4n − 2. As detailed in Sec-
tion 2.4, this is equivalent to proving the existence of
what we call a double-matching of Cnt , which could
be intuitively described as a “disjoint” selection of two
points per line. Hence, one could also refer to a double-
matching as a double-covering, a double-transversal, or
a double-SDR (a “double” System of Distinct Represen-
tatives). To complete this task, we use an auxiliary in-
jective function defined in Section 2.1 and heavily make
use of the symmetry of the lines within the n-cube as de-
scribed in Section 2.2. The double-matching is provided
in Section 2.3, which includes the core of the proof.

2.1 An injective function

Let m and k be integers with 0 ≤ k ≤ 1
2 (m − 1). The

Hall’s Marriage Theorem [17] guarantees the existence
of an injective function

gm,k :

({0, 1, 2, . . . ,m− 1}
k

)
→
({0, 1, 2, . . . ,m− 1}

k + 1

)

such that, for any S ⊂ {0, 1, 2, . . . ,m − 1} with
k elements, it holds that S ⊂ gm,k(S). An ex-
plicit such function gm,k was given in [2]. This
function, adapted to our setting, can be de-
fined as follows. Given S = {s1, s2, . . . , sk} ⊂
{0, 1, 2, . . . ,m− 1} where s1 < s2 < · · · < sk, let
s0 = −1, r = min {si − 2i : i ∈ {0, 1, 2, . . . , k}}, and
ϕ(S) = max{i ∈ {0, 1, 2, . . . , k} : si − 2i = r}, the
largest of the subindices for which si − 2i is as small
as possible. Then gm,k(S) = S ∪ {1 + sϕ(S)}. Note
that when k = 0, we have that S = ∅, ϕ(S) = 0, and
gm,k(S) = {0}.

2.2 Symmetric pairs and equivalence classes

Let t ≥ 2 and 0 ≤ m ≤ t − 1 be integers. Let
m = t− 1−m ={m, t− 1−m}. We say that m and
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t− 1−m are symmetric and refer to m as a symmetric
pair. Further, we write m̂ to refer to the smallest ele-
ment in the pair m. It is important to note that when
t is odd and m = (t− 1)/2, we have that m = t− 1−m
and so m consists of a single element. For convenience,
we still call (t− 1)/2 a symmetric pair observing that
it is actually not used later in the proof when an actual
pair of points is selected.

We partition the set of points Cnt into equivalence
classes. We say that two points (x1, x2, . . . , xn) and
(y1, y2, . . . , yn) are equivalent if xi = yi or xi+yi = t−1
for all 1 ≤ i ≤ n, that is, if each pair of correspond-
ing entries is a symmetric pair. The equivalence class
containing the point x = (x1, x2, . . . , xn) is denoted by
x = {(y1, y2, . . . , yn) : yi ∈ xi for all 1 ≤ i ≤ n}.

Note that two points in the same line are equivalent
if and only if they are symmetric around the center of
the line. In other words, a line and an equivalence class
either do not intersect, intersect only at the center point
of the line (which could happen only when m is odd),
or intersect at exactly two points. For simplicity, if the
elements of A are listed, we avoid the braces when ap-
plying any functions to A. For example, we typically
write ϕ(3, 4) instead of ϕ({3, 4}).

2.3 A double-matching

Let t ≥ 4n− 2 be an integer. In what follows, we asso-
ciate each line in L(Cnt ) with two of its points in such a
way that each point is associated with at most one line.
We refer to this association as a double-matching for
Cnt . Moreover, our double-matching satisfies that the
two points associated with each line are equivalent and
different (i.e., they are not the center of the line). We

present this matching as a function f : L (Cnt )→
(
Cn

t
2

)
,

where f(L) ⊂ L and f(L) ∩ f(L′) = ∅ for any two dis-
tinct lines L,L′ ∈ L(Cnt ).
For a given line L ∈ L (Cnt ) with vector

⟨l1, l2, . . . , ln⟩, let AL = {li : li ∈ {0, 1, . . . , t− 1}} and

ÂL = {l̂i : li ∈ AL}. Then ÂL ⊂ {0, 1, . . . , ⌈ t2⌉ − 1},
and, setting k = |ÂL|, we have 0 ≤ k ≤ n − 1 ≤
1
2 (

t
2 − 1) ≤ 1

2 (⌈ t2⌉ − 1). Observe that selecting a point
xw ∈ L means fixing an index w ∈ [0, t − 1] such that
the ith entry of xw satisfies that

xw,i =





li if li ∈ AL,
w if li = b,

t− 1− w if li = c.

The choice of w will be done by means of the extra
element assigned to the set ÂL = {s1, s2, . . . , sk} with
s1 < s2 < · · · < sk by the injective function g⌈ t

2 ⌉,k.
More precisely, we define

f(L) = L ∩ x, (4)

where

xi =

{
l̂i if li ∈ AL,
1 + sϕ(ÂL) if li /∈ AL.

Then the set of different coordinates of x is equal to
ÂL ∪ {1+ sϕ(ÂL)} = g t

2 ,k
(ÂL). This means, in particu-

lar, that 1 + sϕ(ÂL) ∈ {0, 1, . . . , ⌈ t2⌉ − 1} \ ÂL, and that

xi ∈ {0, 1, . . . , ⌈ t2⌉ − 1} for all 1 ≤ i ≤ n. Hence, if the
point y is one of the two points matched to L, then its
entries have the form

yi =





li if li ∈ AL,
1 + sϕ(ÂL) if li = b,

t− 1−
(
1 + sϕ(ÂL)

)
if li = c,

(5)

for all 1 ≤ i ≤ n, or

yi =





li if li ∈ AL,
t− 1−

(
1 + sϕ(ÂL)

)
if li = b,

1 + sϕ(ÂL) if li = c,

(6)

for all 1 ≤ i ≤ n. In the proof of Theorem 3, we check
that 1 + sϕ(ÂL) < (t − 1)/2, showing that these two

points are indeed different.

Example:
Following up the geometric line L ∈ L(C10

41 ) defined
in Section 1.1, with vector ⟨21, b, 37, 6, b, c, 6, 34, 2, 10⟩,
we have that AL = {21, 37, 6, 34, 2, 10} and

ÂL = {2̂1, 3̂7, 6̂, 3̂4, 2̂, 1̂0} = {2, 3, 6, 10, 19} be-

cause 2̂1 = 19, 3̂7 = 3, 6̂ = 3̂4 = 6, 2̂ = 2 and 1̂0 = 10.
Applying the function ϕ in Section 2.1 to S = ÂL, we
have s0 = −1, s1 = 2, s2 = 3, s3 = 6, s4 = 10, s5 = 19,
r = min{si − 2i : 0 ≤ i ≤ 5} = min{−1, 0,−1, 0, 2, 9} =
−1, and the maximum of the subindices achiev-
ing r is ϕ(S) = ϕ(ÂL) = max{0, 2} = 2. This
yields x = (19, 1 + s2, 3, 6, 1 + s2, 1 + s2, 6, 6, 2, 10) =
(19, 4, 3, 6, 4, 4, 6, 6, 2, 10), and f(L) =
L ∩ x = {(21, 4, 37, 6, 4, 36, 6, 34, 2, 10),
(21, 36, 37, 6, 36, 4, 6, 34, 2, 10)} = {x4,x36}.
Theorem 3 The function f is a double-matching of Cnt
for any integers n ≥ 2 and t ≥ 4n− 2.

Proof. Using the same notation as the one used above
for the definition of the function f , we first argue that f
is well-defined. Although, it is clear (by definition) that
the points given by (5) and (6) are on the line L, we need
to verify that these two points are actually different.
This is clear when 1 + sϕ(ÂL) ̸= t− 1− (1 + sϕ(ÂL)).

But these two values could potentially be equal when t
is odd and 1 + sϕ(ÂL) = t−1

2 . We note that this can-

not happen due to how sϕ(ÂL) is chosen. Indeed, since

ϕ(ÂL) ≤ k ≤ n− 1 and sϕ(ÂL) − 2ϕ(ÂL) ≤ si − 2i for

all 0 ≤ i ≤ k, then (using i = 0) we have

sϕ(ÂL) ≤ 2ϕ(ÂL)− 1 ≤ 2k − 1 ≤ 2(n− 1)− 1 = 2n− 3.
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Moreover, the condition t ≥ 4n−2 for t odd is equivalent
to t ≥ 4n− 1 and thus

1 + sϕ(ÂL) ≤ 2n− 2 ≤ 2

(
t+ 1

4

)
− 2 =

t− 3

2
<
t− 1

2
.

We now check the two conditions f(L) ⊂ L
and f(L) ∩ f(L′) = ∅ for any two distinct lines
L,L′ ∈ L(Cnt ). The first condition is guaranteed by
(4). To prove the second condition, suppose that
y ∈ f(L) ∩ f(L′) for some point y = (y1, y2, . . . , yn) ∈
Cnt and for some lines L,L′ ∈ L(Cnt ) identified with
the vectors ⟨l1, l2, . . . , ln⟩ and ⟨l′1, l′2, . . . , l′n⟩, respec-
tively. We prove that L = L′. Consider the set
B = {ŷi : 1 ≤ i ≤ n} and say |B| = k+1. By definition

of f , we have that B = g⌈ t
2 ⌉,k(ÂL) = g⌈ t

2 ⌉,k(ÂL′). Since

g⌈ t
2 ⌉,k is injective, then ÂL = ÂL′ . By definition of g,

we have that B = ÂL∪{1+sϕ(ÂL)} = ÂL′∪{1+sϕ(ÂL′ )}
and thus 1+sϕ(ÂL) = 1+sϕ(ÂL′ ). Let w = 1+sϕ(ÂL) =

1 + sϕ(ÂL′ ) and j be the smallest index i such that

ŷi = w. Note that whenever yi ∈ {w, t − 1 − w}, we
have that li, l

′
i ∈ {b, c}; and when yi /∈ {w, t − 1 − w},

we have that li, l
′
i ∈ {0, 1, 2, . . . , t− 1}. More precisely,

li = l′i =





yi if ŷi ∈ B \ {w},
b if yi = yj ,

c if yi = t− 1− yj .

Therefore, L = L′ which concludes the proof. □

Figure 1 shows a visual example of this matching
when n = 3 and t = 12. In this figure, the pairs of
red points on the same horizontal line are assigned to
that line; the pairs of green points on the same vertical
line are assigned to that line; and in general, the pairs of
points with the same color c on a geometric line L and
in the same direction of a line with color c indicated by
the key at the bottom of the figure are assigned to L.

2.4 Balanced colorings from double-matchings

The following lower bound for χb(C
n
t ) follows from the

existence of double-matchings.

Theorem 4 For integers n ≥ 2 and t ≥ 4n− 2,

χb(C
n
t ) ≥

3tn − (t+ 2)n

2
.

Proof. We need to show that there is a balanced
(3tn − (t+ 2)n)/2 coloring of Cnt with no rainbow
lines. This means that each line must have at least
two points of the same color. Note that, by iden-
tity (1), we have (3tn − (t+ 2)n)/2 = |Cnt | − |L(Cnt )|,
and the hypothesis t ≥ 4n − 2 guarantees that
|Cnt | = tn ≥ 3tn − (t+ 2)n =2|L(Cnt )|. Because the col-
oring is balanced, |L(Cnt )| colors must be used twice and

y=0
y=1

y=2

y=3
y=4

y=5

y=6
y=7

y=8

y=9
y=10

y=1

x

z y
Key:

Figure 1: A double-matching for C3
12.

the remaining |Cnt |−2|L(Cnt )| colors must be used once.
In other words, our coloring must satisfy that each of
the |L(Cnt )| colors that appear twice blocks a geometric
line. To achieve this, we use the same color for the two
points assigned to each line in L(Cnt ) by the function f ,
using different colors for different lines. The remaining
|Cnt |− |L(Cnt )| points use the |Cnt |− |L(Cnt )| colors that
appear once. □

3 Final remarks

Comparing the bounds for t in Proposition 1 and The-
orem 4, for n ≥ 2, we note that 2/( n

√
2 − 1) < 4n − 2.

Indeed, n ≥ 2 > 2/(4− e) implies that

e <
4n− 2

n
=

4

1 + 1
2n−1

.
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This together with the fact that (1 + 1
2n−1 )

2n−1 < e,
gives (

1 +
1

2n− 1

)2n

< 4.

Thus 1
2n−1 < n

√
2 − 1 and so 2/( n

√
2 − 1) < 4n − 2.

Then the best range of t for which we can guarantee
the identity in Theorem 2 is t ≥ 4n − 2. For integer
values of t such that 2/( n

√
2 − 1) ≤ t < 4n − 2, there

is still a possibility that Theorem 2 holds but a dif-
ferent coloring needs to be found. For the remaining
values 3 ≤ t < 2/( n

√
2 − 1) any coloring of Cnt with

no rainbow geometric lines must use a color at least
three times. For every n ≥ 2, consider the set of in-
tegers Jn := {⌈2/( n

√
2− 1)⌉, ..., 4n− 3}. For instance,

J2 = {5} and J3 = {8, 9}. In the plane and in the space
Theorem 2 holds for t ≥ 6 and t ≥ 10, respectively. We
were able to extend the result for values of t in J2 = {5}
when n = 2, and for values of t in J3 = {8, 9} for n = 3.

4

1

2

1

2

3 3

4

5 5

6

6

7

8

9

10

8

10

7

9

11

11

12

12

13
Key:

Figure 2: A balanced 13-coloring C2
5 with no rainbow

lines. We use the labels {1, 2, . . . , 13} to indicate the
colors, and the corresponding double matching is indi-
cated in red, blue, green, and yellow as shown by the
key.

Theorem 5 In the plane, χb(C
2
t ) = t2− 2t− 2 for any

t ≥ 5.

Proof. When t ≥ 4n− 2 = 6, the balanced (t2−2t−2)-
coloring of C2

t with no rainbow lines is guaranteed by
Theorem 4. The balanced 13-coloring of C2

5 with no
rainbow geometric lines shown in Figure 2 extends the
lower bound in Theorem 4 to t = 5 when n = 2. □

Theorem 6 In the space, χb(C
3
t ) = t3 − 3t2 − 6t − 4

for t ≥ 8.

Proof. When t ≥ 4n − 2 = 10, the balanced (t3 −
3t2 − 6t − 4)-coloring of C3

t with no rainbow lines is
guaranteed by Theorem 4. When t = 8, we have that
t3 − 3t2 − 6t− 4 = 268 and the upper bound in The-
orem 1 still applies, that is, χb(C

3
8 ) ≤ 268. However,

the double matching in Theorem 3 does not exist. The
double-matching in Figure 3 generates a balanced 268-
coloring of C3

8 with no rainbow lines extending the lower
bound in Theorem 4 to t ≥ 8 (we used this matching
to find one for t = 9). In this matching there are only

t3 − 2|L(C3
8 )| = t3 − 2(3t2 + 6t + 4) = 512 − 488 = 24

points that are not assigned to lines (uncolored in Fig-
ure 3). □

y=0
y=1

y=2 y=3

y=4
y=5 y=6

y=7

x

z y
Key:

Figure 3: A double-matching for C3
8 . The hollow points

are a modification of the general construction for a
double-matching of C3

t when t ≥ 10.

We finish by conjecturing the following identity for
any dimension.

Conjecture 1 For integers n ≥ 2 and t ≥ 1
n√2−1 , we

have

χb(C
n
t ) =

3tn − (t+ 2)n

2
.

The question of determining χb(C
n
t ) for 3 ≤ t < 4n− 2

still remains open for higher dimensions and for
4 ≤ t ≤ 7 in the space.
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[12] P. Erdős, M. Simonovits, V. T. and Sós. Anti-
Ramsey theorems. In Coll. Math. Soc. J. Bolyai,
Vol. 10 of Infinite and Finite Sets, Keszthely (Hun-
gary), pp. 633–642, 1973.
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Complexity of 2D Snake Cube Puzzles

MIT Hardness Group∗ Nithid Anchaleenukoon† Alex Dang† Erik D. Demaine† Kaylee Ji†

Pitchayut Saengrungkongka†

Abstract

Given a chain of HW cubes where each cube is marked
“turn 90◦” or “go straight”, when can it fold into a
1×H ×W rectangular box? We prove several variants
of this (still) open problem NP-hard: (1) allowing some
cubes to be wildcard (can turn or go straight); (2) allow-
ing a larger box with empty spaces (simplifying a proof
from CCCG 2022); (3) growing the box (and the number
of cubes) to 2×H×W (improving a prior 3D result from
height 8 to 2); (4) with triangular prisms rather than
cubes, each specified as going straight, turning 60◦, or
turning 120◦; and (5) allowing the cubes to be encoded
implicitly to compress exponentially large repetitions.

1 Introduction

Snake Cube [1] is a physical puzzle consisting of
wooden unit cubes joined in a chain by an elastic string
running through the interior of each cube. For every
cube other than the first and last, the string constrains
the two neighboring cubes to be at opposite or adja-
cent faces of this cube, in other words, whether the
chain must continue straight or turn at a 90◦ angle.
In the various manufactured puzzles, the objective is to
re-arrange a chain of 27 cubes into a 3× 3× 3 box.

To generalize this puzzle, we ask: given a chain of
DHW cubes, where D,H,W are positive integers, is
it possible to rearrange the cubes to form a D × H ×
W rectangular box? We call this problem D × H ×
W Snake Cube. Previous results on its complexity
include:

• Abel et al. [1] proved 8 ×H ×W Snake Cube is
NP-complete by reduction from 3-Partition.

• Demaine et al. [2] proved 2D Snake Cube Pack-
ing—deciding whether a chain of cubes can pack
(but not necessarily fill) a 1 × H × W rectangu-
lar box where all cubes are constrained to align
with the box—is NP-complete by reduction from

∗Artificial first author to highlight that the other authors (in
alphabetical order) worked as an equal group. Please include all
authors (including this one) in your bibliography, and refer to the
authors as “MIT Hardness Group” (without “et al.”).

†MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA, {nithidan,alexdang,
edemaine,kayleeji,psaeng}@mit.edu

Linked Planar 3SAT. This result also holds for
a closed chain [2].

Both [1] and [2] pose the (still) open problem of deter-
mining the complexity of 1×H ×W Snake Cube:

Open Problem 1 (2D Snake Cube) Is 1 ×H ×W
Snake Cube NP-hard?

1.1 Our Results

In this paper, we prove NP-hardness of several varia-
tions of Open Problem 1:

• In Section 4, we prove NP-completeness of 2D
Snake Cube with Wildcards where at some
cubes there is a free choice between straight or turn.
This is motivated by a variant of the snake cube
puzzle where a slit cut into a cube allows the chain
to continue at a 90◦ or 180◦ angle.

We also give an alternative proof that 2D Snake
Cube Packing is NP-complete, simplifying [2].

• In Section 5, we prove that 2×H×W Snake Cube
is NP-complete. This improves the result of Abel
et al. [1] from D = 8 to D = 2.

• In Section 6, we prove NP-completeness of Hexag-
onal 2D Snake Cube Packing: deciding
whether a chain of hexagonal prisms each specified
as going straight, turning 60◦, or turning 120◦ can
be packed into a 60◦, H ×W parallelogram. Sim-
ilar to [2], we extend this result to closed chains.
One can view this as an improvement to [3] in that
angles can be restricted to be in {60◦, 120◦}.

• In Section 7, we prove weak NP-hardness of 2D
Snake Cube, allowing the chain of cubes to be
encoded to efficiently represent repeated sequences.

The first three results are reductions from Numeri-
cal 3D Matching following a similar framework de-
tailed in Section 3, while the last result is a reduction
from 2-Partition. We introduce both base problems
in Section 2.

Not all results are proven fully in this paper. All
omitted details can be found in the full version of the
paper.
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2 Preliminaries

We define our exact problems in mathematical terms.
A box is the D×H ×W rectangular cuboid that the

cubes of the snake-cube puzzle must fit into. This box
can be visualized as a cubic grid where each cube oc-
cupies one space of the grid. A program is a length-k
string of instructions P = p1 . . . pk, where each in-
struction is either the character T or S. The chain is the
corresponding sequence of adjacent cubes (c1, . . . , ck)
following the program such that each instruction pi
(where i ∈ {2, . . . , k − 1}) constrains the angle between
the 3 cubes ci−1, ci, ci+1 to be 90◦ for pi = T (i.e., a turn)
and 180◦ for pi = S (i.e., a straight). A length-k seg-
ment refers to a length-k subchain where all cubes are
constrained to form a straight line (e.g., the subchain
following the instructions TSSST refers to a length-5 seg-
ment). If s is a sequence of instructions, let (s)k denote s
repeated k times (e.g., T(ST)3 is equivalent to TSTSTST).
The input to all problems is the box and program. In
2D Snake Cube with Wildcards, each instruction
may also be a third character * denoting that the angle
can be either 90◦ or 180◦. The instructions in Hexag-
onal 2D Snake Cube Packing use three different
characters introduced in Section 6.

2D Snake Cube with Wildcards, 2 × H × W
Snake Cube, and Hexagonal 2D Snake Cube
Packing are in NP, because verification only requires
checking all constraints, which takes linear time with
respect to the size of the box.

2.1 Reduction Base Problems

Given a multiset A = {a1, a2, . . . , an} of positive inte-
gers, 2-Partition is the problem of deciding whether
there exists a partition of A into disjoint union A1 tA2

such that the sums of elements in A1 and in A2 are
equal. This problem is known to be weakly NP-hard
when the number ai’s are encoded in binary (thus may
have exponential value) [4, Subsection A3.2].

For any given target sum t and sequences (ai)
n
i=1,

(bi)
n
i=1, and (ci)

n
i=1, each consisting of n posi-

tive integers, Numerical 3-Dimensional Matching
(N3DM) is a problem to decide whether there exist
permutations σ and π of set {1, . . . , n} that satisfies
ai + bσ(i) + cπ(i) = t for all i. This problem is known
to be NP-hard even when the numbers are encoded in
unary [4, Subsection A3.2]. We refer to a solution to an
instance of N3DM as a matching .

Since we can transform an instance of N3DM by set-
ting a′i = ai + 4X, b′i = bi + 2X, c′i = ci + X, and
t′ = t + 7X, for a large integer X (linear in t), the
following proposition holds.

Proposition 2 N3DM is NP-hard even when we as-
sume that ai ∈ (0.5t, 0.6t), bi ∈ (0.25t, 0.3t), and
ci ∈ (0.125t, 0.15t) for all 1 ≤ i ≤ n.

3 Overview of Reductions from N3DM

The reductions in Sections 4, 5, and 6 all share a very
similar infrastructure, which we informally outline here.
In this overview, we let D = 1. We explain how to adapt
this framework to D = 2 in Section 5.

We reduce from the variant of N3DM in Proposi-
tion 2. Let (ai)

n
i=1, (bi)

n
i=1, (ci)

n
i=1, and t be an instance

of N3DM. We choose the following parameters: the gap
width g = Θ(n), the height of the block h = Θ(n2), and
the width multiplier m = Θ(n3).

The structure of the reduction is as follows. The di-
mensions of the box areD×H×W = 1×(nh+(n+1)g)×
(mt + 4g). The numbers (ai)

n
i=1, (bi)

n
i=1, and (ci)

n
i=1

are represented by block gadgets (〈Ai〉)ni=1, (〈Bi〉)ni=1,
and (〈Ci〉)ni=1, which are instructions that can gener-
ate blocks (Ai)

n
i=1, (Bi)

n
i=1, and (Ci)

n
i=1 of dimensions

1 × h × mai, 1 × h × mbi, and 1 × h × mci, respec-
tively. Blocks typically consist of h segments as shown
in Figure 1a, but details vary in different variants. In
the instructions, each block gadget will be separated by
a wiring gadget , a sequence of instructions that al-
lows connecting between two adjacent blocks no matter
where they are in the grid.

mai

h

(a) A typical block

A1

A2

...

An

Bσ(1)

Bσ(2)

...

Bσ(n)

Cπ(1)

Cπ(2)

...

Cπ(n)

h

ma1

g

H

W

(b) The high-level structure of the reduction

Figure 1: The reduction

If a matching exists (i.e., there exist two permutations
σ and π of {1, 2, . . . , n} such that ai + bσ(i) + cπ(i) = t
for all i), then (ignoring the wiring gadget) one can ar-
range the blocks into a perfect 1 × nh × mt rectangle
by aligning each triple of blocks Ai, Bσ(i), and Cπ(i) to-
gether in the same row. Since our box is slightly larger
than 1 × nh × mt, we can place the blocks such that
there is a gap g between neighboring blocks and be-
tween each block and the boundary of the rectangular
box. The gap g is chosen so there is sufficient space
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for a subchain following the wiring gadget to connect
all the blocks. Wires detour around blocks and do not
cross; the explicit algorithm will be given in Lemma 4.
Finally, depending on the variant, there may be addi-
tional instructions at the end of the program to fill in
the remaining space in the box. Figure 1b depicts the
overall reduction structure.

In the other direction, we also need to show that the
existence of a chain following the program forces the ex-
istence of matching, even if the block gadgets 〈Ai〉, 〈Bi〉,
and 〈Ci〉 do not fold into perfectly aligned and evenly
spaced blocks (e.g., if part of a subchain following 〈Bi〉
may go into gaps between subchains following 〈Ai〉). In
the following subsection, we prove Lemma 3 that shows
the existence of a chain following the program necessi-
tates the existence of a matching, even if blocks do not
fold ideally.

3.1 Segment Packing Lemma

We view each block as h segments; for instance,
the block gadget 〈Ai〉 specifies h consecutive mai-
segments. Thus, we have 3nh segments, h of each length
ma1, . . . ,man, mb1, . . . ,mbn, mc1, . . . ,mcn to pack into
the box. This motivates the following “Segment Pack-
ing Lemma”.

Lemma 3 (Segment Packing Lemma) Let (ai)
n
i=1,

(bi)
n
i=1, (ci)

n
i=1, t be an instance of N3DM satisfying

the conditions in Proposition 2. Let m and h be positive
integers, and consider a 1×H ×W box where W > mt
and nh < H < m. Suppose there are 3nh segments of
3n types A1, . . . , An, B1, . . . , Bn, and C1, . . . , Cn. If all
of the following are true, then there exists an N3DM
matching:

• W < m(t+ 1) and H < nh+ h
40 ;

• for all 1 ≤ i ≤ n, all segments of type Ai, Bi, and
Ci have lengths mai, mbi, and mci, respectively;

• there are exactly h segments of each type; and

• no two segments of the same type are more than h
rows vertically apart (note that since m > H, all
3nh segments must lie horizontally in the box.).

Proof. (Sketch) We call mai-segments A-segments,
and analogously for B-segments and C-segments. From
constraints in Proposition 2, each row of the box must
be of one of the following four categories: (1) a good row,
which contains exactly one A-segment, one B-segment,
and one C-segment; (2) an A-bad row, which contains
no A-segment; (3) a B-bad row, which contains one A-
segment but contains no B-segment; and (4) a C-bad
row, which contains one A-segment, one B-segment, but
no C-segment. Let ngood, nA, nB , and nC denote the

number of good rows, A-bad rows, B-bad rows, and C-
bad rows, respectively. Due to the constraints of Propo-
sition 2 and W < m(t+ 1), we count the number of A-,
B-, and C-segments to derive the following inequalities:

nA = H − nh < h
40

nB ≤ 2nA + h
40 <

3h
40

nC ≤ 6nA + 2nB + h
40 <

13h
40 .

Therefore, nA + nB + nC < h.
Finally, we color each row by its residue modulo h.

Thus, there are either n or n+1 of each color. Moreover,
there exists color c that colors only good rows. Since
segment of the same type are less than h rows apart,
there is exactly one segment of each type colored c and
exactly n rows of color c. For each row of color c, let
mai, mbj , and mck be the segment lengths. Then,

mai+mbj +mck ≤W < m(t+1) =⇒ ai+ bj + ck ≤ t.

Summing the inequality for each row of color c gives
nt ≤ nt, so all inequalities must be equalities. There-
fore, ai + bj + ck = t for each row of color c, forming a
solution to the instance of N3DM. �

3.2 Connecting Wires

This subsection concerns the wiring part. It guaran-
tees that, if the gap is large enough, there exists a way
to place wiring gadgets without crossing, regardless of
the arrangement of blocks forced by a solution to the
instance of N3DM. This lemma was adapted from [5,
Lemma 5].

X2s2

f2

X1s1

f1

X3s3

f3

wX

s4 f0

Figure 2: Example of the setup for wire packing when
n = 3. Red area represents available space.

The setup for this lemma is depicted in Figure 2
and goes as follows: given a bounding box of size
H ′ × wX and locations of rectangles X1, X2, . . . , Xn

with widths x1, x2, . . . , xn, respectively, and the same
height h′. Each row contains at most one rectangle, but
the rectangles are in arbitrary order from top to bottom.
Note that the “rectangles” are not the same as blocks; a
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rectangle consists of squares, and a square is filled with
2× 2 cubes which will be discussed further in Section 4
when applying this lemma to prove the existence of a
chain. Define a wire connecting squares a and b to be a
sequence of adjacent squares with the first and the last
squares are adjacent to a and b, respectively.

Lemma 4 (Wire Lemma) Assume the above setup
with mini xi > wX/2, and all rectangles are at least
g′ ≥ 100n squares apart. Define the available space
to be a set of squares in the extension of all rectangles
on each edge by g′/2. For each i = 0, 1, . . . , n, let `i
be an even integer in [8nwX , 12nwX ]. Let si and fi
be the bottom-left and top-left corners of rectangle Xi,
and f0, sn+1 be two chosen squares at the bottom-left
of the available space. Then, one can draw n + 1 dis-
joint wires W0, . . . ,Wn in the available space, where Wi

has length exactly `i and Wi connects fi to si+1 for all
i ∈ {0, 1, . . . , n}. Furthermore, no two cells from differ-
ent wires Wi and Wj are adjacent.

Proof. (Sketch) We will briefly explain an algorithm
to place the wires W0, . . . ,Wn inductively. First, mark
squares m0 = f0,m1, . . . ,mn,mn+1 = sn+1 in the same
row in this order; all of these should be near the bottom-
left of overall available space. We will construct wires
(Ui)

n
i=1 and (Vi)

n
i=1 such that Ui connecting mi−1 to

si, and Vi connecting mi to fi. Then, Wi is a con-
catenation of wire Ui+1, square mi, and wire Vi for all
i ∈ {1, . . . , n − 1}. Moreover, W0 = U0 and Wn = Vn.
We also reserve space of width 40n squares above and
below each rectangle and 10n squares on the left of each
rectangle. The two main stages of placing wires are

(a) Place Ui and Vi without crossing U1, V1, . . . , Ui−1,
Vi−1. This process is done inductively.

(b) Adjust the length of the wire Wi to be exactly `i
by placing the remaining length Ui and Vi inside
reserved space of rectangle Xi, which has size at
least 40n × xi; the space can fit a wire of length
> 20nwX , large enough to contain the extra length.

To accomplish (a), place Ui and Vi by following these
steps simultaneously for each i.

(i) Create a sequence of squares from mi to the top of
the available space, following along the left gaps.

(ii) Draw the wire down to the same row as si between
the wires we have placed in (i) and the left edges of
all rectangles, and then draw the wire horizontally
to si.

(iii) The current wire may cross Uj or Vj for some j < i
when they are horizontally connected to sj or fj .
In this case, replace the current wires by making
then go around other edges of rectangle Xj .

To justify the size of available space, each of Ui and Vi
may contribute to at most 2 layers of wires on each edge
of the block with a space of one square between each
layer of wires. Combine this with the reserved space; we
need available space with width 40n+ 2 · 2 · (2n) < 50n
on each edge of the rectangles.

The dominant contribution to the length of the wire
occurs when the wires have to go around other rectan-
gles since wX � nh′ + (n + 1)g′. However, there are
at most n blocks that a wire has to go around. Includ-
ing all other distances, the sufficient length of a wire is
8nwX . �

4 Snake Cube Puzzles in 1×H ×W box

In this section, we consider the 2-dimensional variants of
Snake Cube. We first consider 2D Snake Cube with
Wildcards, where we allow the wildcard * that could
be used as either S or T. We will prove the following:

Theorem 5 2D Snake Cube with Wildcards is
NP-hard.

Subsection 4.1 will sketch the proof of Theorem 5. Then,
in Subsection 4.2, we will explain how to modify this
proof to give an alternative proof of the following, which
was first proved in [2].

Theorem 6 2D Snake Cube Packing is NP-hard.

4.1 Proof with Wildcard Option

Given an instance of N3DM with target sum t, (ai)
n
i=1,

(bi)
n
i=1, (ci)

n
i=1, where ai ∈ (0.5t, 0.6t), bi ∈ (0.25t, 0.3t),

and ci ∈ (0.125t, 0.15t) for all i (Proposition 2), we de-
fine these parameters to construct a string input to 2D
Snake Cube with Wildcards.

g = gap width = 200n

m = multiplier of widths = 30000n3

h = height of blocks = 20000n2

H = height of the grid = nh+ (n+ 1)g

W = width of the grid = mt+ 4g

Then, construct block gadgets Ai, Bi, and Ci for all
1 ≤ i ≤ n. The sequence for Ai is given below, and the
sequences for Bi, Ci are analogous. These blocks will
fold into rectangles of size h×mai, h×mbi, or h×mci.

〈Ai〉 = (S)mai−1(TT(S)mai−2)h−1

The program is given by

〈A1〉(*)16nW 〈A2〉(*)16nW . . . (*)16nW 〈An〉(*)16nW

〈B1〉(*)8nW 〈B2〉(*)8nW . . . (*)8nW 〈Bn〉(*)8nW

〈C1〉(*)4nW 〈C2〉(*)4nW . . . (*)4nW 〈Cn〉(*)4nW (*)`,

170



CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

where the number ` of *’s at the end is to make the
length of the whole program exactly WH.

Chain ⇒ Matching. Each block gadget 〈Ai〉, 〈Bi〉,
〈Ci〉 contains h segments that must be horizontal due
to its length. Thus, we have 3nh segments of 3n types
that fit the condition of Lemma 3. The lemma forces
the existence of matching.
Matching⇒ Chain. Suppose there is a matching, so

we can place all blocks as shown in Figure 1b.
Apply the wire lemma to connect all these blocks

where each square in the lemma corresponds to 2 × 2
cubes in this construction. Hence, each block is at least
g′ = g/2 = 100n squares apart, and the width of the
bounding box is wX = W/2 squares. For wires among
Ai blocks, Lemma 4 implies that there exists a sequence
of 8nwX = 4nW squares of size 2 × 2 that connect all
of Ai blocks. These squares can be filled with 16nW
* cubes as demonstrated in Figure 3. For wires among
Bi blocks, the block size is roughly half of Ai; thus,
we can reduce the parameter wX in the lemma by half.
Similarly, the parameter is reduced to a quarter for Ci
blocks.

Figure 3: Example of filling a wire with * tiles.

The wire between An and B1 is long enough to con-
nect the following cubes in order: (1) the last cube of
block An, (2) the cube at the square marked as fn in
the application of Lemma 4 to connect wires between Ai
blocks, (3) the cube at the square marked as s0 in the
application of Lemma 4 to connect wires between Bi,
and (4) the first cube of block B1. This is always possi-
ble since gaps are all connected, and the length needed
never exceeds 8nW + 4W + 4nW ≤ 16nW . The wire
between Bn and C1 can be placed similarly.

Lastly, notice that the construction we described so
far is aligned with the 2×2 polygrid, and the remaining
squares are connected because the blocks and wires are
topologically equivalent to a path with no closed loop.
From [6], there exists a Hamiltonian cycle in any con-
nected shape aligned with 2 × 2 polygrid. Thus, the
remaining wildcards can fill all the remaining space.

4.2 Proof Outline for Packing

To prove Theorem 6, the setup and the main proof are
almost the same. The only difference is that we cannot
use the wildcard *. To fix this, we make two modifi-
cations. First, we remove (∗)` at the end because we
do not need to fill the box. Second, we replace all ∗’s
between block gadgets with an equally long string of
T’s. By making squares in Lemma 4 correspond to 2×2

cubes, wiring gadgets can connect different block gad-
gets using only T’s. This is possible because not all
cubes in the wires need to be used, and cubes outside
the wires may be used. We can make the wire length
exactly as specified by varying how the chain fills the
wires at turns. More details are available in the full
version of the paper.

5 Snake Cube Puzzles in 2×H ×W box

In this section, we outline our reduction from N3DM
to 2 × H ×W Snake Cube. A detailed proof can be
found in the full version of the paper.

Theorem 7 2×H ×W Snake Cube is NP-hard.

We follow the block and wire reduction infrastructure
introduced in Section 3. Consider an instance of N3DM
(ai)

n
i=1, (bi)

n
i=1, (ci)

n
i=1, and t satisfying the conditions

in Proposition 2. Define the parameters as follows.

g = 1200n, h = 60000n2, m = 60000n3,

H = n(h+ 6g + 4) + 2, W = 4g +mt+ 6.

In this variant, the blocks generated by the block gad-
gets have depth 2 (e.g., block Ai is of size 2×h×mai).
Like previously, the program consists of block gadgets
separated by wire gadgets. However, unlike previous
1×H ×W variants, a second layer results in fewer con-
straints on the shape of subchains following the block
gadget, so Lemma 3 no longer applies. To bypass this
issue, we introduce additional instructions at the be-
ginning of the program that specifies a shelf — the
structure shown in Figure 4 that constrains the folding
of the 〈Ai〉, 〈Bi〉, and 〈Ci〉 subchains. The shelf is de-
signed so that it can only be made into a subchain the
intended way. The program is given by

〈shelf〉〈A1〉(T)96nW 〈A2〉(T)96nW . . . (T)96nW 〈An〉(T)96nW

〈B1〉(T)48nW 〈B2〉(T)48nW . . . (T)48nW 〈Bn〉(T)48nW

〈C1〉(T)24nW 〈C2〉(T)24nW . . . (T)24nW 〈Cn〉(T)`,

where (T)` pads the string to length 2HW and 〈Ai〉 =
(S)mai−1(TT(S)mai−2)2h−1S; 〈Bi〉 and 〈Ci〉 are defined
analogously.

Chain ⇒ Matching. Since the gap to the right of
each shelf is small (g � m), all cubes within a block
must fit entirely within one row of the shelf. By a similar
counting argument as in Lemma 3, there exists a row
containing exactly one Ai, Bj , and Ck block in each
shelf, and the corresponding ai, bj , and ck must sum
to t.
Matching⇒ Chain. Place all blocks as in Figure 1b

where segments in the blocks fill the top and bottom lay-
ers alternately. The remaining grid can be partitioned
into 2× 4× 4 blocks of space. We cite a result from [1]:
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g

4
H

W

mt + 3g

h + 6g

Figure 4: One layer of the “shelf” with 3 rows. The
chain moves to the other layer at discontinuities.

given a sequence (T)8 of cubes entering a 2×2×2 block
of space, the cube chain can exit from any face. Thus,
traversing between 2× 2× 2 blocks of space with (T)8’s
has the same movement freedom as traversing between
cells in a 2D grid with wildcards. Thus, by grouping
2 × 2 × 2 cubic blocks together, the remaining proof is
equivalent to that in Section 4, except the wires are 3

2
times long to allow for detours around the shelf.

6 Snake Cube Puzzles with Hexagonal Prisms

In this section, we consider a version of a 2D Snake cube
with a chain of hexagonal prisms. When the prisms are
represented by points, the movement patterns form a
triangular grid. Thus, the problem becomes a triangular
grid variant of the flattening fixed-angle chains problem
in [2].

An infinite triangular grid is a two-dimensional lat-
tice generated by vectors v1 = ( 1

0 ) and v2 =
(
cos 60◦

sin 60◦
)
;

each point represents a hexagonal prism. Two points
in a triangular grid are adjacent if they are distance 1
apart. A 60◦ parallelogram box of dimension H×W
is the set of HW points obtained by translating the set
{iv1 + jv2 : i ∈ {1, . . . ,W}, j ∈ {1, . . . ,H}} by some
lattice vector.

For this section, a program is a string that consists
of only characters S, T60, and T120, where S denotes
straights, T60 denotes 60◦ turns (forming 120◦ angle),
and T120 denotes 120◦ turns (forming 60◦ angle). We say
that a chain C = (p1, p2, . . . , p|s|) (length |s|) satisfies s
if and only if for every i ∈ {2, 3, . . . , |s| − 1}, the angle
between pi−1, pi, pi+1 is 180◦ if si = S, 60◦ if si = T120,
and 120◦ if si = T60. C is closed if and only if p1 = p|s|.

Theorem 8 Both of the following problems are NP-
complete.

• Bounded Triangular Path Packing: given a
60◦ parallelogram box B, a program P, and two ad-
jacent vertices u and v on a boundary of B, decide

mai

h

Figure 5: The frame gadget and an example block gad-
get inside.

whether there is a chain connecting u and v satis-
fying P.

• Triangular Closed Chain: given a program P,
decide whether there is a closed chain satisfying P.

To prove the first problem NP-Hard, we use the same
reduction, except that block gadgets are 60◦ parallelo-
grams shown in Figure 5. Then, we can reduce the first
problem to the second problem, creating a frame gad-
get to force the chain by modulo a large prime condition
similar to [2] shown in Figure 5.

7 Weak-NP-hardness of 2D Snake Cube Puzzle

In this section, we consider 2D Snake Cube, where the
chain must fill a 1×H×W rectangle. However, we allow
the instructions to be encoded using the shorthand no-
tation, which keeps the inputs polynomial with respect
to the input integers. Since this modification means the
problem may no longer be in NP, this reduction only
proves NP-hardness. For any set S, let

∑
S be the sum

of its elements.

Let A be the multiset of positive integers, a 2-
Partition instance. We select H = 2|A| + 4 and
W = 4

∑
A + 1. The program comprises the caps at

either end and |A| layers in between, encoding each ai
in A sequentially. The swivel points join each gadget
and allow the layers to flip horizontally. The orientation
of each layer left or right corresponds to assigning each
ai to either partition (Figure 6).

Cap

Cap

Layers

Figure 6: Chain for A = {1, 2, 1}, emphasizing the dif-
ferent gadgets, highlighting the swivel points (in bolded
red), and demonstrating the 3 variants of layers.
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7.1 Gadgets

The starting cap is the subsequence (the ending cap
being the reverse):

(S)
W−1

2 −1TT(S)W−2TT(S)
W+1

2 −1T . . . .

Since W > H, the W -segments in the caps can only fit
horizontally. They must be at the top and bottom since
any other position would create an unfillable empty
space. This forces the position of the swivel points join-
ing the caps and the layers to be horizontally centered.

For each i, let Ai = {aj : j ∈ {1, . . . , i}}, wi =
4
∑

(A\Ai−1)+1, xi = (wi−1)/2, and hi = 2|A\Ai−1|.
There are 3 variants of the corresponding layer gadget.
If 4ai ≤ xi and hi > 2, the layer is the subsequence

(sections named for ease of discussion, see Figure 7):

. . . T(S)xi−1T “arm”

(S)hi−2(TT(S)hi−3)4ai−1T “padding”

(S)xi−4ai+1(T)2(2ai−1) “shift”

(S)xi−2aiTT(S)xi−2ai+1T . . . “return.”

Padding

Arm Return

Shift

Figure 7: Sample layer gadget with ai = 1, wi = 17,
hi = 6 with labeled sections.

If 4ai > xi and h > 2, informally the padding spills
over into the shift, resulting in these differences:

(S)h−2(TT(S)h−3)xi(TT(S)h−2)4ai−xi−1 “padding”

(T)2(2ai−1−(4ai−xi−1)) “shift.”

If h = 2, informally the padding can be visualized
as degenerating and subsuming the shift and return,
resulting in these changes from the first variant:

T(S)xi(T)2(2ai−1)+1S “padding.”

Each layer gadget has a wi × hi space available to it
and leaves behind a wi+1 × hi+1 space while displac-
ing the swivel point horizontally by 2ai left or right.
To show this, we use induction starting from the first
layer. Note that the arm and padding sections are all
forced by space constraints. The shift section is forced
since turning the chain outward in the subsequence of

repeated turns (T) would leave behind a 1 × 1 space.
This space can only be filled by the endpoints, which is
impossible because their positions are forced by the cap
gadgets. Then, the return section is also forced.

7.2 Reduction

If there exists a solution to 2-Partition, then construct
all the gadgets and flip the layer gadgets so that arms
for all numbers in A1 point to the left, and those for
numbers in A2 point to the right. The horizontal dis-
placements of the swivel points must sum to 0, so the
last layer can connect to the upper cap.

If there exists a solution for 2D Snake Cube, then
we have demonstrated the gadgets are forced to be con-
structed in the correct orientation. Since the last layer
gadget connects to the upper cap gadget, the horizon-
tal displacements of the swivel points must sum to 0.
Reversing the above process produces a solution to the
2-Partition instance.
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On Erdős-Szekeres Maker-Breaker games∗

Arun Kumar Das† Tomáš Valla‡

Abstract

The Erdős-Szekeres Maker-Breaker game is a two-player
competitive game where both players alternately place
points in the plane such that no three points are colin-
ear. The first player (Maker) starts the game by placing
her point and wants to obtain an empty convex poly-
gon of a given size k such that the vertices of the poly-
gon are chosen from these points and the second player
(Breaker) wants to prevent it. We show that Maker
wins the game for k ≤ 8. We also present a winning
strategy for Maker for any k in general when Maker is
allowed to place (1 + ε) times more points (each round
on average) in comparison to Breaker, for any ε > 0.
Further, we address the models of the game for equi-
lateral empty convex polygons in the plane and empty
convex polygons in square grids.

1 Introduction

One of the most well-known problems in discrete geom-
etry is the Erdős-Szekeres Problem [6]. In this problem,
a positive integer k is given as input and we compute
the minimum number of points required in the plane
such that at least k out of them are in convex position.
The points must be placed in general position, i.e. no
three points are colinear. Erdős and Szekeres showed
that the answer is finite by proving that the number
is bounded from above by a function exponential in k.
Further Erdős [5] posed the problem of finding the min-
imum number of points in the plane in general position
(no three points are colinear) such that k points out of
them can be chosen as the vertices of a convex polygon
that does not contain any other point from the point
set inside it. The empty convex polygon with k ver-
tices is referred to as a k-hole. By H(k) we denote the
minimum number of points such that any configuration
of H(k) points in general position contains a k-hole.
Horton [10] demonstrated that there are arbitrary large
point sets that do not contain a 7-hole, in contrast to
the finiteness of the previous question. For k-holes with
k < 7, positive results are present in the literature show-
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†Faculty of Information Technology, Czech Technical Univer-
sity arun.kumar.das@fit.cvut.cz

‡Faculty of Information Technology, Czech Technical Univer-
sity tomas.valla@fit.cvut.cz

ing H(5) = 10 and H(6) = 30 [7, 9].
Competitive games between two players to achieve a

geometric structure we studied previously [8]. The nat-
ural competitive game arising from the Erdős-Szekeres
problem is the endeavor of two players to achieve a k-
hole for a given positive integer k by alternately placing
points in general position in the plane. Depending on
the goal of the game, three variants of the two-player
game spawn from the Erdős-Szekeres problem.

1. Both players want to obtain a k-hole (Maker-
Maker). Whoever obtains the k-hole first is the
winner.

2. Both players want to avoid a k-hole (Avoider-
Avoider). Whoever obtains the k-hole first is the
loser.

3. The first player wants to obtain a k-hole and the
second wants to prevent it (Maker-Breaker).

Valla [12] posed the Maker-Maker variant of the game
as an open problem in his thesis. Kolipaka and Govin-
darajan [11] studied the Avoider-Avoider variant. They
proved that the game with k = 5 ends after round 9 and
the second player wins.

Later Aichholzer et al. [1] simplified the original proof
by Kolipaka and Govindarajan, and also introduced a
different variant of the game with colors, referred to as
bi-chromatic variant. Here the players alternately place
points in general position in the plane, the first player
placing red points and the second player placing blue
points. Aichholzer et al. [1] showed the winning strategy
for the second player for k = 3 for the Avoider-Avoider
version, where the players try to avoid a monochromatic
k-hole. Then they introduced the Maker-Maker variant
of the bi-chromatic game where both the players try to
obtain a monochromatic k-hole. Besides considering the
k-holes, they considered the non-convex general holes
as well. The general hole of size k is an empty simple
polygon with k vertices. Aichholzer et al. [1] also showed
that the first player can win for k = 5 in 9 turns in
the Maker-Maker variant. Further, they studied the
Maker-Breaker variant of the bi-chromatic game where
the first player (Maker) wants to obtain a k-hole with
only red vertices, and the second player (Breaker) just
wants to prevent it by placing blue vertices. For this
variant, Aichholzer et al. proved that the Maker wins
by placing 8 points of her color for a 5-hole and has a
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general winning strategy for general holes of any given
k.

In this paper, we study the Maker-Breaker variant
of the Erdős-Szekeres type game (ESMB) in the plane.
For notational brevity, we name two players Alice and
Bob. Both of them place one point in each round alter-
natively on R2 maintaining the general position for all
the points throughout the game. Alice tries to obtain a
k-hole of a given size k. Alice wins the game if she can
obtain the k-hole and the game ends after a finite num-
ber of moves. Otherwise, we conclude that Bob wins
the game if he can always restrict Alice from forming a
k-hole. In our model, unlike the bi-chromatic variant,
Alice can use any point of her choice to form the empty
convex polygon of the desired size. To the best of our
knowledge, this variant was not studied previously and
only was pointed out as interesting and challenging for
k ≥ 7 by Aichholzer et al[1].
We note that Alice can win the game for a given k

in r rounds if there is an empty (k − 1)-gon at the end
of the (r − 1)th round. Alice can extend this existing
hole by placing one point very closely without violating
the convexity of the newly formed hole. Thus, it can be
concluded from the existing literature proving H(6) =
30 [9] that Alice wins the game up to k ≤ 7. But we
show that the minimum number of points required for
Alice to win is much less than H(k). Further, we show
Alice has a winning strategy for k = 8 even ifH(7) could
be arbitrarily large [10]. Then we prove that Alice can
win the game for any k if the ratio of the number of
points placed by Alice and the points placed by Bob in
each round is (1 + ε), for any small ε > 0.

Then we address the question of obtaining equilateral
holes. This question has not been considered before and
only makes sense in terms of the game as there could be
arbitrarily large point sets such that all the distances
of point pairs are different. We prove that Alice can
obtain an equilateral k-hole for k = 4.

Finally, we address the variant of the game on grids.
The Erdős-Szekeres problem has been extensively stud-
ied concerning the position of points approximating the
integer lattice [4, 14]. We consider the Maker-Breaker
game on a square grid of size n× n. Both players must
place their points at the gridpoints. Considering this
constraint, in this version the players are allowed to vi-
olate the general position requirement. We characterize
the winning strategy of both players depending on the
size of n and k.

1.1 Results

We formally state the results as follows.

Theorem 1 Alice can win the ESMB game by obtain-
ing a 7-hole from 15 points in the 8th round.

Theorem 2 Alice can win the ESMB game by obtain-
ing an 8-hole from 25 points in the 12th round.

Theorem 3 Alice can win the ESMB game by obtain-
ing a k-hole for any given positive integer k if the ratio
of the points placed by Alice to the points placed by Bob
is (1 + ε) for any ε > 0.

Theorem 4 Alice wins the ESMB game for an equi-
lateral 4-hole by obtaining it from 7 points in the 4th

round.

Theorem 5 Let us consider the ESMB game on an n×
n square grid where both the players have to place their
points on one of the vertices of the grid and they are
allowed to place three or more colinear points. Alice
can win the game by obtaining a k-hole for any positive
integer k > 2, if and only if n ≥ ⌈k2 ⌉.

1.2 Organization

The paper presents the winning strategies for Alice as
stated in Theorem 1, 2 and 3 in Section 2. Section 3
contains the study of equilateral holes for the ESMB
game in the plane and Section 4 contains the results for
the game on the square grid. Finally, the paper is con-
cluded in Section 5 presenting a list of open problems.

2 Winning strategies for Maker

We start with the formation of a 5-hole in the ESMB
game, which is a winning strategy for Alice when k = 5.

Lemma 6 Alice wins the game by obtaining a 5-hole
from 7 points in the 4th round.

Proof. Alice trivially obtains a 3-hole with 3 points in
the 2nd round. Then, Bob must place a point that is
not in a convex position with the other three to prevent
Alice from winning in the immediate next round. Now
Alice places A3 in such a way that she creates one or
more 4-holes. We can follow that one 4-hole remains
in the plane irrespective of the placement of B3. Alice
extends it to a 5-hole by placing A4 accordingly. □

Now we show the winning strategy of Alice in the
ESMB game for k = 6, 7, and 8 by assuming that the
game starts with a (k−1)-hole and Bob places his point
as B0 followed by Alice’s point A1 and so on.

Lemma 7 Starting with a 5-hole, Alice can obtain a
6-hole in the game within the next two rounds.
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A

B
C

D

E

B0

A1

B1

Figure 1: Formation of a 6-hole.

Proof. We note that there are 5 chords of a 5-hole such
that each divides the 5-hole into a 4-hole and 3-hole.
Bob has to place B0 in the common intersection of all
the 4-holes to prevent Alice from winning in the imme-
diate next round. Since there are 5 such 3-holes Alice
can find two 4-holes intersecting only in one edge, after
the placement of B0. One instance is depicted in Fig-
ure 1, where we start with the 5-hole ABCDE and B0E
is the common edge between two 4-holes ABB0E and
CDEB0. Alice places A1 in such a way that it creates
two 5-holes intersecting in one triangle (△B0EA1 in the
figure). If Bob places his point inside this triangle, then
two 5-holes remain in the plane. Namely ABB0B1A1

and EB1B0CD for the instance in Figure 1. Otherwise,
Bob places his point inside only one of the two 5-holes.
Thus after placement of B1, Alice extends the remaining
5-hole to a 6-hole in the next round. □

Lemma 8 Starting with a 6-hole, Alice can obtain a
7-hole in the game within the next two rounds.

A

B

C

D

E

F

B0

A1

Figure 2: Formation of a 7-hole.

Proof. A 6-hole has three chords such that each of
them divides the 6-hole into two 4-holes. An instance
is depicted in Figure 2. ABCDEF is the initial 6-hole
and AD,BE, and CF are the chords dividing it into 4-
holes. Since Bob can place B0 inside the intersection of

at most three out of these six 4-holes, Alice can find two
5-holes intersecting in one triangle after the placement
of B0 inside the 6-hole. She can extend these two 5-holes
into two 6-holes intersecting in one convex quadrilat-
eral. As a result after the placement of B1 at least one
6-hole remains in the plane that can be extended to a 7-
hole in the next round. Figure 2 depicts the case where
B0 is inside three 4-holes namely ADEF , ABCF and
BCDE. Thus, Alice creates two 6-holes ABCA1DB0

and CA1DEFB0 by placing A1. Bob will try to place
B1 in the intersection of these two 6-holes formed af-
ter placement of A1, but B1 can be placed inside at
most one of the two triangles △B0CA1 or △B0DA1.
Even if Bob chooses one of them to place B0 inside,
either B1A1DEFB0 or ABCA1B1B0 remains a 6-hole
ensuring the formation of a 7-hole in the next round
by placing A2 accordingly. The other cases arising from
different placements of B0 are analogous considering the
symmetry of the chords of the initial 6-hole. □

Combining Lemma 6, 7, and 8 we get the following
theorem.

Theorem 1 Alice can win the ESMB game by obtain-
ing a 7-hole from 15 points in the 8th round.

We note that in the cases of obtaining k-holes for
k = 6 and 7, we considered the chords that divided the
(k−1)-hole into half where the size of the half was k−2.
As a result, after placement of B0 at least two (k − 2)-
holes remain in the plane. That gives Alice a chance to
create two (k − 1)-holes intersecting in a triangle or a
convex quadrilateral. This observation is not true when
we start with a 7-hole and as a result, we can not ensure
Alice’s winning within the next 2 rounds. We prove
Alice needs 5 more rounds to obtain an 8-hole starting
with a 7-hole.

Lemma 9 Starting with a 7-hole, Alice can obtain an
8-hole in the game within the next five rounds.

Proof. We begin with a similar approach as Lemma 8
that there are 7 chords in a 7-hole such that
each divides the hole into one 5-hole and one
4-hole. The chords are depicted in Figure 3
as AD,BE,CF ,DG,EA,FB, and GC in the 7-hole
ABCDEFG. To play optimally Bob places B0 inside
the 7-hole. After the placement of B0, Alice can place
A1 in such a way that there are two 6-holes in the plane
intersecting in one triangle. One instance is depicted in
Figure 3 (left) with the two 6-holes namely AB0EA1FG
and BCDEA1B0. If both the 6-holes remain after
placement of B1 Alice extends these two six holes into
two 7-holes by a similar strategy in Lemma 8 and wins in
the following round. Thus Bob must place B1 inside at
least one of these two 6-holes. Furthermore, Bob does
not place B1 inside the octagon ABCDEA1FG such
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that five vertices of the octagon are lying on the same
side of the line passing through B0 and B1, as this will
create a 7-hole. Thus we have the following observation.

A

B

C

DE

F

G
B0

A1

A

B

C

D

E

F

G B0

A1

B1

A2

−−−→
A1B1

−−→
AB0

Figure 3: Observation 1.

Observation 1 After the placement of B1, there are
two 6-holes in the plane sharing exactly one common
edge. Alice can place A2 in such a way that it creates
two 6-holes and one 7-hole. Moreover, both the 6-holes
share exactly one edge with the 7-hole and these two
shared edges are adjacent to each other in the 7-hole.

Precisely the position of A2 as mentioned in Ob-
servation 1 is inside the intersection of the triangles
△B0BB1, △B0EB1 and the triangle formed by the

sides B0B1,
−−→
AB0 and

−−−→
A1B1. Here

−−→
AB denotes the pro-

longation of the segment AB from B. Now Bob must
place B2 inside the 7-hole to prevent Alice from winning
in the immediate next round. Thus after placement of
B2, we have the following observation.

A2

A

B0

B1

A1

F

G

B

C

D

E

B2

A3

Figure 4: Observation 2.

Observation 2 Alice can place A3 in such a way that
after the placement of B3 there are two 6-holes in the
plane sharing exactly one vertex.

Proof of Observation. Note that Bob does not place
B2 in such a way that there are two 6-holes sharing
only one vertex as this will help Alice to create two
7-holes sharing only one edge and win immediately.
Moreover, there will be two 6-holes involving the
vertices of the 7-hole (containing B2 and B3) following
the same argument as Observation 1. If Alice can
force the placement of B3 such that the line passing
through B2 and B3 intersects either B0A2 or A2B1

then Observation 2 holds. Thus to force such placement
of B3 Alice places A3 in such a way that there are two
6-holes intersecting in one triangle such that none of
them contain both B0A2 and A2B1 as their edges. one
instance is depicted in Figure 4). △

Using Observation 2, Alice extends both the 6-holes
to two disjoint seven holes by placing A4 accordingly en-
suring the formation of an 8-hole in the next round. The
placement of A4 for the instance considered in Figure 4
is depicted in Figure 5. □

A2

A

B0

B1

A1

F

G

B

C

D

E

B2

A3

B3

Position
for A4

−−−→
B1A2

−−→
AB0

Figure 5: Placement of A4 to obtain an 8-hole.

Thus by combining Theorem 1 and Lemma 9, we have
the following theorem.

Theorem 2 Alice can win the ESMB game by obtain-
ing an 8-hole from 25 points in the 12th round.

2.1 Winning strategy for Maker in general with a
higher speed

Now we present a general strategy for Alice to win the
game when she benefits with a higher speed than Bob.
First, we assume in each round Alice places 2 points
while Bob places only 1. We show that Alice can obtain
any k-hole for any given k in 2(k−1) round.

Lemma 10 Alice can win a Maker-Breaker version of
the Erdos-Szekers game by obtaining a k-hole in 2(k−1)

round for any given k if she is allowed to place two
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points in each round while Bob is allowed to place only
one point each round.

1 2 2(k−1)3

Point configuration after 2(k−2) rounds.

Point configuration after 2(k−2) + 2(k−3) rounds.

Figure 6: Game configurations when Alice has double
speed than Bob.

Proof. We prove the lemma by describing the strat-
egy of Alice. Consider 2(k−1) disjoint unit squares in
the plane. Alice places two points inside two different
empty squares in each round for the first 2(k−2) rounds.
In the next 2(k−3) rounds she places her points only in
the squares where there are no points of Bob inside. She
can always find 2(k−2) squares since Bob can only place
2(k−2) points in the first 2(k−2) round. In the follow-
ing 2(k−4) round she places her points into the squares
without any points of Bob. Following the strategy she
can keep placing her points only in the squares without
Bob’s points and as a result, she can place them into a
convex position achieving a k-hole in the 2(k−1) round.

□

Now we generalize the idea where the ratio of the
points placed by Alice and Bob is (1 + ε) for any small
ε > 0. In other words, Alice places at least one point
more than Bob after rth round of the game. Then using
the similar argument of Lemma 10 we can conclude that
after a finite number of steps, Alice can secure at least
one such square that is free from a point of Bob. Thus
she iterates the strategy to achieve one square contain-
ing only k points placed by her. This takes (r+1)(k−1)

turns to win the game. Hence we have the following
theorem.

Theorem 3 Alice can win the ESMB game by obtain-
ing a k-hole for any given positive integer k if the ratio
of the points placed by Alice to the points placed by Bob
is (1 + ε) for any ε > 0.

3 ESMB game for equilateral holes

In this section, we address the question of obtaining
equilateral holes for Maker. This question does not arise
in the case of the classical Erdős-Szekeres problem: it is
trivial to generate a point set of any size where no two
pairs of points have the same distance between them.
We prove that Alice can create an equilateral 4-hole

in the game. We describe the strategy in this subsec-

A1

B1

A2

B2

A3

Potential
positions
for A4

Figure 7: Formation of an equilateral 4-hole.

tion. It can be followed that Alice can create an equi-
lateral triangle in the plane by placing A2 in the second
round and Bob must place her point inside the triangle
to prevent Alice from winning in the immediate next
round. Moreover, Bob ensures that B2 is placed in
such a way that it is not equidistant from two points
in {A1, B1, A2}. In the third round, Alice places A3 di-
viding one outer angle (∠A1B1A2 in the Figure 7) of the
triangle in such a way that the length of A3B1 is same as
the length of A1B1. Moreover, the circle centered at A3

with a radius of the same length as the length of A3B1

intersects both the circles centered at A1 and A2 of the
same radius. These two intersection points act as two
potential candidates for A4 such that either A1A4A3B1

or A2A4A3B1 becomes an equilateral 4-hole depending
on the placement of B3. This gives the following result.

Theorem 4 Alice wins the ESMB game for an equi-
lateral 4-hole by obtaining it from 7 points in the 4th

round.

4 ESMB game on a square grid

In this subsection, we study the game in a square grid
of a fixed size, say n × n. We show that if we allow
the players to violate the general position assumption
of the points, then Alice can win if and only if n ≥
⌈k2 ⌉. If the grid is of size ⌈k2 ⌉ it is easy to follow that
Alice can ignore the placement of Bob and can form
a k-hole from two consecutive rows or columns of the
grid. But, interestingly, the bound is tight as Bob can
prevent Alice from winning if n < ⌈k2 ⌉.

Lemma 11 Alice does not have a winning strategy for
the ESMB game on an n×n square grid if n < ⌈k2 ⌉ with
k > 2.

Proof. We note that Alice can not form a convex k
hole only by using the points from two consecutive rows
or columns. Hence she has to use points from at least
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Figure 8: Winning strategy for Bob on a grid of n × n
with n < ⌈k2 ⌉.

three rows or columns. Since any convex polygon of
size k must contain two points of at least one diagonal
of the grid, Bob places his n points alternatively on both
the diagonals depending on the placements of the points
by Alice, shown in Figure 8. This prohibits Alice from
obtaining a hole of the desired size. □

Thus we have the following theorem.

Theorem 5 Let us consider the ESMB game on an n×
n square grid where both the players have to place their
points on one of the vertices of the grid and they are
allowed to place three or more colinear points. Alice
can win the game by obtaining a k-hole for any positive
integer k > 2, if and only if n ≥ ⌈k2 ⌉.

5 Conclusion

For Maker with a slightly higher speed than Breaker
we have presented a general strategy to win the ESMB
game, but it takes exponentially long to finish. Also, we
observe that for small k like 8, the game finishes much
faster. Thus it is an intriguing open question to ad-
dress whether there exists a winning strategy for Maker
with the same speed as Breaker even if there are con-
structions of the large sets without hole [4, 10, 13, 14].
An important observation is that the Horton sets [10],
which are the building blocks of large point sets without
k-holes for k > 7, are fragile in the sense that inserting
one unwanted point in the set can create an unwanted
hole. Moreover, the expected number of holes in a ran-
dom point set of size n selected from a convex shape of
unit area in the plane is O(n2) [2]. On the other hand
the existing results on the expected size of the largest
hole in random point sets [3] are logarithmic in terms of
the number of points. Therefore, can Breaker delay the

game infinitely by preventing Maker from forming a k-
hole? If so, it is also interesting to study the maximum
value of k for which Maker can always win.
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The En Route Truck-Drone Delivery Problem

Danny Krizanc∗ Lata Narayanan† Jaroslav Opatrny‡ Denis Pankratov§

Abstract

We study the truck-drone cooperative delivery problem
in a setting where a single truck carrying a drone travels
at constant speed on a straight-line trajectory/street.
The truck carries all items to be delivered. Delivery
to clients located in the plane and not on the truck’s
trajectory is performed by the drone, which has lim-
ited carrying capacity and flying range, and whose bat-
tery can be recharged when on the truck. We show
that the problem of maximizing the number of deliv-
eries is strongly NP-hard even in this simple setting.
We present a 2-approximation algorithm for the prob-
lem, and an optimal algorithm for a non-trivial family
of instances.

1 Introduction

The use of unmanned aerial vehicles or drones for last-
mile delivery in the logistics industry has received con-
siderable attention in business and academic communi-
ties, see for example [1, 3, 15, 9]. Drones have been
shown in a recent analysis [13] to have significantly less
life-cycle costs, and faster delivery time compared to
diesel or electric trucks in urban, suburban, and rural
settings, and have less harmful emissions compared to
diesel trucks. The potential applications where drone
delivery could make a big impact include contactless
delivery, return of unsatisfactory goods, rural or hard-
to-access delivery and delivery in disaster relief scena-
rios.

In this paper we consider a system in which the de-
livery of physical items to clients located in the plane is
done by two cooperating mobile agents having different
but complementary properties. The first mobile agent,
called the drone can move in any direction but it can
travel only a limited distance, called its flying range,
before it needs to recharge its battery. Furthermore, it
has limited carrying capacity. The second mobile agent,
called the truck can travel only along a fixed trajectory,
called a street but its battery/fuel is not only sufficient
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to follow the street as long as necessary, but it is also
equipped with a charging facility where the drone can
recharge whenever it reaches the truck. Furthermore,
it can carry all items that are to be delivered to the
clients.

The delivery of items to clients is done as follows. All
items to be delivered are preloaded on the truck at the
warehouse. The truck then moves along the street at
a fixed speed and it delivers items to any client who is
located on its trajectory. The delivery of an item to a
client who is not located on the trajectory of the truck
must be carried out by the drone. At an appropriate
time, the drone flies from the truck with the item to
be delivered to the given client, drops the item there,
and then flies back to the still-moving truck. There it
can recharge, pick up another item, and make the next
delivery, and so on. Clearly the same set-up can also
be used to pick up items rather than deliver them. For
ease of exposition, we always talk about item delivery
in this paper.

Given a set of delivery locations and the parameters
of the agents, i.e., the trajectory and the speed of the
truck, the flying range of the drone and its speed, we
want to compute a feasible schedule of deliveries that
maximizes the number of deliveries made. Such a sched-
ule specifies the order in which the deliveries to clients
are done by the drone, and for each delivery it gives the
time the drone leaves the truck. Clearly, to be feasi-
ble, the schedule should ensure that for each delivery,
the drone can fly to the delivery location and back to
the still-moving truck while having travelled distance at
most its flying range, and arrive at the truck in time to
start its next delivery.

1.1 Related work

The algorithmic study of truck-drone cooperative deliv-
ery problems was initiated by Murray and Chu [12] and
Mathew et al. [11] where the problem of a single truck
being helped by a single drone to deliver packages to
customers is studied. Since then there has been a great
deal of work (Murray and Chu’s paper has received more
than 1000 citations) on different versions of what is var-
iously referred to as Truck-Drone Cooperative Delivery,
Drone-Aided Delivery or Last-Mile Delivery problems.
Variations considered include multiple trucks, multiple
drones, drone-only delivery, mixed truck-drone delivery,
etc. We refer the reader to recent surveys for more de-
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tails [3, 4, 9, 15, 16].
In the above work, the problem is most often mod-

elled using a weighted directed graph with customers
as nodes, streets and drone flight paths as edges, etc.
Under these circumstances the problems become ver-
sions of the Travelling Salesperson Problem or the Ve-
hicle Routing Problem. As such they are all easily seen
to be NP-hard in general and are solved by adapting
known exact (e.g., Mixed Integer Linear Programming)
or heuristic (e.g., greedy) techniques. For specialized
domains some variants can be shown to be polynomial
time, e.g. on trees [2].

In most of the previous research it is assumed that
the points at which a truck and drone can rendezvous
are part of the input (e.g., customer locations, depots)
and that the truck or drone stops at the rendezvous
point to wait for the other to arrive. More recent work
[7, 8, 10, 14] has focused on the case where the ren-
dezvous can occur “en route” as the truck is moving and
the rendezvous points are to be determined by the algo-
rithm, as is the case with our study. In these papers, the
problems studied are again generalized versions of TSP
or VRP and are attacked via adaptations of known ex-
act or heuristic techniques. Here we restrict ourselves to
the simplest version of the problem with one truck and
one drone, where the truck travels at a constant speed
along a single street. Surprisingly, even in this case, as
shown in Section 3, the problem is strongly NP-hard.

All of the above work is concentrated on minimizing
either the total delivery time or total energy require-
ments (or some combination of both) to deliver all of
the packages to all of the customers. To the best of our
knowledge we are the first to consider the problem of
maximizing the number of clients that are satisfied in
the en route model.

1.2 Our Truck-Drone Model

We define the truck-drone delivery problem more for-
mally as follows. We assume that the delivery points
as well as the trajectories of the truck and the drone,
are set in the 2-dimensional Cartesian plane. Without
loss of generality, we assume the warehouse is located
at [0, 0], and the truck starts fully loaded with all items
to be delivered at the warehouse at time 0, and subse-
quently moves right on the x-axis with constant speed
1. Note that this allows us to measure the elapsed time
by the distance of the truck from the origin.

The speed of the drone is denoted by v and it is as-
sumed that v is a constant that is greater than 1. The
flying range of the drone is given by the value R, and is
defined as the maximum distance that the drone can fly
on a full battery without needing to be recharged. We
assume that the time to recharge the drone’s battery,
and to pick up an item from the truck, or to drop off an
item at its delivery location are negligible compared to

the delivery times, and thus are equal to 0. Therefore,
any time the drone leaves the truck it can fly its full
range R before returning to the truck.

We are given a multi-set D = {d1, d2, . . . , dn} of de-
livery points in the plane where the deliveries are to be
made. The truck delivers any item whose delivery point
is located is on its trajectory, we assume that this can
be done with negligible delay. Thus we assume below
that none of the points in D is located on the trajectory
of the truck, i.e., on the positive x-axis.

We now define a feasible delivery schedule for the
truck-drone delivery problem.

Definition 1 Given an instance I = (v,R,D) of the
truck-drone problem, where D = {d1, d2, . . . , dn}, we
define a schedule SI to be an ordered list of delivery
points to which deliveries are made, and the start time
of each delivery, i.e.,

SI = ((di1 , s1), (di2 , s2), . . . , (dim , sm)),m ≤ n

where m is called the length of the schedule and for
1 ≤ j ≤ m the drone makes a delivery to dij by leaving
the truck at point [sj , 0]. The schedule is feasible, if
s1 ≥ 0, and for each j, 1 ≤ j ≤ m − 1, the drone can
reach dij when leaving the truck at position [sj , 0] and
return to the truck at or before [sj+1, 0].

Schedule SI is called optimal if there is no schedule
that is longer than SI , that is, makes more deliveries
than SI .

Given an instance I = (v,R,D) of the truck-drone
problem, where v and R are the speed and the range
of the drone respectively, and D is the set of delivery
points, the goal of the truck-drone delivery problem is
to find an optimal delivery schedule.

d1

d2

s

d3

0 1 4.5 5 11.57

d4

4 3

2

54

2

Figure 1: Instance I = (2, 10, {d1, d2, d3, d4}), and its
schedule SI = ((1, d1), (5, d2), (7, d3)). The trajectory of
the drone is in blue, that of the truck in red. The blue
numbers give the distances, the black numbers show the
time sequence

.

Figure 1 shows an example of a truck-drone problem
and of a feasible schedule.
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1.3 Our results

In Section 3, we show that even for the ostensibly sim-
ple case of a single truck travelling on a straight line,
and a single drone, the truck-drone delivery problem is
strongly NP-hard. In particular, we show that given an
instance I of the truck-drone problem and an integer k,
it is strongly NP-hard [5] to decide whether there is a
schedule SI of length k.

In Section 4, we describe a greedy algorithm Ag and
show that it computes a 2-approximation of an optimal
schedule in O(n2) time. The factor of 2 is shown to be
tight for this algorithm. Finally, in Section 5, we de-
fine a proper family of instances. Roughly speaking, in
such instances, the delivery points do not have the same
or “nearly” the same x-coordinates, where “nearly” de-
pends on the difference in their y-coordinates. In par-
ticular, the greater the difference in the y-coordinates
of the points, the greater is the difference in their x-
coordinates in proper instances. We then give an O(n3)
algorithm that calculates an optimal schedule for any
proper instance.

Note that throughout this paper we assume that
arithmetic operations, including taking square roots,
can be done in constant time.

2 Preliminary Results

We say that a point d = [x, y] is reachable by the drone
from position [s, 0] if the drone can leave the truck at
[s, 0], fly to point d and fly back to the truck with the
total distance travelled at most its flying range R. First
we examine some geometric properties of points in the
plane that are reachable from [s, 0] by the drone flying
with speed v and having flying range R.

Suppose the drone leaves the truck at position [s, 0],
makes a delivery at d = [x, y] and returns to the truck
using its full range R. To fly range R the drone needs
time t = R/v and at that time the truck is at position
[s + R/v, 0]. Therefore, the drone can make a delivery

[s, 0] [
s+ R

v , 0
]

d = [x, y]E

m

M

Figure 2: In Ellipse E shown above, the speed of the
drone is not much higher than that of the truck. When
the speed of the drone increases, the distance between
the foci decreases, and the ellipse becomes closer to a
circle.

at point d = [x, y] if the total distance it flew satisfies

the equation

|[s, 0], [x, y]|+ |[x, y], [s+R/v, 0]| = R

Clearly all such points d reachable by the drone from
[s, 0] using its full flying range lie on ellipse E (see Figure
2) with left focus [s, 0] and right focus [s+R/v, 0]. Fur-
thermore, the major radius, i.e. the length of the semi-
major axis of the ellipse is M = R

2 , and minor radius,

i.e. the length of its semi-minor axis is m = R
2v

√
v2 − 1.

Next, considering also the delivery points that can be
reached by the drone by flying distance strictly less than
R, we conclude that all points reachable from [s, 0] by
the drone within its flying range are located on or inside
the ellipse E.

Assuming that the ellipse E is centered at [0, 0], its
left focus [s, 0] = [− R

2v , 0], and its right focus is [ R2v , 0],
and M , m are the major, minor radii as specified above.
The equation of the ellipse is:

x2

M2
+
y2

m2
= 1 (1)

Clearly, delivery to point d = [x, y] is feasible only if
−m ≤ y ≤ m, i.e., all delivery points should be located
in a band of width 2m centered along the x -axis.

Assume a delivery point d is on the right half of ellipse
E, and the drone makes a delivery to d starting from
the truck at point [s′, 0] between the foci of the ellipse
E. Since the distance from [s′, 0] to d is shorter than the
distance from the left focus [s, 0] of E to d, the drone
can reach the delivery point d, flying for distance < R.
However, the drone when leaving the truck at point [s, 0]
arrives at d earlier than when staying on the truck and
leaving for d only later at point [s′, 0], and therefore it
also returns to the truck earlier. Thus when using flying
distance less than R the drone returns to the truck later
as shown in Figure 3.

[s,0] [s’,0]

dE

[s+R/v,0]

Figure 3: The red lines show the delivery with the full
range R, the green lines show the delivery with range
less than R.

This leads to the next lemma:

Lemma 1 Consider a delivery point d in the right half
of the ellipse E. To make a delivery to d flying less that
the full range R, the drone must start the delivery at a
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point to the right of the left focus of E and the drone
returns to the truck to the right of the right focus of E.
Starting points for the drone to the left of the left focus
are not feasible.

A symmetric observation holds about delivery points
on the left half of E.

We now determine for each delivery point an interval
on the trajectory of the truck describing feasible depar-
ture points for the drone to make a delivery to point d.
Given a delivery point d, let E1 and E2 be the ellipses
with major radius M and minor radius m, such that
their foci are located on the x-axis, with E1 containing
d on its right half, while E2 contains d on its left half.
Let fi1, fi2 be the foci of Ei for i ∈ {1, 2} (see Figure 4).
The following lemma now follows from Lemma 1 above.

Lemma 2 Focus f11 is the point of the earliest start
for a delivery to d, and focus f12 is the point of the ear-
liest return to the truck from a delivery to d. Focus f21
is the point of the latest start for a delivery to d that
can meet the truck, and Focus f22 is the latest return to
the truck from any delivery to d. Feasible start points
for delivery to d lie between f11 and f21, with the corre-
sponding return to the truck occurring between f12 and
f22.

E1 E2

f11 f21 f12 f22

d

Figure 4: The red lines show the earliest delivery to d,
the blue lines show the latest delivery to d. A delivery
to d could be scheduled to start at a point between f11
and f21.

In the rest of this paper, given a delivery point d we
denote its earliest start time as es(d) and the corre-
sponding earliest return as er(d), the latest start time
of d as ls(d), and the corresponding latest return back
to the truck as lr(d),

By the definition of the ellipse, for any delivery point
d we have

er(d)− es(d) = lr(d)− ls(d) = R/v

the distance between the foci of E.

Given a point d = [x, y], we can calculate the values
es(d), ls(d) as follows. Imagine a horizontal line pass-
ing through d. It intersects the ellipse E centered at 0

at two points [−x′, y] and [x′, y]. According to Equa-
tion (1), we have (x′)2/M2 + y2/m = 1. Therefore,

x′ = M
√

(1− y2

m2 ). Now, imagine sliding the ellipse E

along the x-axis. When E touches d for the first time,
we obtain E1 having travelled distance x−x′. Similarly,
when E touches d for the last time, we obtain E2 having
travelled distance x+ x′. Thus, we have:

Lemma 3 For d = [x, y]

es(d) = x− R
2v − x′, and er(d) = es(d) +R/v,

ls(d) = x− R
2v + x′, and lr(d) = ls(d) +R/v.

The next lemma gives the return point of the drone to
the truck after a delivery to a delivery point d = [x, y],
starting from the truck at a position [s, 0].

Lemma 4 Suppose we wish to make a delivery to a de-
livery point d = [x, y] using the drone, starting from
the truck at position [s, 0], and returning to the truck at
position [ret, 0].

1. If es(d) ≤ s ≤ ls(d),

ret = ret(s, d, v) := s+
s+ av − x+ z

v2 − 1
(2)

where a =
√
y2 + (s− x)2, b = sv2 + av − x, and

z =
√
b2 − s(v2 − 1)(b+ s+ av − x)

2. If s < es(d), then ret(s, d, v) = er(d).

3. If s > ls(d), then delivery is impossible, thus we set
ret(s, d, v) =∞.

Proof. To see (1), observe that the total distance trav-
elled by the drone is d1 = |[s, 0], [x, y]|+ |[x, y], [ret, 0]| =
a +

√
(ret−x)2 + y2, which the drone travels in time

d1/v. At the same time the truck travels the distance
d2 = ret−s. Thus we have the equation

a+
√

(x− ret)2 + y2 = v(ret−s)
(x− ret)2 + y2 = (v(ret−s)− a)

2

x2 − 2x ret + ret2 +y2 = v2(ret2−2s ret +s2)−
− 2av(ret−s) + y2+

+ (s2 − 2sx+ x2)

ret2−2x ret = v2 ret2−2v2s ret−2av ret +

+ v2s2 + 2avs+ s2 − 2sx

0 = (v2 − 1) ret2−2(sv2 + av − x) ret +

+ s(v2s+ s+ 2av − 2x)

0 = (v2 − 1) ret2−2b ret +s(b+ s+ av − x),
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and by solving the quadratic equation for ret > s we
have

ret =
b+

√
b2 − s(v2 − 1)(b+ s+ av − x)

v2 − 1

= s+
s+ av − x+

√
b2 − s(v2 − 1)(b+ s+ av − x)

v2 − 1
,

as needed.
For (2), note that if s < es(d) then the drone re-

mains on the truck until position [es(d), 0] is reached
and then it starts a delivery from position [es(d), 0],
since by Lemma 1, this gives the earliest time the drone
can start from the truck for a delivery to point d. Thus
for any such s the drone returns to the truck at position
[er(d), 0].

Finally, (3) follows from Lemma 2. �

For s where es(d) ≤ s ≤ ls(d) and a delivery point
d = [x, y], we call ret(s, d, v) − s the round-trip flight
time to d from [s, 0]. It can be seen from Formula 2
that the round-trip flight time is not a linear function
in s, which makes a calculation of a schedule for a given
instance of the truck-drone problem more complicated.
The following is a direct consequence of Lemma 1

Lemma 5 For a delivery point d = [x, y] and a point
[s, 0] between es(d) and ls(d), the round-trip flight time
ret(s, d, v) − s reaches the maximal value R/v at s =
es(d), it decreases until s = x(1− y/

√
v2 − 1) and then

increases until s = ls(d) where it again reaches the max-
imal value R/v.

Lemma 6 Let d = [x, y] and d′ = [x′, y′] be two deliv-
ery points, and suppose there are valid drone trajectories
from [s, 0] to d returning at [r, 0] and from [s′, 0] to d′

returning at [r′, 0]. If s′ < s < r ≤ r′, then there is also
a valid drone trajectory from [s′, 0] to d returning at a
point before [r, 0].

Proof. Let R1 be the length of the drone trajectory
from [s′, 0] to d′ and then to [r′, 0], and similarly, let
R2 be the length of the drone trajectory from [s, 0] to
d and then to [r, 0]. Then R1/v and R2/v respectively
are the distances from [s′, 0] to [r′, 0] and from [s, 0] to
[r, 0]. Since s′ < s < r ≤ r′, it follows that R2 <
R1. Now consider the ellipse E1 with parameters (R1, v)
with [s′, 0] as its left focus. Then d′ is on the right half
of E1, and [r′, 0] must be its right focus. Similarly, let
E2 be the ellipse with parameters (R2, v) with [s, 0] and
[r, 0] as its left and right foci respectively, and with d
on the right half of the ellipse. Since s′ < s < r ≤ r′,
the ellipse E2 is completely contained in E1, and the
point d is in the interior of the ellipse E1. It follows
that there is a valid drone trajectory to d starting at
[s′, 0]. Furthermore, since the drone reaches d earlier
if it starts at [s′, 0] than if it stayed on the truck until

[s, 0] and then flew to d, it must also return to the truck
earlier than [r, 0]. �

In the truck-drone instance that we use in the proof
of strong NP-hardness in Section 3, many of the deliv-
ery points are located on the y axis. For these points
we can simplify the expression used to define function
ret(s, d, v)− s, and this simplified expression is used to
obtain upper and lower bounds on ret(s, d, v)− s.

Lemma 7 For s ≥ 0 and a delivery point d = [0, y]
with v/4 ≤ y ≤ v/2 we have

2y

v
< ret(s, d, v)− s < 2y

v
+

1 + 4s2 + s

v2 − 1
.

Proof. Let ∆s := ret(s, d, v) − s. Then the distance

travelled by the drone is
√
s2 + y2 +

√
(s+ ∆s)2 + y2.

Since the drone travels at speed v, the time taken by
the drone is then

√
s2 + 2y2 +

√
(s+ ∆s)2

v
.

During the delivery, the truck travels distance ∆s at
speed 1 taking the time ∆s. Equating the two times we
get: √

s2 + y2 +
√

(s+ ∆s)2 + y2

v
= ∆s.

Solving for ∆s, we obtain:

∆s =
2(v
√
s2 + y2 + s)

v2 − 1
.

From this expression we immediately obtain the lower
bound on ∆s using s ≥ 0:

∆s ≥ 2vy

v2 − 1
≥ 2y

v
.

Next observe that
√
s2 + y2 ≤ y + s2

2y . Plugging this
inequality into the expression for ∆s we obtain:

∆s ≤ 2(v(y + s2/2y) + s)

v2 − 1
=

2vy + v
y s

2 + 2s

v2 − 1
=

=
2
(
1− 1

v2

)
vy + 2 1

v2 vy + v
y s

2 + 2s

v2 − 1

=
2y

v
+

2yv + v
y s

2 + s

v2 − 1
≤ 2y

v
+

1 + 4s2 + s

v2 − 1
,

where in the last inequality we used the fact that
v/4 ≤ y ≤ v/2. �

3 Strong NP-hardness

In this section we prove that the following decision prob-
lem is strongly NP-hard:
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Schedule Length problem. Given an instance I of
the truck-drone problem, and an integer p, is there a
schedule SI of length p (that is, SI makes p deliveries)?

We show below that there is a polynomial reduc-
tion from the well known 3-Partition problem [5] to
the Schedule Length problem. Recall that in the 3-
Partition problem we are given a multi-set of integers
Y = {y1 ≤ y2 ≤ · · · ≤ yn}, where n = 3k. Let
T =

∑n
i=1 yi/k. The 3-Partition problem asks if there

is a partition of Y into k triples, such that the sum of
elements in each triple is equal to T . The 3-Partition
problem is strongly NP-hard [5].

Theorem 8 The Schedule Length problem is strongly
NP-hard.

Proof. We prove the theorem by exhibiting a reduction
from a 3-Partition instance Y = {y1, y2, . . . , yn} to an
instance I of the Schedule Length problem. We use
the notation for the 3-Partition instance Y introduced
immediately prior to the statement of the theorem. We
assume that n is sufficiently large; the values in Y are
bounded from above by a polynomial in n, so that nc <
T ≤ nc+1 for a sufficiently large constant c.

We now define the corresponding instance I of the
Schedule Length problem as follows. The speed of the
drone is set to v = T and the flying range of the drone
is set to R = 4T . Then the minor radius of the ellipse
corresponding to the speed and range of the drone is
m = 2

√
T 2 − 1.

For this proof, we depart from our convention of the
truck starting at [0, 0] and instead specify the starting
position of the truck as [2, 0] (this does not affect the
complexity of the problem, but makes some of the for-
mulas nicer). The set of delivery points D is partitioned
into three subsets called A,B and C, that are defined
below:

A = {[0, y1], [0, y2], . . . , [0, yn]} is a set of delivery points
located on the y-axis and correspond to the inputs to
the 3-Partition problem.

B = {[6 + ε(n),m], [2(6 + ε(n)),m], . . . , [(k − 1)(6 +
ε(n)),m]} and

C = {[k(6 + ε(n)),m], [k(6 + ε(n)) + 4,m], . . . , [k(6 +
ε(n)) + 4T,m]}
are sets of delivery points that are located at distance
m from the x-axis and ε(n) ∈ (0, 1) is a function of n to
be specified later.

Observe that each delivery point in B ∪ C can be
reached by the drone from exactly one location on the
x-axis, and the drone must fly its full range R = 4T to
make the delivery and return to the truck, and therefore,
each such delivery takes time R/v = 4. See Figure 5 for
an illustration of the instance I produced by the reduc-
tion, as well as the unique feasible drone trajectories for
delivery points in B and C.

In total there are n+ (k− 1) + T + 1 delivery points,
and we set p = n + (k − 1) + T + 1 in the Schedule
Length problem instance. In other words, this instance
asks whether there is a schedule that delivers to all the
delivery points. Observe that the number of points and
their coordinates are all bounded by a polynomial in n,
so the reduction runs in polynomial time.

We claim that the instance Y to the 3-Partition prob-
lem is a yes-instance if and only if I is a yes-instance to
the Schedule Length problem.

It is clear that since the flying range of the drone
equals 4T , no deliveries to points in A can be scheduled
after the deliveries to points in C are made. Thus a valid
schedule delivering to all the points must schedule de-
liveries to A in the intervals between deliveries to points
in B. There are k such intervals, and each interval is
of length 2 + ε(n). We claim that at most three points
[0, yi1 ], [0, yi2 ], [0, yi3 ] can be scheduled within such an
interval and if only if yi1 + yi2 + yi3 ≤ T . Establishing
this claim would finish the proof of the theorem.

Assume we have three integers yi1 , yi2 , yi3 such that
yi1 + yi2 + yi3 ≤ T and the truck with the drone on it
is at position [i(6 + ε(n) + 2,m] for 0 ≤ i ≤ k − 1. By
the upper bound on the delivery time in Lemma 7 and
observing that i < k = n/3, the total time for the three
consecutive deliveries started at [i(6+ ε(n)+2),m] is at
most

2(yi1 + yi2 + yi3)

T
+3

1 + 4(k(6 + ε(n)))2 + (k(6 + ε(n)))

T 2 − 1

≤ 2 +
2n2(6 + ε(n))2

T 2 − 1
= 2 +O(n2/T 2). (3)

Thus, the deliveries to [0, yi1 ], [0, yi2 ], [0, yi3 ] can be com-
pleted before the delivery to [(i + 1)(6 + ε(n) + 2,m]
is scheduled, provided that O(n2/T 2) = O(n−2c+2) ≤
ε(n).

Assume we have three integers yi1 , yi2 , yi3 such that
yi1 + yi2 + yi3 > T and the truck with the drone on it
is at position [i(6 + e(n) + 2,m] for 0 ≤ i ≤ k − 1. By
the lower bound on the delivery time in Lemma 7, the
total time for the three consecutive deliveries started at
[i(6+ε(n)+2,m] is at least 2(yi1 +yi2 +yi3)/T > 2+1/T
and they cannot be completed before the delivery to
[(i+ 1)(6 + ε(n) + 2,m] is scheduled, provided that the
term 1/T ≥ n−c−1 exceeds ε(n).

It is left to notice that because we can take n and c
sufficiently large, we can find ε(n) satisfying:

O

(
1

n2c−2

)
< ε(n) <

1

nc+1
.

For example, one could take c = 4 and ε(n) = 1/n6.
This completes the proof of strong NP-hardness.

�
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2
√
T 2 − 1

T

T/2

T/4[0, y1]
[0, y2]
[0, yn]

A

[2, 0]

B C

4 4 4 4 42 + ε(n)2 + ε(n)

Figure 5: Illustration of the Schedule Length instance I output by the reduction from the 3-partition problem. The
unique feasible drone trajectories for delivery points in B and C are also shown.

4 A Greedy Approximation Algorithm

In this section we describe a greedy scheduling algo-
rithm for the truck-drone problem. Our algorithm,
which we call Ag , assigns deliveries to the drone as the
truck moves from left to right starting from the initial
position of the truck at [0, 0]. When the truck with the
drone is at position [s, 0], our greedy algorithm sched-
ules a delivery to point d which, from among all feasi-
ble delivery points, minimizes the round-trip flight time
from [s, 0], i.e., which gives the earliest possible return
for the drone to the truck. Notice that the delivery point
which minimizes the round-trip flight time from [s, 0] is
not necessarily the delivery point that is at the shortest
distance from [s, 0]. For example, in Figure 8, the point
d1 is closer than d2 to [s, 0]. Thus one needs to use
the function defined by Formula 2 to calculate which
delivery point requires the shortest time to return to
the truck. We then update s to be this shortest return
time. If there are no feasible delivery points, then s i
set to the earliest time any of the remaining points can
be reached after the current time.

Algorithm 1 gives the pseudocode for Ag. It is
straightforward to see that Algorithm Ag can be im-
plemented in O(n2) time, since a single evaluation of
ret takes constant time. Figure 6 gives an example of
the trajectories of the drone according to an optimal
schedule and that of the schedule calculated by Ag.

In the next theorem we compare the size of the sched-
ule calculated by Algorithm Ag with respect to an op-
timal algorithm.

Theorem 9 Given an instance I = (v,R,D) of the
truck-drone delivery problem, let Sg be the schedule pro-
duced by the algorithm Ag and let SOPT be an optimal

d1 d2

d3 d4
d5

d1 d2

d3 d4
d5

Figure 6: The black arrows, red arrows show the travel
of the drone according to an optimal, greedy schedule,
respectively, for an instance I = (0, 4, 8, D) with D con-
taining five delivery points {d1, d2, . . . , d5}. The black
crosses and red crosses on the x-axis indicate the return
points of OPT and Ag, respectively.

schedule. Then

|SOPT | ≤ 2|Sg|.

Proof. Let D = {d1, d2, . . . , dn} and let

SOPT = ((di1 , s1), (di2 , s2), . . . , (dip , sp)), and

Sg = ((dj1 , s
′
1), (dj2 , s

′
2), . . . , (djq , s

′
q)),where q ≤ p ≤ n.

We give a function F that maps delivery points in
SOPT to points in Sg. For every k, with 1 ≤ k ≤ p,
define rk to be the return time of the drone for the kth

delivery in SOPT and similarly for every k, with 1 ≤ k ≤
q, define r′k to be the return time of the drone for the
kth delivery in Sg. Define Qk to be the set of delivery
points in Sg whose return to the truck in the greedy
schedule occurs during the flight time of the drone to
deliver the kth item in SOPT . That is,

Qk = {dj` : r′` ∈ (sk, rk]}
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If Qk 6= ∅, define last(Qk) to be the element of Qk
with the latest return according to the greedy schedule.
Now define Pk to be the set of delivery points in Sg
whose start time in the greedy schedule is before the
start time of the kth delivery in the optimal schedule,
but whose return to the truck in the greedy schedule
occurs between the return from the kth delivery in the
optimal schedule and the start of the (k+ 1)st delivery.

Algorithm 1 Greedy Approximation Algorithm Ag to
Compute Feasible Delivery Schedule

Require: Instance I = (v,R,D) where D =
{d1, d2, . . . , dn}, is a list of delivery points.

Ensure: SI is a feasible schedule of deliveries.
1: SI ← L← ∅
2: s← 0
3: . For each delivery point di, calculate es(di) and
ls(di) and insert triple into L.

4: for i = 1 . . . n do
5: if s ≤ ls(di) then
6: x.es = es(di)
7: x.ls = ls(di)
8: x.d = di
9: Insert(L, x)

10: end if
11: end for
12: Sort(L, key = es)
13: while L 6= ∅ do
14: x← first(L)
15:

16: if s < x.es then
17: s← x.es . If no feasible delivery point,

move s forward.
18: end if
19: . Find feasible delivery point which minimizes the

return time to truck.
20: rmin ←∞
21: while x 6= NIL and s ≥ x.es do
22: r ← ret(s, v, x.di)
23: if r < rmin then
24: rmin ← r
25: save← x
26: end if
27: x← next(L)
28: end while
29: . Insert next delivery point into schedule, update s

and list L
30: Insert (SI , (save.d, s))
31: s← rmin
32: for x ∈ L do
33: if x.lr < s then
34: Delete (L, x)
35: end if
36: end for
37: end while

That is:

Pk = {dj` : s′` ≤ sk and rk < r′` ≤ sk+1}
If Pk 6= ∅, note that it can have only one element,

denote it as pk.
We are now ready to define the function F . For all

k ∈ {1, . . . , p}

F(dik) =





last(Qk) if Qk 6= ∅ (4a)

pk if Qk = ∅ and Pk 6= ∅(4b)

dik otherwise (4c)

We give an example to illustrate function F using
an instance shown in Figure 6. In that case the optimal
schedule makes 5 deliveries in order to (d1, d2, d3, d4, d5)
and greedy schedule contains 3 deliveries (d3, d4, d5)
listed in order, omitting the starting times. For this
case the function F is as follows:
F(d1) = d3, F(d2) = d4, F(d3) = d3, F(d5) = d5,

and F(d5) = d5.
First we prove that Clauses 4a, 4b, and 4c define a

valid function on L′, that is, every delivery point in the
optimal schedule is mapped to a delivery point in the
greedy schedule. Since Qk and Pk only contain delivery
points in the greedy schedule, the only case to consider
is that Qk = Pk = ∅ and F(dik) = dik and dik is not
part of the schedule Sg of the greedy algorithm Ag.

Let ` be the largest integer such that s′` ≤ sk. By
assumption dj` 6= dik . Since Qk = Pk = ∅, either r′` >
sk+1 or r′` ≤ sk. If r′` ≤ sk (see Figure 7(a)), consider
the (`+1)st delivery by the greedy algorithm. We know
that s′`+1 > sk and since Qk = ∅, it must be that r′`+1 >
rk. Thus for its (` + 1)st delivery, the greedy heuristic
should have chosen to deliver to dik rather than to dj`+1

,
a contradiction.

Therefore it must be that r′` > sk+1. But then, using
Lemma 6, there is a valid trajectory for the drone flying
to dik starting at s′` with an earlier return time that is
at most rk ≤ sk+1 < r′` (see Figure 7(b)). Thus for its
`th delivery, the greedy heuristic should have chosen to
deliver to dik rather than to dj` , a contradiction. Thus
dik must be part of the greedy schedule, and F is a
valid function mapping the delivery points in SOPT to
the delivery points in Sg.

Finally, we claim that F maps at most two
delivery points in SOPT to one delivery point
in Sg. First, since the half-closed intervals
(s′1, r

′
1], (s′2, r

′
2], . . . , (s′k′ , r

′
k′ ] are all disjoint, and the

half-closed intervals (s1, r1], (s2, r2], . . . , (sk′ , rk] are also
all disjoint, and any return point [r′, 0] can satisfy at
most one of Clauses 4a and 4b, it follows that distinct
elements in SOPT are mapped to distinct elements of
Sg by those two clauses. Second, clearly distinct ele-
ments in SOPT are mapped to distinct elements of Sg by
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dik
dik+1

dj`

dj`+1

(a)

s′` s′`+1sk sk+1rk rk+1r′` r′`+1

dik
dik+1dj`

(b)

s′` sk sk+1rk rk+1r′`

Figure 7: This figure illustrates the two cases in the
proof that the function F in Theorem 9 is well defined.
Red lines show deliveries in a presumed greedy sched-
ule, and black lines indicate deliveries in a presumed
optimal schedule.The dashed line represents the x axis,
with distances from the origin marked.

Clause 4c. Therefore, the only kind of ”collision” that
can occur is that F(dik) is mapped to dj` by Clause 4a
or Clause 4b and F(diq ) is mapped to dj` by Clause 4c.
This proves our claim that F maps at most two delivery
points in SOPT to one delivery point in Sg.

We conclude that the schedule Sg created by Ag con-
tains at least dp/2e elements, as desired. That is, Ag is
a 2-approximation algorithm. �

The approximation ratio of 2 is tight. To see this,
consider the instance given in Figure 8. For this in-
stance the schedule computed by the greedy algorithm
contains exactly one half of the delivery points, while an
optimal schedule makes deliveries to all points. Thus,
the approximation factor of 2 in Theorem 9 cannot be
improved.

d

s

d d

d
2

d
4

d6

531

Figure 8: Approximation factor of 2 is sharp: in this
instance, d1, d3, d5, . . . are located at the maximal reach
of the drone, and reachable only from the left focus of
the corresponding ellipse (dashed green). An optimal
schedule, shown in black, contains all points in order
d1, d2, d3, d4, . . .. The greedy algorithm, can immedi-
ately schedule a delivery to d2, but not to d1. After
scheduling a delivery to d2 a delivery to d1 is not fea-
sible any more, and this scheduling, shown in red, is
repeated, resulting in the schedule d2, d4, d6, . . ..

5 Optimal algorithm for a restricted set of inputs

As seen in the proof of strong NP-hardness in Section 3,
having many delivery points with the same x-coordinate
creates a decision problem: should a delivery to a point
[0, y] be scheduled prior to or after the truck reaches

[0, 0]. These decisions make the truck-drone problem
NP-hard. In this section, we specify a family of in-
stances called proper instances in which the delivery
points do not have the same or “nearly” the same x-
coordinates, where “nearly” depends on the difference
in their y-coordinates. In particular, the greater the dif-
ference in the y-coordinates of the points, the greater is
the difference in their x-coordinates in proper instances.
We show that there is O(n3) algorithm to compute an
optimal schedule for proper instances.

Definition 2 Let I = (v,R,D) be an in-
stance of the truck-drone delivery problem where
D = {d1, d2, . . . , dn}. We say I is a proper instance if:

(1) for every i, j ∈ {1, . . . , n}, with i 6= j, the
delivery point dj is not contained in the triangle
[es(di), 0], di, [lr(di), 0], and

(2) the set of closed intervals
{[es(d1), ls(d1)], [es(d2), ls(d2)], . . . , [es(dn), ls(dn)]}
form a proper interval graph [6], i.e., no interval in the
set is a subset of another interval in the set.

Figure 9 shows an example of a proper instance. The
definition of a proper instance implies that the delivery
points have pairwise different x-coordinates and clearly,
not many of them can reside in a narrow vertical band.

The lemma below implies that for a proper
instance with D = {d1, d2, . . . , dn}, the inter-
vals [es(d1), ls(d1)], [es(d2), ls(d2)], . . . , [es(dn), ls(dn)]
are ordered by the x-coordinates of the corresponding
points in D.

Lemma 10 Let I = (v,R,D) be a proper in-
stance of the truck-drone delivery problem with D =
{d1, d2, . . . , dn}. Let di = [xi, yi] and dj = [xj , yj ] be
two points of D with xi < xj. Then either ls(di) <
es(dj), or es(di) < es(dj) ≤ ls(di) < ls(dj)

Proof. If yj < yi then ls(dj) > ls(di). Since inter-
val [es(dj), ls(dj)] cannot contain [es(di), ls(di)], either
ls(di) < es(dj), or es(di) < es(dj) ≤ ls(di) < ls(dj).

If yj > yi then es(dj) > es(di). Since inter-
val [es(di), ls(di)] cannot contain [es(dj), ls(dj)], ei-
ther ls(di) < es(dj), or es(di) < es(dj) ≤ ls(di) <
ls(dj). �

Given an instance I = (v,R,D), we can verify if I is
a proper instance in O(n2) time by checking each pair
of intervals for non-containment, and each triangle for
the non-inclusion of other points of D.

The following lemma is used to show that for proper
instances we can restrict our attention to schedules in
which the subsequent deliveries are ordered by the x
-coordinates of delivery points, and in which the trajec-
tories of the drone are non-crossing. See Figure 10 for
an illustration.
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Figure 9: An example of a proper instance I = (v,R,D) position for v = 3, and r = 12. For each delivery point
the red segment points to the corresponding ed and ld points on the line, and the green segment points to the
corresponding la. The three topmost points are at the limit of the reach of the drone.

d1 = [x1, y1]

d2 = [x2, y2]

s2 r2 = s1 r1

(i)

d1 = [x1, y1]

d2 = [x2, y2]

s2 r2 = s1 r1

(ii)

r′1r′2

Figure 10: (i) The crossing trajectories to d1 and d2
are shown in black. (ii) The non-crossing trajectories,
shorter in total, are in red.

Lemma 11 Let I = (v,R,D) be a proper instance of
the truck-drone problem. Assume that there is a feasible
schedule for this instance in which a delivery to, say
d2 = [x2, y2] immediately precedes that to d1 = [x1, y1],
with x1 < x2. Then

1. The trajectories of the drone to d1 and d2 must
cross.

2. By swapping the order of deliveries to d1 and d2
the total time of the two deliveries cannot increase,
and thus swapping the two deliveries maintains the
feasibility of the schedule, i.e., crossings of two con-
secutive trajectories can be avoided.

Proof. To see (1), let si, ri denote the start and return
times to delivery point di for i ∈ {1, 2}. Assume for con-
tradiction that delivery trajectories do not cross. If y1 ≤
y2, then d1 lies inside the triangle [r2, 0], d2, [x2, 0]. This
triangle is clearly contained in [es(d2), 0], d2, [lr(d2), 0]
contradicting D being proper. If y1 ≥ y2 then d2 lies
inside the triangle [x1, 0], d1, [s1, 0], which is contained
inside [es(d1), 0], d1, [lr(d1), 0]. This also contradicts D
being proper. See Figure 11.

Next, we show (2). By Lemma 1 we can assume that
the delivery to d1 starts immediately at time r2, i.e.,
s1 = r2 and terminates at time r1. Clearly, in this
case es(d2) < ls(d1) and thus, by Lemma 10, es(d1) <
es(d2) ≤ s2 < r2 ≤ ls(d1) < ls(d2). Thus, a delivery to

d2 = [x2, y2]

s2 r2 x2

(a)

s1 r2

d1 = [x1, y1]

x1

(b)

Figure 11: Illustration for the proof of (1) in Lemma 11.
d1 = [x1, y1] and d2 = [x2, y2] with x1 < x2 and delivery
to d2 occurring before the delivery to d1. Figure (a)
illustrates the case of y1 ≤ y2 and the shaded region
demonstrates locations of d1 which result in a crossing
trajectory. Figure (b) illustrates the case of y1 ≥ y2 and
the shaded region demonstrates locations of d2 which
result in a crossing trajectory.

d1 can be started at time s2, and a delivery to d2 can
be started at time r2 or later. It remains to show that
the reversal in the delivery order can terminate latest
at time r1.

Suppose first that delivery to d1, when started at time
s2 takes at most as much time as a delivery to d2 at time
s2, see Figure 10 (ii). In the paragraph below, we use
si to denote the point [si, 0] and similarly ri to denote
the point [ri, 0]. Consider the quadrilateral s2,d1,d2,r1
shown in blue. Since our instance is a proper instance,
the triangle s2,d1,r1 doesn’t contain d2 and thus this
quadrilateral is convex. By the triangular inequality
the sum |s2, d1|+ |d2, r1| of the lengths of two opposite
sides of the quadrilateral is strictly less than the sum of
the length of its diagonals |d1, r1|+ |s2, d2|. Therefore,

|s2, d1|+|d1, r2|+ |r2, d2|+ |d2, r1| <
< |s2, d2|+ |d2, r2|+ |r2, d1|+ |d1, r1|

and the path s2, d1, r2, d2, r1 is shorter than the trajec-
tory s2, d2, r2, d1, r1. However, the path s2, d1, r2, d2, r1
is not necessarily a valid drone trajectory if the delivery
to d1 from s2 takes less time than the delivery to d2
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from s2. Then, when delivering to d1 first, the drone
returns to the truck at point r′2 located strictly between
s2 and r2. But then the path s2, d1, r

′
2, d2, r1 is even

shorter than path s2, d1, r2, d2, r1. Thus, when starting
the delivery to d2 at r′2, the drone returns to the truck
at a point r′1 to the left of r1, which improves the total
delivery time to d1 and d2.

d1 = [x1, y1]

d2 = [x2, y2]

s2 r2 = s1 r1

(i) (ii)

d1 = [x1, y1]

d2 = [x2, y2]

s2 r2 = s1 r1

Figure 12: Reversing the directions of deliveries and the
movement of the truck in (ii) converts a configuration
of the second case to the first case

Now suppose instead that delivery to d1, when started
from s2, takes more time then the delivery to d2 from
s2, as for example on Figure 12 (i). By the shape
of the function ret(s, d, v)), see Lemma 5, and since
es(d1) < es(d2) and ls(d1) < ls(d2), a delivery to d1,
when started from s1 also takes more time than the
delivery to d2 from s1. Consider the configuration on
Figure 12(ii) in which we reverse the movement of the
drone and of the truck. Then we reduced this to the pre-
vious case and a delivery from s1 first to d2 and then to
d1 is shorter, and by reversing this once more we obtain
that the delivery from s2 first to d1 and then to d2 is
shorter. �

A proper instance is guaranteed to have an optimal
schedule with non-crossing trajectories. However not all
optimal schedules give non-crossing trajectories. Indeed
there are non-proper instances where crossing of trajec-
tories is required in any optimal schedule as demon-
strated in Figure 13.

d1

d2

s

d3

Figure 13: An instance of the problem where any opti-
mal schedule must contain crossing trajectories. Points
d1 and d3 are at the maximum reach of the drone. When
scheduling a delivery first to d1 then a delivery is pos-
sible either to d2 or to d3, but not to both.

Definition 3 Let I = (v,R,D) be an instance
of the truck-drone delivery problem where D =
{d1, d2, . . . , dn}. We call schedule

SI = ((di1 , s1), (di2 , s2), . . . , (dim , sm),m ≤ n

monotone if the x-coordinate of dij is strictly less than
the x-coordinate of dij+1

for every 1 ≤ j ≤ m− 1,

In the next theorem we show that there always exists a
monotone schedule with the optimal substructure prop-
erty for proper instances.

Theorem 12 Let I = (v,R,D) be a proper in-
stance of the truck-drone delivery problem with D =
{d1, d2, . . . , dn}. Assume that the points in D are listed
according to increasing x-coordinate. Then there is an
optimal schedule SI = ((di1 , s1), (di2 .s2), . . . , (dim , sm),
m ≤ n for this instance with the following properties:

1. SI is monotone.

2. For every j ≤ m, the initial part
((di1 , s1), (di2 , s2), . . . , (dij , sj)) of SI minimizes
the delivery completion time for any subset of
{d1, d2, . . . , dij} of size j.

Proof. Assume I = (v,R,D) is a given proper instance
of the truck-drone delivery problem and let SI be an
optimal schedule for it. By a repeated application of
Lemma 11 we can swap any two consecutive deliveries
that don’t respect the order of x-coordinates of points,
as in the bubble sort, while maintaining the schedule
optimal. This eventually produces a monotone schedule
of the same (optimal) length, proving (1).

To show (2), assume that for some j ≤ m,
there is a subset of j points {di′1 , di′2 , . . . , d′ij} of

the set {d1, d2, . . . , dij} for which there is a sched-
ule ((d′i1 , s

′
1), (d′i2 , s

′
2), . . . , (d′ij , s

′
j)) with s′j < sj

and which minimizes the delivery completion time
for any subset of {d1, d2, . . . , dij} of size j. Then
by concatenating ((d′i1 , s

′
1), (d′i2 , s

′
2), . . . , (d′ij , s

′
j)) with

((dij+1
, sj+1), . . . , (dim , sm), we get a valid schedule. In

this manner, repeating the process starting with j = im
and decreasing appropriately the value of j we can get
a schedule for I that is optimal, monotone, and satisfies
the property 2 of the theorem. �

We use Theorem 12 to describe a dynamic pro-
gramming algorithm that finds an optimal schedule for
proper instances.

Theorem 13 There is an O(n3) algorithm that cal-
culates an optimal schedule for any proper instance
I = (v,R,D) of the truck-drone delivery problem.

Proof. Assume the delivery points in D are listed in
the order of their x coordinates. Define T (i, j) to be
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the earliest delivery completion time for the truck and
the drone to perform exactly i deliveries from among
d1, d2, . . . , dj where dj must be included in the schedule.
If such a schedule is not possible, we define T (i, j) =∞.
We can compute T (i, j) using dynamic programming as
follows. We clearly have T (1, j) = ret(s, dj , v) for the
base case of i = 1 (see Lemma 4 for the definition of ret)
where [s, 0] is the starting position of the truck. For i ≥
2, we have T (i, j) = minj′<j ret(T (i− 1, j′), dj , v). This
recursive formula immediately follows from the optimal
substructure property stated in Theorem 12: a schedule
resulting in the earliest completion time of making i out
of the first j deliveries where dj is included consists of
delivering to i− 1 out of the first j′ < j delivery points
(with earliest completion time T (i − 1, j′)) followed by
earliest delivery completion to dj . Note that defining
ret(s′, v, d) =∞ when s′ > ls(d) and T (i, j) =∞ when
delivery is impossible correctly works with the recursive
computation of T .

Having computed T , we can find the maximum num-
ber of deliveries that can completed in a valid schedule
by taking the maximum m such that T (m, j) 6= ∞ for
some j. By recording for each (i, j) pair which choice
of j′ resulted in the table entry T (i, j), we can recon-
struct the schedule itself using standard backtracking
techniques.

The running time is dominated by computing the ta-
ble T (i, j). It has O(n2) entries and each entry can
be computed in time O(n), since a single evaluation of
ret takes constant time. The overall runtime is then
O(n3). �

6 Discussion

We have shown that even in the simple case of a sin-
gle drone with a single truck travelling in a straight
line, the problem of coordinating their efforts to maxi-
mize the number of deliveries made is hard. Our work
raises a number of different questions. We show that a
greedy strategy achieves a 2-approximation. Is a better
approximation possible? In particular, is the problem
APX-hard or might there be a PTAS for it? Our im-
plementation of the greedy strategy runs in O(n2) time.
Is a better running time for the algorithm possible by
taking advantage of the structure of the intervals cre-
ated by the drone paths? The set of proper instances
includes those where the y-coordinate is fixed. Could
this be expanded to include points with a limited num-
ber of different y-coordinates? More generally, is there a
”natural” setting in which the problem becomes fixed-
parameter tractable? Finally, many variations on the
problem are worth pursuing. Rather than maximizing
the number of deliveries made with a given speed or
drone range, one could consider the dual problems of
minimizing the speed or range required to complete all

deliveries. Versions with multiple drones and/or trucks,
larger capacity drones, etc. are also of interest.
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Euclidean Freeze-Tag Problem on Plane∗

Nicolas Bonichon† Cyril Gavoille† Nicolas Hanusse† Saeed Odak‡

Abstract

The freeze-tag problem is an optimization problem in-
troduced by Arkin et al. (SODA’02). This problem
revolves around efficiently waking up a swarm of inac-
tive robots starting with a single active robot. Each
asleep robot is activated by an awake robot going to its
location. The objective is to minimize the total wake-up
time for all robots, the makespan.

A recent paper by Bonichon et al. considers the ge-
ometric version of the freeze-tag problem on the plane.
They conjectured that for the robots located on the
plane with ℓ2-norm, the makespan is at most (1+2

√
2)r,

where r is the maximum distance between the initial
active robot and any asleep robot. In this paper, we
prove the conjecture for the robots in the convex posi-
tion and for n ≤ 7 or n ≥ 281, where n is the number of
asleep robots (The conjecture was known to be true for
n ≥ 528 robots as shown by Bonichon et al.). Moreover,
we show an upper bound of 4.63r for the makespan of
robots in a disk of radius r in the ℓ2-norm, improving
the best known bound of 5

√
2r ≈ 7.07r.

1 Introduction

The freeze-tag problem is an optimization problem con-
cerned with waking up a swarm of asleep (inactive)
robots in the shortest possible time starting with a sin-
gle awake (active) robot. Consider a set of robots rep-
resented by S and |S| = n+1 for n ∈ N. Let p0, . . . , pn
be the locations of the robots in a metric space, with p0
being the location of the initial awake robot.

To activate an asleep robot, an awake robot must
travel to the position of the asleep robot. As soon as
an asleep robot is activated (awakened), it can assist
in waking up the other asleep robots. We assume that
each awake robot moves at the same speed of one unit
per second while the asleep robots do not move. The
makespan (wake-up time) is the time of the last wake-
up. The freeze-tag problem has applications in group

∗Due to the space constraint several proofs are omitted. For
the proofs see the full version of the paper.

†LaBRI, University of Bordeaux, CNRS, Bordeaux INP,
France

‡School of Electrical Engineering and Computer Science, Uni-
versity of Ottawa, Canada.

formation, searching, and recruitment in robotics, as
well as broadcasting and IP multicast problems in net-
work design (see [2, 9] and their references).

The problem can be rephrased as follows: A wake-up
tree of S is a binary weighted spanning tree rooted at
p0 such that the degree of p0 is one and the length of
an edge is the distance between its endpoints (see for
instance Figure 1). The freeze-tag problem is to find a
wake-up tree of S with the minimum (weighted) depth.

AA′ p0 p1

p3

p2

p4

p5
p6

Figure 1: An example of a wake-up tree with 6 asleep
robots in the Euclidean plane.

In this setup, Arkin et al. [3] give a constant ap-
proximation algorithm for the freeze-tag problem, when
one asleep robot is located on each vertex. They also
show that using an underlying graph metric, the prob-
lem is NP-hard. In a different paper, Arkin et al. [2]
show that the freeze-tag problem, even on star met-
rics, is NP-complete. Moreover, they show that ob-
taining a 5/3-approximation is NP-hard for general
metrics on weighted graphs. Therefore, a polynomial-
time approximation scheme does not exist unless P =
NP. In a related paper, Könemann et al. [9] consider
the problem of finding a minimum diameter spanning
tree with a bounded maximum degree in a complete
undirected weighted graph and provide an O(

√
log n)-

approximation algorithm for the freeze-tag problem in
the general setting.

In this paper, we consider the geometric freeze-tag
problem for the collection of robots. In the geometric
freeze-tag problem, robots are modeled as points in Rd
in a particular metric for some d ∈ N. For d = 3 and ℓp
norm, it has been shown that the geometric freeze-tag
problem is NP-hard where p ≥ 1 [6, 7, 10]. Sztain-
berg et al. [11] give a heuristic algorithm with a tight

195



36th Canadian Conference on Computational Geometry, 2024

approximation of Θ(log1−1/d n) for the makespan of n
asleep robots in d dimensional space. In particular, their
greedy algorithm yields an O(1)-approximation in one
dimension (d = 1) and an O(

√
log n)-approximation in

two dimensions (d = 2). Arkin et al. in [2], for any
constant d ∈ N, provide a polynomial-time approxima-
tion scheme when robots are located in Rd equipped
with ℓp metric. Moreover, their algorithm runs in time
O(n log n+ 2poly(1/ϵ)).

It is worth mentioning that Hammar et al. [8] study
the online freeze-tag where each asleep robot is revealed
at a specified time. Later, an optimal algorithm for the
online freeze-tag problem was introduced by Burnner et
al. [5].

In the geometric setting, as long as normed spaces are
concerned, the positions of all the robots can be scaled
and translated such that all asleep robots are in a unit
disk, and the initial active robot is at the origin (i.e., the
active robot is at the origin and the distance between
the active robot and the farthest asleep robot is a unit).
Note that in this configuration, the makespan is always
lower bounded by the maximal distance between the
active robot and asleep robots (the radius of the unit
disk). Combinatorial upper bounds for the makespan
of robots in a unit disk with respect to ℓp norm are
studied by Bonichon et al. [4]. In particular, when
robots are located in the unit disk in the plane with ℓ1
norm, they provide a tight strategy with makespan 5.
They also show [4, Theorem 2] that the makespan for
n asleep robots in the unit disk with one active robot
at the origin is at most 3 + c/

√
n, where c is a constant

depending on the norm.

We focus on the Euclidean freeze-tag problem on the
plane. That is, we consider robots as points in the Eu-
clidean metric space on R2. In this setting, the problem
remains NP-hard [1], and Najafi Yazdi et al. [12] pro-
vide an algorithm with a makespan (5 + 2

√
2 +
√
5) for

the robots located in a unit square that runs in linear
time. Recently, Bonichon et al. [4] proposed an algo-
rithm with a makespan 5

√
2. They also conjectured

that the maximum makespan of robots in a unit disk of
any norm is achieved when the number of robots is four.
For n = 4, we get the worst-case whenever four asleep
robots p1, p2, p3, and p4 form a square with sides of
length

√
2. It takes time 1 to go from the active robot

p0 in the center to p1, and then one robot has to wake
up p2 followed by p3 in time 2

√
2, and the other one

wakes up p4. In the Euclidean freeze-tag problem, this
conjecture translates to the following.

Conjecture 1 ([4]) Let n be a positive integer. There
exists a strategy to wake up n asleep robots inside a unit
disk in Euclidean space starting with an active robot at
the origin in time at most 1 + 2

√
2.

Our main contributions are the following. First we
show that the Conjecture 1 holds for n ≤ 7 or n ≥
281, and also when the robots are in convex position
(Theorems 1, 2, and 3). Then we provide a new upper
bound of 4.63 for the makespan of the Euclidean freeze-
tag problem on the plane, improving upon the best-
known result of 5

√
2 ≈ 7.07. This also shows that the

optimal upper bound for the Euclidean case is strictly
less than the lower bound of 5 for the ℓ1 norm.

The rest of this paper is organized as follows: The
next section will be dedicated to preliminaries and some
definitions for the geometric objects needed in the se-
quel. In Section 3, we discuss monotonic wake-up strate-
gies for two simple geometric objects as a subroutine. In
Section 4, as a warm-up, we prove Conjecture 1 for small
values of n. Section 5 and Section 6 study the correct-
ness of Conjecture 1 when the asleep robots are in a
convex position and when the number of asleep robots
is at least 281, respectively. Section 7 establishes an
improved makespan of 4.63 for the Euclidean freeze-tag
problem in the plane.

2 Preliminaries

For each 0 ≤ i ≤ n, the wake-up time of robot pi is the
length of the path of pi from p0 in the wake-up tree. The
depth of a wake-up tree indicates its makespan. Using
this terminology, a closed geometric region R on the
plane with a specified active robot has a makespan of
at most τ if for every n ∈ N, there exists a wake-up tree
for every configuration of n asleep robots in the region
R with a depth at most τ .

Many of the strategies that we will define rely on a
recursive decomposition of regions R into subregions.
Therefore, we will define some regions that will be useful
to us later on.

A cone of angle θ and radius r is a geometric region
inside a disk of radius r between two segments with
one endpoint on the center of the disk and the other
endpoint on the boundary such that the angle between
the two segments is θ (see Figure 2(a)). The center of
the disk is referred to as the cone’s apex. A cone defined
using a disk of radius one is called a unit cone.

A (unit) crown of angle θ and width w is obtained
from a unit cone of angle θ by subtracting a smaller cone
of the same angle and radius 1 − w (see Figure 2(b)).
Each non-trivial crown consists of 4 sides: two curved
sides and two straight-line sides. We call the longer
curved side of a crown the exterior side and the shorter
curved side of a crown is called the interior side. For
future reference, we represent the makespan of a unit
crown of angle θ and width w starting with two active
robots at a corner on the exterior side of the crown with
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θ

r

ζθ
(1− ζ)θ

(1− ζ)w

ζw

θ

(a) (b)

Figure 2: (a) A cone of angle θ and radius r. The
monotonic wake-up strategy to solve a cone with one
active robot in the apex. (b) A crown of angle θ and
width w. The monotonic wake-up strategy to solve a
crown with two active robots on a corner.

crown(w, θ).

A dome is the part of a cone between its arc and its
chord (see Figure 6). The radius and angle of a dome
are the same as the corresponding cone.

We define semi-cone to be the region enclosed be-
tween two chords of a unit disk with one common end-
point that does not contain the origin in its interior
(see Figure 7(a)). We call the common endpoint of two
chords the apex of the semi-cone.

Throughout this paper, ϕ stands for the golden ratio,

i.e., ϕ = 1+
√
5

2 . Note that ϕ2 = ϕ+ 1.

3 First Bounds For Geometric Shapes

In this section, we present monotonic wake-up strate-
gies for two simpler geometric objects, namely the unit
cone and the unit crown, as subroutines for the other
algorithms discussed in the rest of the paper. We first
assume that for cones (resp. crowns) robots are ordered
w.r.t the distance (resp. angular distance) from the
apex (resp. a corner). Given a binary wake-up tree,
a strategy is said monotonic if for every path from the
root to leaves, points are ordered w.r.t to the distance
from the root.

We begin this section with a simple observation stat-
ing the triangle inequality in polar notation.

Observation 1 Let A = (ra, θa) and B = (rb, θb) be
two points in polar notation inside a unit disk. Then
we have ||AB|| ≤ |ra − rb| + max(ra, rb) · |θa − θb|. In
particular, since ra, rb ≤ 1, we have ||AB|| ≤ |ra− rb|+
|θa − θb|.

In the following, |ra − rb| and max(ra, rb) · |θa − θb|
are referred to as the radial distance and angular dis-

tance between A and B, respectively. As the first clas-
sical result, we present a result from [4] that establishes
an upper bound for the makespan of robots positioned
within a unit cone of angle θ (refer to Figure 2(a)).

Informally, the initial robot finds the closest asleep
robot in the cone and the cone is partitioned into two
regions, namely, subcones of angle ζϕ and (1 − ζ)ϕ.
Then the process is repeated similarly in each re-
gion with one active robot. From Observation 1, the
length of the path p0, p1, . . . pℓ from the initial robot
toward any other robot is at most

∑
i |ri − ri−1| +

|θpi − θpi−1 |. The sum of the first terms is at most
1 whereas for the angular detour we have A(θ) ≤
max {θ +A(ζθ), (1− ζ)θ +A((1− ζ)θ)}. If we take
ζ = 1/2, A(θ) ≤ ∑

i≥0 θ/2
i < 2θ. In fact, taking

ζ = 2− ϕ, we get:

Lemma 1 ([4](Proposition 14)) There exists a
strategy to wake up asleep robots in a cone of angle θ
and radius one starting with one awake robot at the
center of the cone in time at most 1 + ϕθ.

As the next geometric subroutine, similar to
Lemma 1, we can construct a monotonic wake-up strat-
egy for a unit crown using a monotonic recursive parti-
tion into sub-crowns.

Lemma 2 There exists a strategy to wake up all of the
robots in a crown of angle θ and width w starting with
two awake robots at a corner in time at most θ + ϕw.

If we consider only one awake robot on the bound-
ary, we must consider an extra time to wake up another
robot, and then we can apply the result of Lemma 2.

Corollary 1 There exists a strategy to wake up all of
the robots in a crown of angle θ and width w starting
with one awake robot at a corner in time at most θ +
(1 + ϕ)w.

Finally, with a strategy analogous to that in
Lemma 2, one can wake up robots within a rectangular
region.

Corollary 2 There exists a strategy to wake up all of
the robots in a rectangle of width w and height h starting
with two awake robots at a corner in time at most h +
ϕw.

4 Configurations With Small Number of Asleep
Robots

In this section, we state the correctness of Conjecture 1
for the small number of asleep robots.
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Figure 3: Projection of convex points on the disk.

Theorem 1 Let n ≤ 7 be a positive integer. There
exists a strategy to wake up n robots in a unit disk in
time less than 1 + 2

√
2.

The statement is trivial for n ≤ 3. Let n ∈ {4, 5, 6, 7}
and p1 be one of the robots such that the line passing
through p0 and p1 cuts the unit disk C into two parts,
each of which contains at most ⌈(n− 1)/2⌉ robots (dif-
ferent from p0 and p1). Let A and A′ be the intersection
of this line with C, such that p1 is on the segment p0A.

The wake-up strategy is as follows: once the robot p1
is awakened, the two robots are positioned at point A.
Then, each robot takes care of half of the disk. In each
half-disk, the robot will awaken the robot closest to A,
and then the two robots will each awaken at most one
more robot (see Figure 1).

5 Robots In Convex Position

In this section, we assume that the coordinates pi are
ordered in the counter-clockwise cyclic ordering. We
present the following theorem:

Theorem 2 If the point set corresponding to S is in
a convex position within a disk C of radius one, the
makespan of S is upper bounded by 1 + 2

√
2.

Let us sketch the proof of Theorem 2:

• For each pi ∈ S, we assign the point p′i ∈ C being
the intersection of the ray perpendicular to pi−1pi
emanating from pi and going outside from the con-
vex hull of S. This projection is such that for any
pair pi and pj , ||p′ip′j || ≥ ||pipj || (see Figure 3).

• If S′ is a point set on the disk C, we provide a wake-
up tree T ′ of makespan less or equal to 1 + 2

√
2.

• The wake-up tree T on S is defined from T ′. If
(p′i, p

′
j) belongs to T

′ then (pi, pj) belongs to T . We

p2

p0
p1

p3

p4

p5

p6

α0

A

B

β

p2

p0
p1

p3

p4

p8
α0

p7

p6
p5

Case (I) Case (II)

Figure 4: Robots on the disk. Case (I): The disk is
partitioned into 3 arcs. Case (II): Without the existence
of a small angle, the disk is partitioned into 2 half-disks.
Except for the last robot p8, robots p2 to p7 are awake
using a monotonic complete binary tree from p1.

show that the makespan of T is smaller or equal to
the one of T ′ and thus bounded by 1 + 2

√
2.

Let’s introduce a simple strategy to wake up an arc of
angle α containing k asleep robots while the first robot
pj on the arc in the counter-clockwise order is awake.
In the algorithm Arc Strategy, pj wakes up pj+1,
and any monotonic complete binary wake-up tree can
be considered. By monotonic, we mean that each robot
wakes up another robot with a larger angular position.
The depth of this binary wake-up tree is 1 + ⌊log2 k⌋.

Disk Strategy takes as an input the point set S
on the boundary of a unit disk and an angle α0. Take
β = π − 2

√
2 and let 1 ≤ i ≤ n be an integer where the

angle ∠pip0pi+1 is the smallest. We consider two cases
(see Figure 4):

• Case (I): If ∠pip0pi+1 ≤ α0 then p0 wakes up
pi. For convenience, assume that the line passing
through p0 and pi is horizontal. The two robots
located at pi, wake up in parallel, all the robots
at an angular distance at most π − β from pi; one
going in the counter-clockwise order through pi+1

and the other one in the clockwise order through
pi−1. As soon as pi+1 is awake, it directly goes to
the position of the disk at an angular distance π−β
from pi and wakes up all the remaining robots in
the remaining arc of angle 2β.

• Case (II): If the previous case does not hold, take an
integer 1 ≤ j ≤ n such that the angle ∠pj−1p0pj+1

is the smallest. Again, for convenience, assume that
robots p0 and pj are located on a horizontal line.
As in the previous case, p0 wakes up pj and robots
on the two arcs up to the angular distance π − α0

from pj are awake by two robots emanating from
pj using Arc Strategy. One robot from pj+1
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θ0 ≤ 18π
281
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α1

α1

α2
α3 α4

α2
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(a) (b)

Figure 5: Illustration of proof of Theorem 3. (a) stage
one. (b) stage two: split into 8 semi-cones and 2 domes.

(resp. pj−1) directly goes to the last robot on the
arc (π − α0, π) (resp. (α0 − π,−π)). Then the rest
of the robots on the arcs of angle π−α0 are awake.

To conclude, we show that for α0 = π/11, the Disk
Strategy has a makespan less than or equal to 1+2

√
2.

6 Strategies For Large Number of Robots

By examining the constants closely, [4, Theorem 2] im-
plies that Conjecture 1 is correct when n, the number of
asleep robots, is at least 528. In line with [4, Theorem
2], we prove that Conjecture 1 holds when the number
of asleep robots in the unit disk is at least 281. To get
this lower bound on the number of robots, we need to
introduce a wake-up strategy for the domes and semi-
cones.

The sketch of our strategy is the following: (1) Since
n ≥ 281, there is a cone of the angle at most 18π

281 such
that it contains at least 9 asleep robots. We first recruit
a team of at least 10 robots (including the initial awake
robot) in the cone ending at the middle of the arc of the
cone Figure 5(a) (2) we partition the disk into 8 semi-
cones with a specific sequence of angles and 2 domes.
Each robot wakes up in parallel each of the regions (see
Figure 5(b)).

Lemma 3 There exists a strategy to wake up asleep
robots in a dome of angle α and radius one in a time at
most α/2 + sin (α/2) + ϕ(1 − cos (α/2)) with an awake
robot on the corner of the dome.

Let a and b be the length of two chords of a semi-
cone, where a ≤ b and α be the angle between them.
To upper bound the makespan of asleep robots with
one active robot on the apex, one can simply enclose a
semi-cone with a larger cone and apply the Lemma 1
to obtain a makespan of b+ bαϕ (see Figure 7 (a)). In

β
α

A

O

B

C

H

Figure 6: A dome of angle α. Illustration of proof of
Lemma 3. Solving dome(α) using an enclosing rectan-
gle.

B′′

B

A

C
O

B

A

C
O

B′

A′

ζ
1
−
ζ

(a) (b)

Figure 7: Illustration of proof of Lemma 4. (a) a semi-
cone. (b) bounding a semi-cone with a simpler geomet-
ric object.

the following lemma, we state an upper bound b+ aαϕ
when α < π

4 .

Lemma 4 There exists a strategy to wake up robots in
a semi-cone of angle α < π

4 and side lengths a and b
where a < b, in time at most b+ aαϕ, where the initial
active robot starts at the apex of the semi-cone.

By having an upper bound for the makespan of a
dome and semi-cone, we are ready to improve the lower
bound on the number of robots needed to ensure a
makespan of 1 + 2

√
2.

Theorem 3 Let n ≥ 281 be an integer. There exists a
strategy to wake up n robots in a unit disk in time less
than 1 + 2

√
2.

7 A Better Upper-bound On The Wake-Up Time

In this section, we present an improved approximation
on the makespan of n ∈ N asleep robots located in a
unit disk on Euclidean plane. By a careful study of the
first step in the analysis of Lemma 2 one can propose
the following improvement on the monotonic strategy
mentioned for the unit crown of width w and angle θ.
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Lemma 5 There exists a strategy to wake up all of the
robots in a crown of angle θ and width w starting with
two awake robots at a corner on the exterior side of the

crown in time at most θ +
(

ϕ4

ϕ3+θ

)
w.

Similar to Corollary 1, one can obtain the following
improved corollary for the makespan of robots starting
with one active robot at a corner of the interior side of
the crown.

Let q be the first asleep robot in an angular sweep
starting from the active robot p0. If p0 first awakes q
and then the two robots directly join at the exterior side
of the crown, we can then apply Lemma 1 to the rest of
the crown and obtain the following corollary:

Corollary 3 There exists a strategy to wake up all of
the robots in a crown of angle θ ≤ π and width w
starting with one awake robot at a corner on the in-
terior side of the crown in time at most crown(w, θ) ≤
θ +

(
1 + ϕ4

ϕ3+θ

)
w.

In the rest of this section, assume that the asleep
robots p1, p2, · · · , pn, are in sorted order based on their
distance from p0. That is, if di is the distance of pi from
p0, for each 1 ≤ i ≤ n, then we have d1 ≤ d2 ≤ d3 ≤
· · · ≤ dn. We introduce two basic strategies to wake up
the robots in set S, and by mixing these two strategies,
we get an upper bound for the makespan of n robots
located in a unit disk in the plane.

Strategy One

The first awake robot at the origin, p0, travels to the
closest robot, p1, at a distance of d1, and after activating
p1, both of the robots, p0 and p1, travel back to the
origin at a total time of 2d1. Recall that the point at
a distance of d2 from the origin is p2. Let ℓ be the line
that passes through the origin and p2. Next, p0 and
p1 follow different paths. p0 travels a distance of d2 to
activate p2. Then, p0 and p2 split the remaining region
into two equal crowns of angle 2π

3 and width 1 − d2
(See Figure 8). Simultaneously, p1 uses a strategy as
in the proof of Corollary 3 to wake up all the robots
within the crown of angle 2π

3 and width 1 − d2 with
the bisector ℓ. Using Corollary 3, each of p0, p1 and
p2 wake up their designated crown in time of at most
2π
3 +

(
1 + ϕ4

ϕ3+ 2π
3

)
(1− d2).

Note that 2π
3 +

(
1 + ϕ4

ϕ3+ 2π
3

)
(1− d2) is decreasing as

function of d2. Since d1 ≤ d2, the total makespan of this
strategy, T1(d1), as a function of d1, is upper bounded
by:

T1(d1) ≤ 2d1 + d2 + crown(1− d2, 2π/3)

2π
3

2π
3

p1

p2
ℓ

Figure 8: Strategy one. Three crowns of angle 2π
3 and

width 1− d1.

≤ 1 + 2d1 +
2π

3
+

(
ϕ4

ϕ3 + 2π
3

)
(1− d2)

≤ 1 + 2d1 +
2π

3
+

(
ϕ4

ϕ3 + 2π
3

)
(1− d1).

Strategy Two

Note that strategy one is good when d1 is small. We
use a simpler idea for the case when d1 is large, i.e.,
the robots are close to the boundary of the unit disk.
In this strategy, the first awake robot, p0, travels to
the closest point p1 at a distance of d1. Note that after
activating p1, the disk of radius d1 centered at the origin
has no robots to be activated. Next, p0 and p1 split the
remaining region into two crowns of angle π and width
1−d1. Therefore, using Corollary 3, the total makespan
of the second strategy, T2(d1), as a function of d1, is
upper bounded by:

T2(d1) ≤ d1+crown(1−d1, π) ≤ 1+π+

(
ϕ4

ϕ3 + π

)
(1−d1).

Best of Two Worlds

By analyzing the best makespan of these 2 strategies,
we obtain the following result:

Theorem 4 Let n be a non-negative integer. There ex-
ists a strategy to wake up n robots within a unit disk
starting with an awake robot in the center in time less
than 4.6211. The construction of such a wake-up tree
can be done in linear time.

It is worth mentioning that a wake-up tree of depth
at most 4.6211 can be done in linear time. Whenever
n is large, the construction of such a wake-up tree can
be done in linear time using Linear-Split-Strategy
using a partition of the disk into cones and applying
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linear time for every cone (cf. Appendix B of [4]). These
technical constructions are based on binary heaps and
do not require any ordering.
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Hyperplane Distance Depth∗

Stephane Durocher† Amirhossein Mashghdoust†

Abstract

Depth measures quantify central tendency in the anal-
ysis of statistical and geometric data. Selecting a depth
measure that is simple and efficiently computable is of-
ten important, e.g., when calculating depth for multi-
ple query points or when applied to large sets of data.
In this work, we introduce Hypaerplane Distance Depth
(HDD), which measures the centrality of a query point
q relative to a given set P of n points in Rd, defined as
the sum of the distances from q to all

(
n
d

)
hyperplanes

determined by points in P . We present algorithms for
calculating the HDD of an arbitrary query point q rela-
tive to P in O(d log n) time after preprocessing P , and
for finding a median point of P in O(dnd log n) time. We
study various properties of hyperplane distance depth,
and show that it is convex, symmetric, and vanishing at
infinity.

1 Introduction

Depth measures describe central tendency in statistical
and geometric data. A median of a set of univariate
data is a point that partitions the set into two halves
of equal cardinality, with smaller values in one part,
and larger values in the other. Various definitions of
medians exist in higher dimensions (multivariate data),
seeking to generalize the one-dimensional notion of me-
dian (e.g., [6]). For geometric data and sets of geometric
objects, applications of median-finding include calculat-
ing a centroid, determining a balance point in physical
objects, and defining cluster centers in facility location
problems [7]. A median is frequently used in statistics
to describe the central tendency of a data set. It is par-
ticularly useful when dealing with skewed distributions
or datasets that contain outliers. By using a median,
analysts can obtain a representative value that is less
affected by extreme values and outliers [10].
In 1975, Tukey introduced the concept of data depth

for evaluating centrality in bivariate data sets [12]. The
depth of a particular query point q in relation to a given
set P gauges the extent to which q is situated within the
overall distribution of P ; i.e., when q’s depth is large,
q tends to be near the center of P . Since the intro-

∗This work is funded in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

†Department of Computer Science, University of Manitoba,
{stephane.durocher,amirhossein.mashghdoust}@umanitoba.ca

duction of Tukey depth (also called half-space depth),
many more depth functions have been proposed.

Data depth functions should ideally satisfy specific
properties, such as convexity, stability (small pertur-
bations in the data do not result in large changes in
depth values), robustness (depth is not heavily influ-
enced by outliers or extreme values in the data), affine
invariance (the depth function remains consistent under
linear transformations of the data, such as translation,
scaling, and rotation), maximality at the center (points
closer to the geometric center of the data set have higher
depth values), and vanishing at infinity (depth values
approach zero as a query point moves away from the
data set) [14].

2 Related Work

Tukey [12] first introduced the concept of location
depth. In R2, the Tukey depth of a point q ∈ R2 rel-
ative to a set P of n points in R2 is defined as the
smallest number of points of P on one side of a line
passing through q. This concept can also be generalized
to higher dimensions.

Definition 1 (Tukey Depth [12]) The Tukey depth
of a point q ∈ Rd relative to a set P of points in Rd,
is the minimum number of points of P in any closed
half-space that contains q.

In univariate space, e.g., in R, the Tukey depth of q is
determined by considering the minimum of the count of
points pi ∈ P where pi < q, and the count of points
pi ∈ P where pi > q.
A Tukey median of a set P in Rd corresponds to a
point (or points) with maximum Tukey depth among
all points in Rd.
Since Tukey’s introduction of Tukey depth, several

other important depth functions have been defined to
measure the centrality of q relative to P .

Definition 2 (Mahalanobis Depth [9]) The Maha-
lanobis depth of a point q ∈ Rd relative to a set P in Rd

is defined as [1 + (q − q̄)TPd−1(q − q̄)]
−1

, where q̄ and
Pd are the mean vector and dispersion matrix of P .

This function lacks robustness, as it relies on non-robust
measures like the mean and the dispersion matrix. An-
other possible disadvantage of Mahalanobis depth is its
reliance on the existence of second moments [9].
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Definition 3 (Convex Hull Peeling Depth [2])
The convex hull peeling depth of a point q ∈ Rd relative
to a set P in Rd is the level of the convex layer to
which q belongs.

A convex layer is established by recursively removing
points on the convex hull boundary of P until q is out-
side the hull. Begin by constructing the convex hull of
P . Points of P on the boundary of the hull constitute
the initial convex layer and are removed. Then, form
the convex hull anew with the remaining points of P .
The points along this new hull’s boundary constitute
the second convex layer. This iterative process contin-
ues, generating a sequence of nested convex layers. The
deeper a query point q resides within P , the deeper the
layer it belongs to. However, the method of convex hull
peeling depth possesses certain drawbacks. It fails to
exhibit robustness in the presence of outliers or noise.
Additionally, it’s unfeasible to associate this measure
with a theoretical distribution.

Definition 4 (Oja Depth [11]) The Oja depth of a
point q ∈ Rd relative to a set P in Rd is defined as the
sum of the volumes of every closed simplex having one
vertex at q and its remaining vertices at any points of
P .

In R2, the Oja depth of a point q is the sum of the areas
of all triangles formed by the vertices q,pi, and pj , where
{pi, pj} ⊆ P .

Definition 5 (Simplicial Depth [8]) The simplicial
Depth of a point q ∈ Rd relative to a set P in Rd is
defined as the number of closed simplices containing q
and having d+ 1 vertices in P .

The simplicial depth of a point q ∈ R2 is the number of
triangles with vertices in P and containing q. This is a
common measure of data depth.

Definition 6 (L1 Depth [13]) The L1 depth of a
point q ∈ Rd relative to a set P in Rd is defined as∑
pi∈P ||pi − q||1.

The L1 Median is the point that minimizes the sum of
the absolute distances (also known as the L1 norm or
Manhattan distance) to all other points in P . The key
advantage of the L1 Median is its robustness to out-
liers. It is less sensitive to extreme values in the dataset
compared to the L2 Median, which minimizes the sum
of squared distances. As a result, the L1 Median can
provide a more accurate estimate of central tendency in
datasets with outliers or heavy-tailed distributions. The
L1 Median is used in various fields, including finance,
image processing, and robust statistics, whenever there
is a need for a robust estimate of the central location of
a dataset that may contain atypical values.

Definition 7 (L2 Depth [14]) The L2 depth (mean)
of a point q ∈ Rd relative to a set P in Rd is defined as∑
pi∈P ||pi − q||

2
.

The L2 Median is the point that minimizes the sum of
the squared Euclidean distances. The mean is a widely
used measure of central tendency in statistics and data
analysis. The mean is not robust to outliers; a single
outlier can pull the mean arbitrarily far.

Definition 8 (Fermat-Weber Depth [4]) The
Fermat-Weber depth (Geometric depth) of a point
q ∈ Rd relative to a set P in Rd is defined as∑
pi∈P ||pi − q||.

A deepest point (median) with respect to Fermat-Weber
depth cannot be calculated exactly in general when d ≥
2 and |P | ≥ 5 [1].

There is no single depth function that universally out-
performs all others. The choice of a particular depth
function often depends on its suitability for a specific
dataset or its ease of computation. Nevertheless, there
are several desirable properties that all data depth func-
tions should ideally possess. In Section 3, we introduce
a new depth measure, and we examine which of these
properties it satisfies.

3 Results

In this section, we will introduce the Hyperplane Dis-
tance Depth (HDD) measure and study its properties.

3.1 Defintion

Definition 9 (Hyperplane distance depth) The
Hyperplane distance depth (HDD) of a point q ∈ Rd
relative to a set P in Rd is defined as

DP (q) =
∑

hi∈HP

dist(q, hi), (1)

where HP is the set of all
(
n
d

)
(d − 1)-dimensional hy-

perplanes determined by points in P , and dist(q, hi) de-
notes the Euclidean (L2) distance from the point q to
the hyperplane hi.

Both Fermat-Weber depth and hyperplane distance
depth are defined as sums of Euclidean (L2) distances.
Unlike Fermat-Weber depth, for which the location of
a median cannot be computed exactly in general when
d ≥ 2 [1], as we show in Section 4, the location of a
HDD median can be computed exactly.

3.2 Properties

Theorem 1 In R, the HDD median relative to the set
P coincides with the usual univariate definition of me-
dian.
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Proof. By Definition 9, the median is a point that min-
imizes the sum of the distances to all possible points
passing through each point in P . Therefore, HP =
P . Consequently, the HDD median is equivalent to
the usual definition of median in a one-dimensional
space. □

Theorem 2 The HDD function DP (q) relative to the
set P is convex over q ∈ Rd.

Proof. The distance function dhi
(q) from a query point

q to the hyperplane hi is convex. Any non-negative lin-
ear combination of convex functions is convex. There-
fore, the HDD function

∑
hi∈HP

dhi(q) = DP (q) is con-
vex over q. □

Theorem 3 The HDD median point relative to the set
P of points in Rd is always on one of the intersection
points between d hyperplanes in HP .

Proof. The distance from the point q ∈ Rd to a hy-

perplane hi is equal to dhi(q) =
|wi.q+bi|
∥wi∥ where wi and

bi are the hyperplane’s normal vector and the offset re-
spectively. Therefore, the HDD of the point q is equal
to

DP (q) =
∑

hi∈HP

dhi(q) =
∑

hi∈HP

|wi.q + bi|
∥wi∥

(2)

Depending on the position of q with respect to hi,

dhi(q) =
|wi.q+bi|
∥wi∥ can be equal to +wi.q+bi

∥wi∥ (above the

hyperplane) ,−wi.q+bi
∥wi∥ (below the hyperplane), or 0 (on

the hyperplane). Therefore, for any point q we have

∑

hi∈HP

dhi(q) =
∑

hi∈HP

gi,q
wi.q + bi
∥wi∥

gi,q =





+1, if q is above hi

−1, if q is below hi

0, if q is on hi

(3)

It is worth noting that the derivative of the equation (3)
exists if q is not on any of the hyperplanes in HP (gi,q ̸=
0). Now to find the HDD median with the minimum
HDD measure, we should compute the derivative with
respect to q and see where it will be equal to 0. For
any query point q inside a region bounded by some HP

hyperplanes and not on any HP hyperplanes (Figure 1)
we have

d

dq
DP (q) =

d

dq

∑

hi∈HP

gi,q
wi.q + bi
∥wi∥

=
∑

hi∈HP

gi,q
wi
∥wi∥

(4)

Equation (4) above cannot be equal to 0 in general since
there are no variables (4). This means the assumption

Figure 1: Example of HDD in two dimensions: P =
{P0, P1, P2, P3} is the set of input points, I = {I0, I1, I2}
is the set of intersection points, and q is the query point.

we made about the query point not being on the hyper-
planes in HP was incorrect. Therefore, we can say the
median is surely on one of the hyperplanes. If q is on
hj , wj .q + bj will be equal to 0. Therefore, we can say

d

dq
DP (q) =

d

dq

∑

hi∈HP−{hj}
gi,q

wi.q + bi
∥wi∥

=
∑

hi∈HP−{hj}
gi,q

wi
∥wi∥

. (5)

Using the same logic we can conclude that the median
point should be on another hyperplane in addition to hj .
We can repeat these steps d times and after that, it will
be proved that the median should be on the intersection
point of d hyperplane (that will be a single point), thus
the median will be on one of the intersection points. □

Theorem 4 The HDD median point relative to the set
P in Rd is always in the convex hull of the input points
P .

Proof. LetD′pi(q) be the sum of the distances to all the
hyperplanes in HP passing through the point pi. The
minimum of this convex function is always on the point
pi where the HDD is equal to 0. On the other hand,
since each hyperplane includes d input points from P ,
we have DP (q) = d

∑
pi∈P D

′
pi(q).

Now consider a point qo outside of the convex hull.
by computing the gradient of DP (qo), we will show
that by moving qo closer to the convex hull, the
HDD gets smaller. Using the equation above we have
−∇HP (qo) = −d∑pi∈P ∇D′pi(qo). Since the mini-
mum of the function D′pi(q) is on pi, −∇D′pi(q) is a
vector pointing to pi for pi ∈ P . Therefore we can
conclude that for every point qo outside of the convex
hull, −∇HP (qo) points to the convex hull that means
by moving toward that direction, the HDD decreases.
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Therefore the HDD median is always in the convex hull
of P . □

Theorem 5 The HDD median point relative to the set
P in Rd is always at the center of symmetry.

Proof. Let pM be the median of the P s.t. P is sym-
metric. If pM is not on the center of symmetry, consider
p′M , the reflection of pM across the center of symme-
try. Because of the symmetry, it is trivial that the HDD
measure of both points is equal. Since the median point
has the minimum depth measure among the other points
and the depth measure function is convex, all the points
on the line segment pmp

′
M should have a depth measure

equal to the median. Therefore, the median is always
at the center of symmetry. □

Theorem 6 The HDD measure relative to the set P in
Rd vanishes as we move the query point to infinity.

Proof. As we move the query point q to infinity, it is
straightforward that there exists a hyperplane hi ∈ HP

that gets further from q. Since we can move q arbitrar-
ily far from hi, and the distance from q to the remaining
hyperplanes in HP is non-negative, therefore HDD van-
ishes at infinity. □

Note that some measures of depth are defined such
that deep points have high depth values and outliers
have low depth values, whereas this property is reversed
for other depth measures. HDD is of the latter type,
with central points having a low sum of distances to hy-
perplanes in HP , whereas this sum approaches infinity
as q moves away from P . Consequently, for HDD, “van-
ishing at infinity” means that depth approaches ∞ as
opposed to 0.

Theorem 7 The HDD measure relative to the set P in
Rd is not robust.

Proof. We will prove this fact using a counter-example
in a 2-dimensional space (Figure 2). We can move the
HDD median by changing the location of 2 points which
means the HDD is not robust. The median is always
on one of the intersection points and we can place the
points in a way that I0 is always the median (Figure 2).
We will compute the depth measures for the points I0
(5) and Ii (7), where Ii is an arbitrary intersection point
except I0.

DP (I0) =
∑

i∈[3,n]
dlP1Pi

(I0) +
∑

i∈[3,n]
dlP2Pi

(I0) (6)

DP (Ii) =
∑

i∈[3,n]
dlP1Pi

(Ii) +
∑

i∈[3,n]
dlP2Pi

(Ii)

+

(
n− 2

2

)
dlP3Pn

(Ii) + dlP1P2
(Ii) (7)

Figure 2: A counter-example that shows the HDD is
not robust

Regardless of the I0 position, we know that I0Hi < I0P2

and I0H
′
i < I0P1. Therefore, we have (Equation (6)):

DP (I0) < (n−2)I0P2+(n−2)I0P1 = (n−2)P1P2 (8)

On the other hand, using Equation (7) we have:

DP (Ii) > dlP1P2
(Ii) (9)

Now by moving the points P1 and P2 far enough, let
dlP1P2

(Ii) = (n − 2)P1P2 + m, where m is a positive
number. Therefore, we have (inequality 9):

DP (Ii) > (n− 2)P1P2 +m (10)

Combining the inequality 8 and 10 we have DP (Ii) >
DP (I0).
Consequently, I0 is the median. By increasing m, the

median I0 gets as far as we want. This means by moving
P1 and P2, we can move the median point as much as
we want. □

Definition 10 (k-stability [5]) A depth measure D is
k-stable if for all points q in Rd, all sets P in Rd, all
ϵ > 0, and all functions fϵ : Rd → Rd such that ∀p,
dist(p, f(p)) ≤ ϵ,

k · |D(q, P )−D(fϵ(q), fϵ(P )| ≤ ϵ, (11)

where fϵ(P ) = {fϵ(p) | p ∈ P}.

That is, for any ϵ-perturbation of P and q, the depth
of q relative to P changes by at most kϵ.

Theorem 8 The HDD measure relative to the set P in
Rd is not k-stable for any constant k.

Proof. Choose any k > 0 and let n = max{1, ⌈1/k⌉ +
1}. Let P be a set of n points in R and let q ∈ R lie to
the left of P . By moving all points of P one unit to the
right (ϵ = 1), the hyperplane depth of q relative to P
increases by a factor of n, regardless of k. Thus HDD
is not k-stable. □
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Theorem 9 The HDD function DP (q) relative to the
set P in Rd is not equivariant under affine transforma-
tions.

Proof. We will prove this theorem using a counter-
example. Consider the set of points P =
{p0(0, 0), p1(4, 0), p2(2, 1)}. Using Theorem 3 we can
show that the median is on point p2(2, 1). Now consider
the set P ′ = {p′0(0, 0), p′1(4, 0), p′2(2, 5)} that is P under

the non-uniform affine transformation matrix

[
1 0
0 5

]
.

Using theorem 3 and 5 It can be shown that the median
is on the line p′0p

′
1 now. This means that the HDD me-

dian is not equivariant under affine transformation. □

As we now show, HDD is equivariant under similarity
transformations, including translation, rotation, reflec-
tion and uniform scaling, since these preserve the shape
of P .

Theorem 10 The HDD function DP (q) relative to the
set P in Rd is equivariant under the similarity transfor-
mations.

Proof. For any rotation, reflection, or translation
transformation f , the distance from the query point
q to any hyperplane hi remains unchanged. That is,
for any point q and any hyperplane hi, dist(q, hi) =
dist(f(q), f(hi)).
For any uniform scaling transformation f with a scal-

ing factor of k, distances between each pair of points will
be multiplied by k after the transformation. Therefore
it is easy to show that, for any query point q, the HDD
will be multiplied by k after uniform transformation.
Therefore, the median is equivariant under the uniform
scaling transformation. □

4 Algorithms

In this section, we provide three algorithms: a) to
compute HDD depth queries in O(d log n) time after

O(n2d
2+2d) preprocessing time, b) to find an HDD me-

dian point in O(dnd
2

log n) time, and c) to find an ap-
proximate HDD median. Let P be a set of n points in
Rd, and letHP be the set of

(
n
d

)
hyperplanes determined

by d point in P .

4.1 HDD Query Algorithm

The hyperplane distance depth of a query point q rela-
tive to P can be computed by directly evaluating Equa-
tion (2) in O

((
n
d

))
= O(nd) time. We will present an

algorithm that can calculate HDD in logarithmic time
after preprocessing. First, to measure the HDD of q, we
need to store some coefficients belonging to each poly-
tope formed by hyperplanes in HP .

Consider Equation (3). Let SP be the set of all min-
imal polytopes determined by the arrangement of hy-
perplanes in HP . For a query point qk in a polytope
sk ∈ SP , the coefficients gi,q for hi ∈ HP are the same.
Therefore, for any points qk in sk, we can simplify the
summation in (3) in O(nd) time and find the 2 coeffi-
cients ak and bk such that

DP (qk) =
∑

hi∈HP

gi,qk
wi.qk + bi
∥wi∥

= akqk + bk (12)

Using Euler’s characteristic theorem we know that there
are O(nd

2

) polytopes formed by the hyperplanes in H
e.g. in Figure 1 there are 18 polytopes (faces) formed
by the 6 hyperplanes (lines). Therefore we will need

O(2nd
2

) ∈ O(nd
2

) space and O(nd
2

nd) ∈ O(nd
2+d) time

to preprocess.
Using the mentioned data structure we can calculate

the HDD measure in O(1) time if we know to which
polytope the query point belongs.

Given n hyperplanes in d-dimensional space and a
query point q, it takes O(log n) time to find the q loca-
tion with a data structure of size O(nd) and a prepro-
cessing time of O(n2d+2)[3]. In our problem, there are(
n
d

)
∈ O(nd) hyperplanes. Therefore, with a preprocess-

ing time of
(
n
d

)2d+2 ∈ O(n2d
2+2d) and a space of O(nd

2

),

we can find the location of q in O
(
log
(
n
d

))
∈ O(d log n)

time.
Now after finding the q’s location in O(d log n), we

can calculate the HDD measure DP (qk) in O(1) using
Equation (12).

Therefore, after O(nd
2+d + n2d

2+2d) ⊆ O(n2d
2+2d)

preprocessing time using O(nd
2

) space, we can find the
HDD of an arbitrary query point in O(d log n) time.
This proves the following theorem.

Theorem 11 We can preprocess any given set P of n
points in Rd in O(n2d

2+2d) time, such that given any
point q ∈ Rd, we can compute DP (q) in O(d log n) time.

4.2 Finding a HDD Median

By Theorem 3, a straightforward algorithm for finding
an HDD median of P is to check all points of intersec-
tion between d hyperplanes in HP using an exhaustive
search. There are

(
n
d

)
hyperplanes in HP and therefore

((nd)
d

)
∈ O(nd

2

) intersection points between hyperplanes

inHP . Since it takesO(nd) to compute the Equation (2)

directly, a HDD median of P can be found in O(nd
2+d)

time by this brute-force algorithm.
Next, we will introduce an algorithm that finds the

HHD median in O(dnd
2

log n) time. When d = 2, this
second algorithm runs in O(n4 log n) time, compared to
O(n6) time for the brute-force algorithm. First, we will
show that we can find the point with the smallest HDD
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on a line in O(dnd log n) time. Consider the intersec-
tion of d − 1 hyperplanes in HP that determine a line
ℓ. Since every hyperplane in HP has exactly one point
of intersection with ℓ, HP ∩ ℓ is a set of O(nd) points of
intersection. By Theorem 2, we can conclude that the
hyperplane depth of points on ℓ is a convex function.
Since HP ∩ ℓ is discrete, using binary search and calcu-
lating HDD in O(nd) time using Equation (2), we can
find the intersection point with the minimum HDD in
O(nd log(nd)) = O(dnd log n) time.
We can use the algorithm above to find the minimum

point for each intersection line among hyperplanes in
HP to find an HDD median. Since each d − 1 hyper-

planes in HP form a line, there are
((nd)
d−1
)
∈ O(nd

2−d)

lines and thus we can find the median in O(dnd
2

log n)
time. This proves the following theorem.

Theorem 12 Given a set P of n points in Rd, we can
find an HDD median of P in O(dnd

2

log n) time.

4.3 Finding an Approximate HDD Median in R2

In this section, we will present an approximation algo-

rithm to find an HDDmedian of P with an error of a
√
2

2
m
2

+1

in O(mn2 log n) time, for any fixed m ∈ Z+, where a is
the diameter of P .

Theorem 13 Given a set P of n points in R2, in
O(mn2 log n) time we can find a point x′ in R2 such that

dist(x′, x) ≤ a
√
2

2
m
2

+1 , for any fixed m ∈ Z+, where x de-

notes an HDD median of P and a = maxp,q∈P dist(p, q).

Proof. Let la be an arbitrary line among the lines in
HP (see Figure 3). There are

(
n
2

)
lines in HP and, con-

sequently, O(n2) points of intersection between la and
lines in HP . Using an analogous argument as in the
proof of Theorem 3, the point with minimum HDD
on la lies at an intersection of la and a line in HP .
Therefore, using the same algorithm described in Sec-
tion 4.2, we can find the point imin on la with mini-
mum HDD in O(n2 log n) time; let hmin denote the line
in HP such that imin = hmin ∩ la. Next we find the
closest points of intersection in HP to imin on the line
hmin in each direction, say Iu and Id. We compute the
HDD for all the three points imin, Id, and Iu. Since
imin has minimum HDD on the line la, if DP (imin) <
min{DP (Iu), DP (Id)}, then imin is the HDD median (by
Theorem 2). By Theorem 2 again, DP (imin) < DP (Iu)
or DP (imin) < DP (Id). Furthermore, DP (imin) >
DP (Iu) or DP (imin) > DP (Id). Without loss of gen-
erality, suppose DP (Id) < DP (imin) < DP (Iu). We
claim that all points in the half-plane bounded by hmin

that contains Iu have HDD that exceeds DP (imin); we
prove this by contradiction. Suppose there exists a
point A in this half-plane such that DP (A) < DP (imin).

Let B be the intersection point of the line la and the
line segment AId. Since imin has minimum HDD on
the line la, therefore, DP (imin) < DP (B). Further-
more, DP (A) < DP (B). On the other hand, we as-
sumed DP (Id) < DP (imin) < DP (Iu) and we know
DP (imin) < DP (B). Consequently, DP (Id) < DP (B).
Combining the two resulting inequalities above, we have
DP (A) < DP (B) and DP (Id) < DP (B), which is im-
possible since the three points are on the same line and
the HDD function is convex. Therefore, no such point
A can exist.

Figure 3: An algorithm to eliminate the points belong-
ing to a half-space. The blue line la is an arbitrary line
dividing the space into 2 halves. The dotted gray lines
are the lines in HP .

Therefore, no point of intersection in HP in this half-
plane can be an HDD median of P ; in O(n2 log n +
3n2) ⊆ O(n2 log n) time we can remove these points
from consideration in our search for a median.

Now we will use this property to approximate the me-
dian point. Firstly, we will find the diameter a of the
input points in O(n) time and consider an a× a square
that contains P (see Figure 4). By Theorem 4, we know
that the median lies inside this square. At each step,
we draw the two lines ON and OM that partition the
square into four similar smaller squares, each with di-
mensions a

2 × a
2 , and we apply the above algorithm to

eliminate two half-planes in O(nd log n) time. After m
steps we have a square of dimensions a

2m× a
2m and we re-

turn its center as an approximation of the HDD median.
Since the HDD median is a point inside this square, the

error is at most a
√
2

2m+1 . The total time complexity of the
algorithm is O(mn2 log n). □

This strategy can be generalized to higher dimensions
by finding the minimum HDD on an arbitrary hyper-
plane ha (analogous to the line la in the proof of Theo-
rem 13) to eliminate a half-space, but the time complex-
ity of finding the minimum HDD point on ha is high.
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Figure 4: Illustration in support of Theorem 13

5 Discussion and Possible Directions for Future Re-
search

Our algorithm for computing HDD queries presented in
Section 4.1 requires O(nd

2

) space and O(n2d
2+2d) pre-

processing time. One natural possible direction for fu-
ture research is to identify algorithms with improved
preprocessing time or space.
Our algorithm for finding an HDD median presented

in Section 4.2 requires O(dnd
2

log n) time. In addition
to seeking to identify lower bounds on the worst-case
running time required to find an HDD median, we could
attempt to reduce the running time using techniques
such as gradient descent or linear programming.
Our analysis of our algorithm for finding an approx-

imate HDD median presented in Section 4.3 does not
capitalize on the fact that the number of candidate
points decreases on each step; we charge O(n2 log n)
time per step. If it could be shown that a constant
fraction of the remaining points are eliminated on each
step, then the bound on the algorithm’s time complexity
would be significantly improved.
Finally, we could consider alternative definitions for

depth using similar notions to those in Definition 1.
E.g., one can define a “line distance depth” that evalu-
ates the distances to all possible lines passing through
each pair of points in the set of input points. This defini-
tion coincides with Definition 1 when d ≤ 2, but differs
in higher dimensions, for d ≥ 3.
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Quantum Speedup for Some Geometric 3SUM-Hard Problems and Beyond
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Abstract

The geometric 3SUM-hard problems have widely been
studied in computational geometry and recently, these
problems have been examined under the quantum com-
puting model. For example, Ambainis and Larka
[TQC’20] designed a quantum algorithm that can solve
many geometric 3SUM-hard problems in O(n1+o(1))-
time, whereas Buhrman [ITCS’22] investigated lower
bounds under quantum 3SUM conjecture that claims
there does not exist any sublinear O(n1−δ)-time quan-
tum algorithm, where δ > 0, for the 3SUM problem.
The main idea of Ambainis and Larka is to formulate
a 3SUM-hard problem as a search problem, where one
needs to find a point with a certain property over a set of
regions determined by a line arrangement in the plane.

This paper further generalizes the technique of Am-
bainis and Larka for some 3SUM-hard problems when a
solution may not necessarily correspond to a single point
or the search regions do not immediately correspond
to the subdivision determined by a line arrangement.
Given a set of n points and a positive number q, we de-
sign O(n1+o(1))-time quantum algorithms to determine
whether there exists a triangle among these points with
an area at most q or a unit disk that contains at least q
points. We also give an O(n1+o(1))-time quantum algo-
rithm to determine whether a given set of intervals can
be translated so that it becomes contained in another
set of given intervals and discuss further generalizations.

1 Introduction

A rich body of research investigates ways to speed up
algorithmic computations by using quantum computing
techniques. Grover’s algorithm [20] (a quantum search
algorithm) has often been leveraged to obtain quadratic
speedup for various problems over the classical solution.
For example, consider the problem of finding a spe-
cific item within an unordered database of n items. In
the classical setting, this task requires Ω(n) operations.
However, with high probability, Grover’s algorithm can
find the item in O(

√
n) quantum operations [20]. In
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this paper we investigate quantum speedup for some
geometric 3SUM-hard problems.

Given a set S of n numbers, the 3SUM problem
asks whether there are elements a, b, c ∈ S such that
a + b + c = 0. The class of 3SUM-hard problems con-
sists of problems that are at least as hard as the 3SUM
problem. The classical 3SUM conjecture states that the
class of 3SUM-hard problems does not admit a truly
sub-quadratic O(n2−δ) time, where δ > 0, in a clas-
sical computer [19]. Some logarithmic-factor speedups
are now known [4, 11]. However, 3SUM can be solved
in O(n log n) time in a quantum computer by applying
Grover search over all possible pairs as follows [2]: We
have O(n) quantum search operations to resolve and
if we maintain the elements of S in a balanced binary
search tree, then for each pair a, b, we can decide the
existence of −(a + b) ∈ S in O(log n) time. In general,
such straightforward quantum speedup does not read-
ily apply to all problems even if they can be solved in
O(n2) time in a classic computer [7, Table 1].

Quantum algorithms have previously been examined
for many computational geometry problems [1, 23, 25,
26, 27, 28], but here we mainly focus on the class of
3SUM-hard problems. Ambainis and Larka [2] designed
a quantum algorithm that can solve many geometric
3SUM-hard problems in O(n1+o(1))-time. Some ex-
amples are Point-On-3-Lines, Triangles-Cover-Triangle,
and Point-Covering. The Point-On-3-Lines problem
takes a set of lines as input and asks to determine
whether there is a point that lies on at least 3 lines.
The Triangles-Cover-Triangle problem asks whether a
given set of triangles in the plane covers another given
triangle. Given a set of n half-planes and an integer
t, the Point-Covering problem asks whether there is a
point that hits at least t half-planes.

The idea of Ambainis and Larka [2] is to model these
problems as a point search problem over a subdivision of
the plane with a small number of regions. Specifically,
consider a random set of k lines in the Point-On-3-Lines
problem and a triangulation of an arrangement of these
lines, which subdivides the plane into O(k2) regions. We
can check each corner of these regions to check whether
it hits at least three lines in O(nk2) time. Otherwise,
we can search each region recursively by taking only
the lines that intersect the region into consideration.
It is known that with high probability every subprob-
lem size (i.e., the number of lines intersecting a region)
would be small [13, 21], and one can obtain a running
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time of O(n1+o(1)) by a careful choice of k and by the
application of Grover search [2]. For the Point-Covering
problem, one can construct a similar subdivision of the
plane using k random half-planes. We can then count
for each region R, the number i of half-planes fully cov-
ering R in O(nk2) time, and if a solution is not found,
then recursively search in the subproblem for a point
that hits at least (t− i) half-planes. For the Triangles-
Cover-Triangle problem, one can construct the O(k2)-
size subdivision (of the given triangle T which we want
to cover) by k lines determined by k segments that are
randomly chosen from the boundaries of the set S of
given triangles. In O(nk2) time we can determine the
regions of T that are fully covered by a single triangle
of S. For every remaining region R, let S(R) be a set
of triangles where each intersects R but does not fully
contain R. We now can search over all such regions R
recursively for a point that is not covered by S(R).

In this paper we show how Ambainis and Larka’s [2]
idea can be adapted even for problems where a solu-
tion may not correspond to a single point or the search
regions do not necessarily correspond to a subdivision
determined by an arrangement of straight lines. Specif-
ically, we show that the following problems admit an
O(n1+o(1))-time quantum algorithm.

q-Area Triangle: Given a set S of n points, decide
whether they determine a triangle with area at most q.

q-Points in a Disk: Given a set S of n points, deter-
mine whether there is a unit disk that covers at least q
of these points.

Interval Containment: Given two sets P and Q of
pairwise-disjoint intervals on a line, where |P | = n and
|Q| = O(n), determine whether there is a translation of
P that makes it contained in Q.

All these problems are known to be 3SUM-hard. If
q = 0, then the q-Area Triangle problem is the same
as determining whether three points of S are collinear,
which is known to be 3SUM-hard [19]. If we draw unit
disks centered at the points of S, then the deepest re-
gion in this disk arrangement corresponds to a location
for the center of the unit disk that would contain most
points. Determining the deepest region in a disk ar-
rangement1 is known to be 3SUM-hard [3], which can
be used to show the 3-SUM-hardness of q-Points in
a Disk. Barequet and Har-Peled [5] showed that the
Interval Containment problem is 3-SUM-hard.

While examining the Interval Containment prob-
lem, we noticed that our techniques generalize to a gen-
eral Pair Search Problem: Given a problem P of size
n, where a solution for P can be defined by a pair of ele-
ments in P , and a procedure A that can verify whether a
given pair corresponds to a solution in O(n1+o(1)) classi-
cal time, determine a solution pair for P . Consequently,

1Although the reduction of [3] uses disks of various radii, it is
straightforward to modify the proof with same size disks.

we obtain O(n1+o(1))-time quantum algorithms also for
the following two problems which can be modeled using
pair search.

Polygon Cutting: Given a simple n-vertex polygon
P , an edge e of P and an integer K > 2, is there a line
that intersects e and cuts the polygon into exactly K
pieces?

Disjoint projections: Given a set S of n convex ob-
jects, determine a line such that the set objects project
disjointly on that line.

The Polygon Cutting problem is known to be 3SUM-
hard [24]. Disjoint projections can be solved in
O(n2 log n) time in classical computing model [16], but
it is not yet known to be 3SUM-hard.

In the full version [22] of this paper we show how
the pair search can be further generalized for d-tuple
search or in Rd, which is relevant for the kSUM hard
problems [10, 14].

2 Preliminaries

In this section, we describe some standard quantum pro-
cedures and tools from the literature that we will utilize
to design our algorithms.

Theorem 1 (Grover Search [20]) Let X = {x1, x2,
..., xn} be a set of n elements and let f : X −→ {0, 1}
a boolean function. There is a bounded-error quantum
procedure that can find an element x ∈ X such that
f(x) = 1 using O(

√
n) quantum queries.

Theorem 2 (Amplitude Amplification [6]) Let A
be a quantum procedure with a one-sided error and suc-
cess probability of at least ε. Then there is a quantum
procedure B that solves the same problem with a success
probability 2

3 invoking A for O( 1√
ε
) times.

By repeating Amplitude Amplification a constant
number of times we can achieve a success probability
of 1 − ε for any ε > 0. This technique has been widely
used in the literature to speed up classical algorithms.

Algorithm 1 presents the Recursive-Quantum-Search
(RQS) of Ambainis and Larka [2] for searching over a
subdivision, but we slightly modify the description to
present it in terms of subproblems. We first describe
the idea and summarize it in a theorem (Theorem 3) so
that it can be used as a black box. We then illustrate
the concept using the Point-On-3-Lines problem.

The algorithm decomposes the problem into O(k2)
subproblems, where k is a carefully chosen parameter,
and then checks whether there is a solution that spans
at least two subproblems but does not evaluate the sub-
problems. If no such solution exists, then the solution
is determined by one of the subproblems. If all the
subproblems are sufficiently small, then it searches for
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Algorithm 1 Recursive-Quantum-Search (RQS)

1: Procedure RQS(M,n, δ, ε), where M is a problem
of size at most n, δ is a positive constant, and ε is
an allowable error parameter.

2: if |M | < k, where k = n1/α · δ(log n + log ε−1)
and α ∈ O(

√
log n/ log log n), then

3: Search for a solution by exhaustive search
4: else
5: Let R1, . . . , Rt be a decomposition of the

problem M into t subproblems, where
t ∈ O(k2). Search for a solution that spans
two or more subproblems.

6: if any of the subproblems is larger than
|M |
k · δ(log |M |+ log ε−1) then

7: return Error
8: else
9: Let A be an algorithm that runs RQS

(R,n, δ, ε) recursively on randomly chosen
subproblem R. Run A with Amplitude
Amplification for a success probability at
least 1− ε.

a solution over them using Grover search; otherwise,
it returns an error. Consequently, one needs to show
that the probability of a subproblem being large can be
bounded by an allowable error parameter ε, and hence,
Grover search will ensure a faster running time. An ex-
ample application of this algorithm is provided later in
this section.

We now have the following theorem, which is inspired
by Ambainis and Larka’s [2] result, but we include it
here for completeness.

Theorem 3 Let M be a problem of size at most n. As-
sume that for every k < |M |, M can be decomposed
into O(k2) subproblems such that M can be solved first
by checking for solutions that span at least two subprob-
lems (without evaluating the subproblems), and then, if
such a solution is not found, applying a Grover search
over these subproblems (when we evaluate the subprob-
lems). Furthermore, assume there exists a constant δ
such that the probability for a subproblem to have a size

larger than |M |k · δ(log |M |+ log ε−1) is at most ε, where
ε is an allowable error probability.

If we can compute the problem decomposition and
check whether there is a solution that spans at least two
subproblems in O(|M |1+o(1)k2) classical time, then RQS
can solve M in O(n1+o(1)) quantum time.

Proof. The first time RQS is called, M is the original
problem with size |M | = n. Since the recursion tree has
a branching factor of O(k2), the number of problems at
level j is C1k

2j , where C1 is a constant.
We set k to be n1/α · δ(log n + log ε−1), where α ∈

O(
√

log n/ log log n). At each recursion, the problem

size decreases by a factor of n−1/α, and at jth level,
a problem has size at most n1−j/α. Since the cost of
problem decomposition and checking whether a solu-
tion spans two or more subproblems is O(|M |1+o(1)k2),
using Grover search, the cost for level j is

√
C1k2j ·

C2(n1−j/αn2/αno(1)), where C2 is a constant. We sum
the cost of all levels to bound T (n).

T (n) ≤ C2

α∑

j=0

√
(C1k)2j

(
n1−j/αn2/αno(1)

)

= C2n
1+(2/α)+o(1)

α∑

j=0

(
C1k

n1/α

)j

= C2n
1+(2/α)+o(1)

α∑

j=0

(
C1n

1/αδ(log n+ log ε−1)

n1/α

)j

≤ C2n
1+(2/α)+o(1)

α∑

j=0

(C3 log n)j

≤ C2α(C3 log n)αn1+(2/α)+o(1)

= C2α

(
C3 log n

n2/α2

)α (
n1+2/αn(2/α)+o(1)

)

If α=
√

2 log(n)
log(C3)+log log(n) , then n

2
α2 =C3 log(n). Hence

T (n) = C2αn
1+ 4

α+o(1) = O(n1+o(1)).
�

An Inspiring Example: We can use Theorem 3 as
a black box. For example, consider the case of Point-
On-3-Lines problem. Let S be the set of input lines. To
construct subproblems, choose k lines randomly, then
create an arrangement of these lines, and finally, trian-
gulate the arrangement to obtain O(k2) faces. Specif-
ically, a subproblem corresponding to a closed face F
consists of the input lines that bound F and the lines
that intersect the interior of F . If a solution point (i.e., a
common point on three lines) spans at least two closed
faces, then it must lie on an edge or coincide with a
vertex of the triangulation, which can be checked in
O(|S|k2 log n) time without evaluating the subproblems.
If a solution point is not found, then we can search over
the subproblems using Grover search. Ambainis and
Larka’s [2] showed that there exists a constant δ such
that the probability of a subproblem to contain more

than δ |S|k (log(|S|)+log(ε−1)) lines is bounded by ε, and
hence, we can apply Theorem 3. The following lemma,
which is adapted from [2], will be helpful for us to argue
about subproblem sizes.

Lemma 4 (Ambainis and Larka [2]) Let S be a set
of straight lines and let A be an arrangement of k lines
that are randomly chosen from S. Let T be a planar
subdivision of size O(k2) obtained by adding straight line
segments to A such that each face of T is of size O(1).
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Figure 1: (a)–(b) Illustration for a point set and its corresponding lines in the dual plane. (c) Illustration for Tk,
where k = 2, with a face R shown in blue shaded region. The dual and supporting edges are in blue and green,
respectively. (d) Illustration for the zone of a supporting line.

Then the probability of a closed face of T , without its

vertices, intersecting more than δ |S|k (log(|S|)+log(ε−1))
lines of S is bounded by ε, where δ is a positive constant
and ε is an allowable error probability.

The reason to restrict the attention to a closed face
without its vertices (in Lemma 4) is to avoid the de-
generate case with many lines intersecting at a common
point. In such a scenario, a random sample of S is likely
to have many lines passing through such a point, yield-
ing a closed face intersected by many lines. Ambainis
and Larka’s proof [2] did not explicitly discuss this sce-
nario.

3 Finding a Triangle of Area at most q

A well-known approach for finding a minimum area tri-
angle among a set S of n points [15] is to use point-line
duality. For each point p = (px, py), construct a line
p∗, which is defined as y = pxx − py in the dual plane.
Figure 1(b) illustrates a set of dual lines corresponding
to the points of Figure 1(a). Let o be the intersection
of two dual lines a∗ and b∗. The algorithm uses the
property that the dual line c∗ with the smallest vertical
distance from o determines a triangle ∆abc that mini-
mizes the area over all the triangles that must include a
and b. Here a vertical distance is defined by the length
of the smallest line segment parallel to the y-axis con-
necting o and c∗. Consequently, one can first construct
a line arrangement in the dual plane and then exam-
ine its faces to find a minimum area triangle in O(n2)
classical time.

We now describe our approach using quantum com-
puting. One can check whether three lines in the dual
plane intersect at a common point in O(n1+o(1)) quan-
tum time [2], and if so, it would correspond to a triangle
of 0 area. Therefore, we may assume that the lines are

in a general position.
We first discuss the concept of ‘zone’ in an arrange-

ment and some properties of a minimum area triangle.
Let Ak be an arrangement of a set S∗k of k randomly
chosen dual lines, and let Tk be a triangulation obtained
from Ak in O(k2) time. The zone of a line ` is the set
of closed faces in Ak intersected by `. Figure 1(b)–(c)
illustrates a scenario where two lines d∗, f∗ have been
chosen to create Tk. For each face R in Tk, s(R) denotes
the dual lines (a subset of S∗k) that bound R and the
dual lines that intersect the interior of R. We refer to
an edge of Tk as a dual edge if it corresponds to a dual
line of a point in S, otherwise, we call it a supporting
edge. The line determined by a supporting edge is called
a supporting line. We now have the following property
of a minimum area triangle.

Lemma 5 Let ∆abc be a minimum area triangle. Let
q be the intersection point of a∗ and b∗. Assume that q
is not a vertex of Tk and q lies interior to a face R of
Tk (e.g., Figure 1(c)). Then either one of the following
or both hold: (a) c∗ belongs to s(R). (b) c∗ belongs to
s(Z), where Z is a zone of a supporting line of R.

Proof. Assume that (a) does not hold. We now show
that (b) must be satisfied. Consider a vertical line seg-
ment L starting from q and ending on c∗. Since c∗

minimizes the vertical distance from q, no other dual
edge can intersect L (e.g., Figure 1(d)). Since q is en-
closed by R and since c∗ is outside of R, there must be a
supporting edge ` on the boundary of R that intersects
L. If the zone of the corresponding supporting line does
not contain c∗, then we can find a dual line other than
c∗ that intersects L, which contradicts the optimality
of ∆abc. Figure 1(d) illustrates the zone of `, which is
shaded in orange. �

We now show how to leverage Theorem 3.
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Let R1, . . . , Rt be the faces of Tk. We choose
s(R1), . . . , s(Rt) as the subproblems. By Lemma 4, the
probability of a subproblem being large is bounded by
ε. In Lemma 6, we show how in O(nk2 log n) time, one
can check whether there is a triangle ∆abc of area at
most q such that no subproblem contains all three dual
lines a∗, b∗, c∗. Consequently, we obtain Theorem 7.

Lemma 6 A triangle that has an area of at most q
and spans at least two subproblems can be computed in
O(nk2 log n) time.

Proof. Each candidate triangle ∆abc satisfies the prop-
erty that the intersection point q of two of its dual lines
lies in some face R and the third dual line does not inter-
sect s(R). Here the condition (b) of Lemma 5 must hold
and it suffices to examine the zone of each supporting
line of R. We thus check the zones of all the supporting
lines of Tk as follows. Specifically, given an arbitrary
line, its zone in an arrangement of n lines can be con-
structed in O(n log n) time [29]. Let e be a supporting
line and let Ze be its zone. We search over all the faces
of Ze to find a (vertex, edge) pair, i.e., (v, L), such that
they lie on opposite sides of e and minimize the vertical
distance from v to L. To process a face F we construct
two arrays Lu and Lb. Here Lu (Lb) is an array obtained
by sorting the vertices on the upper (lower) envelope of
F using x-coordinates in O(|F | log |F |) time. Since F is
convex, for each vertex q in Lu (Lb), we can use Lb (Lu)
to find the dual line that has the lowest vertical distance
from q in O(log |F |) time. Since the number of edges in a
zone is O(n) [12], the total time required for processing
all the faces is at most O(n log n). For O(k2) supporting
lines, the running time becomes O(k2n log n). �

Theorem 7 Given a set S of n points, one can deter-
mine whether there is a triangle with area at most q in
O(n1+o(1)) quantum time.

4 Finding a Unit Disk with at least q Points

Let S be a set of n points and consider a set D of n unit
disks, where each disk is centered at a distinct point
from S. Note that to solve q-Points in a Disk, it
suffices to check whether there is a point r that hits at
least q disks in D. However, searching for r using Theo-
rem 3 requires tackling some challenges. First, we need
to create a problem decomposition, where the proba-
bility of obtaining a large subproblem is bounded by
an allowable error probability. This requires creating
a subdivision (possibly with curves) where the size of
each region (corresponding to a subproblem) is O(1).
Second, we need to find a technique to check for solu-
tions that span two or more subproblems.

Consider an arrangement Ak of k randomly chosen
disks from D. We first discuss how the regions of Ak

F

(a) (b)

Figure 2: Illustration for the proof of Lemma 8.

can be further divided to create a subdivision A′k where
the size of each region is O(1).

Lemma 8 Let Ak be an arrangement of k unit disks.
In O(k2 log n) time, one can create a subdivision of A′k
by adding straight line segments such that each face is
of size O(1).

Proof. For each disk, we create four pseudolines as fol-
lows. Consider partitioning the disk into four regions
by drawing a vertical and a horizontal line through its
center. For each circular arc, we create a pseudoline by
extending its endpoints by drawing two rays following
the tangent lines, as shown in Figure 2(a). However, the
resulting subdivision may still contain faces with linear
complexity (e.g., the face F in Figure 2(b)). We sub-
divide each face further by extending a horizontal line
segment from each vertex. The details are included in
the full version [22]. At the end of the construction, each
cell of the subdivision can be described using O(1) arcs
or segments. The construction inserts at most O(k2)
straight lines and takes O(log n) time per addition to
complete the process in O(k2 log n) time. �

We now show how to leverage Theorem 3. Let
R1, . . . , Rt be the faces of A′k. Let s(Ri), where 1 ≤ i ≤
t, be the disks that intersect the closed region Ri (except
its vertices), but do not fully contain R. We subtract
how many disks fully contain R from q and therefore,
they should not be considered in the recursive subprob-
lems. We show that the probability of a subproblem
being large is bounded by ε (see the full version [22]).
Lemma 9 shows how to check whether there is a solu-
tion point r (i.e., a point hitting at least q disks) that
coincides with a vertex of A′k or spans at least two sub-
problems in O(nk2 log n) time. Consequently, we obtain
Theorem 10.

Lemma 9 Let r be a point that hits at least q disks.
If r coincides with a vertex of A′k or spans at least two
subproblems then it can be found in O(nk2 log n) time.

Proof. For each edge e = (v, w) of A′k, we first count
the number of disks intersected by v in O(n) time. We
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Figure 3: (a) P . (b) Q. (c) P ⊂ Q. Illustration for (d)
Remark 11 and (e) Theorem 12.

then compute all the intersection points between e and
the input disks and sort them based on their distances
from v in O(n log n) time. Finally, we walk along e from
v to w, and each time we hit an intersection point o, we
update the current disk count (based on whether we are
entering a new disk or exiting a current disk) to compute
the number of disks intersected by o. �

Theorem 10 Given a set S of n points, one can deter-
mine whether there is a unit disk with at least q points
in O(n1+o(1)) quantum time.

5 Determining Interval Containment

Let I be an instace of Interval Containment, and
let P = (p1, . . . , pn) and Q = (q1, . . . , qm), where
m = O(n), be the two sets of pairwise disjoint intervals
of I. We now give an O(n1+o(1))-time quantum algo-
rithm to determine whether P can be translated so that
it becomes contained in Q. If there is an affirmative so-
lution, then we can continuously move the intervals in P
until an endpoint of one of its intervals hits an endpoint
of an interval of Q, as shown in Figure 3(c)–(d).

Remark 11 If I admits an affirmative solution, then
there is a solution where an end point of one interval of
P coincides with an end point of an interval in Q.

We now use Remark 11 to find a solution for I.

Theorem 12 Given two sets P and Q of O(n)
pairwise-disjoint intervals on a line, one can determine
whether there is a translation of P that makes it con-
tained in Q in O(n1+o(1)) quantum time.

Proof. We place the intervals of Q on the positive x-
axis starting from (1, 0) and the intervals of P on the
positive y-axis starting from (0, 1), as shown in Fig-
ures 3(e). Consider a set H of 2n horizontal lines and
a set V of 2m vertical lines through the endpoints of
the intervals of P and Q, respectively. Let Ak be an ar-
rangement determined by k randomly chosen lines from
(H ∪ V ), e.g., the thick blue lines of Figures 3(e). Add
the smallest area rectangle containing P and Q to the

arrangement so that we get a subdivision Tk, where
its faces R1, . . . , Rt are rectangles. By s(Ri), where
1 ≤ i ≤ t, we denote the lines of H and V that in-
tersect the closed region Ri.

We now show how to leverage Theorem 3. By Re-
mark 11, it suffices to examine pairs of endpoints from
P and Q. Let a be an endpoint from P and b be an
endpoint from Q that determine a solution. Let o be
the intersection point of the corresponding lines `a ∈ V
and `b ∈ H. We refer to o as the solution point, which
may lie at a vertex, or interior to an edge, or interior to
a face of T .

We choose s(R1), . . . , s(Rt) as the subproblems. By
Lemma 4, the probability of a subproblem being large
is bounded by ε. In O(nk2 log n) time, we can check
whether o coincides with a vertex of Tk, i.e., spans at
least two subproblems (Figure 3(e)). However, we do
not check whether the solution o lies on an edge of T
because if o lies interior to an edge or a face of Tk, then
it is found by a Grover search over the subproblems.
The running time follows directly from Theorem 3. �

6 Pair/Tuple Search and Generalizations

For a pair search problem P , if we can decide whether a
given pair corresponds to a solution in f(n) ∈ O(no(1))
classical time, then a straightforward application to
Grover search yields an O(n1+o(1))-time quantum algo-
rithm. However, we show how to solve P in O(n1+o(1))-
time even when f(n) ∈ O(n1+o(1)).

Theorem 13 Let P be a problem of size n where a so-
lution for P can be defined by a pair of elements in P .
Assume that we can decide whether a given pair corre-
sponds to a solution in O(n1+o(1)) classical time. Then
a solution pair can be computed in O(n1+o(1)) time us-
ing a quantum algorithm.

Proof. We first label the elements of P from t1 to tn.
For each element ti, we create a horizontal line y = i
and a vertical line x = i. Every pair of lines (a, b), where
one is horizontal and the other is vertical, corresponds
to a pair of elements (ta, tb). Now the search over the
subdivision is similar to the proof of Theorem 12. �

Theorem 13 allows for an O(n1+o(1))-time quantum
algorithm for Polygon Cutting and Disjoint pro-
jections problems. The details are in the full ver-
sion [22]. The pair search technique can be applied to
obtain quantum speed up as long as the check for a pair
takes sub-quadratic time. For example, if a pair can be
checked in O(n1+β) classical time, then the analysis of
Theorem 3 gives an algorithm with O(n1+β) quantum
time. Hence a maximum clique in a unit disk graph,
where pairs of points are checked in O(n1.5 log n) clas-
sical time [17, 18], can be found in O(n1.5) quantum
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time. The pair search technique generalizes to d-tuple
search, where one needs to search for a solution over an
arrangement in Rd. The full version [22] includes the
details.

7 Conclusion

In this paper we discuss quantum speed-up for some
geometric 3SUM-Hard problems. We also show how
our technique can be applied to a more general pair
or tuple search setting. A natural avenue to explore
would be to establish nontrivial lower bounds under the
Quantum Strong Exponential-Time Hypotheses [9] or
quantum 3SUM conjecture [8].
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Experimental analysis of oriented spanners on one-dimensional point sets

Kevin Buchin* Antonia Kalb* Guangping Li* Carolin Rehs*

Abstract

Given a point set P in the Euclidean space and a param-
eter t, an oriented t-spanner G is an oriented subgraph
of the complete bi-directed graph, such that for every
pair of points, the shortest closed walk in G contain-
ing those points is at most a factor t longer than their
shortest cycle in the complete undirected graph on P .
Since it is known that minimising the oriented dilation
for a set of points in the plane is NP-hard, we focus on
one-dimensional point sets. Previous work has studied
oriented spanners that have a book embedding on the
given point set, but neither the minimum-achievable di-
lation nor the structure of minimum (oriented) dilation
spanners is well-understood.

We present a formulation of the problem of computing
such minimum dilation spanners as satisfiability prob-
lem. We utilise this formulation for computational ex-
periments on these spanners, resulting in several inter-
esting insights. Firstly, we find point sets such that the
minimum dilation spanners with a one-page book em-
bedding on the point sets have an oriented dilation arbi-
trarily close to 1+Φ, where Φ ≈ 1.618 is the golden ra-
tio, improving upon the previously known lower bound
on the worst-case dilation of 2. Secondly, for spanners
with a two-page book embedding and under the assump-
tion that edges between consecutive numbers are all ori-
ented from the smaller to the larger, we find a point set
with minimum oriented dilation

√
2. We make further

structural observations in this setting.

1 Introduction

Geometric spanners are a well-studied problem for
decades (see [4, 9] for surveys) and admit many appli-
cations. Recently, this concept has been extended to
oriented spanners [5], motivated by applications that
require one-way edges, as for low-interference ad-hoc
networks, motion planning, one-way road networks or
non-bidirectional communication networks.

Given a point set P in the Euclidean space and an
oriented graph G on P , the oriented dilation of two

points p, p′ ∈ P is defined as odilG(p, p
′) = |CG(p,p′)|

|∆(p,p′)| ,

where CG(p, p
′) denotes the shortest closed walk in G

*Technical University of Dortmund, Germany,
{kevin.buchin,guangping.li,antonia.kalb,
carolin.rehs}@tu-dortmund.de

containing the points p and p′ and ∆(p, p′) is the short-
est cycle containing the points p and p′ in the complete
undirected graph on P . The oriented dilation t of G is
defined as t = max

p,p′∈P
odilG(p, p

′). A spanner is called

a minimum (oriented) spanner if it minimises the ori-
ented dilation t.

As minimising the oriented dilation is NP-hard for
point sets in the Euclidean plane, previous algorith-
mic work has focused on special cases and on one-
dimensional point sets [5].

On one-dimensional point sets in particular spanners
with a book embedding were studied, as natural one-
dimensional analogue to plane spanners in two dimen-
sions.

A one-page book embedding [3, 6, 7] of a graph corre-
sponds to an embedding of the vertices as points on a
horizontal line with the edges drawn without crossings
as circular arcs above the line; and also below in a two-
page book embedding. In such a (one- or two-page) book
embedding, for consecutive points on the line, we may
draw their edge straight on the line.

For one-dimensional point sets, there is a polynomial-
time algorithm to compute a minimum oriented spanner
with a one-page book embedding. Its worst-case dila-
tion is bounded by 2 ≤ t ≤ 5. Further, there exists
a simple construction for a 2-spanner with a two-page
book embedding [5]. For both one-page and two-page
book embeddings this leaves open the intriguing ques-
tion, how large the minimum oriented dilation is in the
worst-case. For two-page book embeddings additionally
the question remains open how to compute a minimum-
dilation spanner.

The aim of this paper is to address these questions
through computational experiments. For this, we first
analyse book embeddings more carefully and model the
decision problem of finding a minimum t-spanner for a
given point set as Satisfiability (SAT) formula in Sec-
tion 3.

Utilising this formulation, we perform experiments on
random point sets. For one-page book embeddings, we
observe in Section 4 that the minimum dilation stays
below 1+Φ, where Φ is the golden ratio. By inspecting
examples with large dilation, we found a family of point
sets of size 6 with minimum dilation arbitrarily close to
1 + Φ (from below).

For two-page book embeddings, we focus on spanners
with a so called “baseline”, that is, all edges between
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consecutive points (in the one-dimensional order) have
an edge oriented from the point with the smaller co-
ordinate to the point with the larger coordinate. In
Section 5 we observe that in this setting the minimum
oriented dilation stays below

√
2. We provide a point

set of size 6 with minimum dilation
√
2.

In the setting of one-page book embeddings, it is
known that arbitrary long edges may be needed to min-
imise the dilation, where the length of an edge counts
how many points lie in between the end points (plus
one); see Section 2 for a formal definition. Our experi-
ments indicate that the situation is drastically different
for two-page book embeddings with a baseline, where
the maximum length we observed is 5. If true in general,
this would pave the way to a polynomial-time algorithm
for computing minimum spanners in this setting.

2 Preliminaries

Definitions In this paper, one-dimensional point sets
are indexed in increasing order, i.e. p1 is the leftmost
point and pn the rightmost point.
The length of an edge (pi, pj) is the Euclidean distance

|pi − pj |. We call |i− j| the edge-distance of (pi, pj).
A walk is defined as a sequence of points and edges of

a graph. The length of a walk is the sum of the lengths
of its edges. A walk is called closed if it starts and ends
at the same point. A path is a walk where all points
and edges are distinct.

We call a graph one-page plane (respectively two-page
plane) if it has a one-page (resp. two-page) book embed-
ding. A maximal one-page plane (analogous two-page
plane) graph is a one-page plane graph G = (P,E) such
that for every edge e /∈ E, the graph G′ = (P,E ∪ {e})
is not one-page plane.

A forward edge (pi, pi+1) between consecutive points
is called a baseline edge and a backwards edge (pj , pi)
with i < j a back edge. A natural restriction of oriented
graphs for one-dimensional point sets is to include a
baseline and all other edges are back edges. We call
such a graph a one-page-plane-baseline graph, for short
1-PPB graph. Analogously we define 2-PPB graphs. We
note that for one-page plane graphs this restriction does
not change the minimum dilation attainable [5], i.e.,
there is always a minimum spanner with this property.
There exists a point set where this is not the case for
two-page plane graphs.

Oriented dilation The following lemmas simplify the
computation of the dilation of oriented spanners for one-
dimensional point sets:

Lemma 1 [5] Let P be a one-dimensional point set of
n points. The oriented dilation t of an oriented graph G
on P is t = max

1≤i≤n−2
1≤j≤n−3

{odilG(pi, pi+2), odilG(pj , pj+3)}.

This holds for every graph on a one-dimensional point
set, even if the graph is neither plane nor maximal.

Lemma 2 [5] Let P be a one-dimensional point set of
n points. The oriented dilation t of a 1-PPB graph for
P is t = max

1≤i≤n−2
odilG(pi, pi+2).

Since Lemma 1 directly leads to a 1-spanner with a 3-
page book embedding (i.e. a crossing-free embedding
using a third half-plane) for every one-dimensional point
set, only 1- and 2-page book embeddings are interesting
to study. Obviously, for any point set P , there is no
one-page plane 1-spanner if |P | > 3, and no two-page
plane 1-spanner if |P | > 4.

Experimental Setup The experiments were run on a
server equipped with two Intel Xeon E5-2640 v4 pro-
cessors (2.4 GHz 20-core) and 64GB RAM. The code
was compiled with g++ 13.1.0 with optimisation level
-O3. Source code and benchmark data generator are
at tudgpl.github.io/Oriented Spanners. To solve our
SAT formulation (Section 3), we use the solver Glucose
4.2.1 [1, 2], which is a freely available solver which ranks
highly in the competition held at the annual SAT com-
petition. Glucose is based on the solver Minisat 2.2 [8].

We generated synthetic data sets for our experiments.
The synthetic data sets are randomly generated one-
dimensional point sets of integers inside the range of
105 pixels, based on a uniform distribution.

Due to the limited computation resources, for the
exploration of lower bounds, we start our experiments
with small point sets of size n in {5, . . . , 10, 16, 32}. Note
that our theoretical lower bounds are reached with only
six points. For each size, we generate 106 instances.

For the exploration of minimum 2-PPB spanners with
edge-distance constraints, we vary the number of points
from 16 to 512, with logarithmic increments. For each
size, we generate 100 instances.

Our results are shown as a boxplot, which presents
the distribution of quantitative data. It shows quartiles
in a box and extends whiskers to illustrate the rest of
the data, excluding outliers as separate dots.

3 Exact solver for 1- and 2-PPB graphs

In this section, we present a SAT model based solver to
compute optimal 1-PPB or 2-PPB graphs.

Let us first consider shortest closed walks of point
pairs in a 1- or 2-PPB graph:

Lemma 3 Let P be a one-dimensional point set and
G = (P,E) a 1- or 2-PPB graph. Let pi, pj be points in
P with j ∈ {i + 2, i + 3}. Let pl with l ≤ i be leftmost
point in a shortest closed walk CG(pi, pj) and pr with
j ≤ r is the rightmost point in CG(pi, pj). The closed
walk CG(pi, pj) consists of the baseline edges from pl to
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pr, i.e. {(pm, pm+1) | l ≤ m ≤ r − 1}, and a path Π
from pr to pl with either

(a) Π = (pr, pl) (see Fig. 1a),

(b) Π = (pr, pk), (pk, pl) with i < k < j (see Fig. 1b),
or

(c) Π = (pr, pi+1), (pi+1, pi+2), (pi+2, pl) (see Fig. 1c).

Note that, due to planarity, case c arises only if G is a
2-PPB graph and j = i+ 3.

Proof. By definition, every 1- or 2-PPB graph includes
a baseline. Therefore, the baseline contains a shortest
path from pl to pr. Next, to complete the shortest closed
walk CG(pi, pj), we consider the shortest path Π from
pr to pl.

If (pr, pl) ∈ E, it holds Π = (pr, pl), thus case a.

If (pr, pl) /∈ E, the path Π is a union of back edges and
maybe also baseline edges. We consider the first edge
of Π. Since pr is the rightmost point in CG(pi, pj), this
edge must be a back edge (pr, pk) and therefore k < r.
Note that k > i, otherwise, (pr, pk) is a path that covers
pi and pj and pr − pk < pr − pl which contradicts the
optimality of CG(pi, pj). Furthermore, k < j, otherwise,
the subpath of Π connecting pk to pl covers pi and pj
and has length pk − pl < pr − pl which contradicts the
optimality of CG(pi, pj).

If j = i + 2 (and therefore k = i + 1), the second
edge in Π must be a back edge (pk, pk′) with k′ < i.
Otherwise, if the second edge is (pi+1, pi+2), the sub-
path of Π connecting pi+2 to pl covers pi and pj and
has length pj − pl < pr − pl which contradicts the opti-
mality of CG(pi, pj). Therefore, the back edge (pk, pk′)
is the second edge in Π. Since pl is the leftmost
point in CG(pi, pj), this implies k′ = l and therefore
Π = (pr, pi+1), (pi+1, pl), thus case b.

If j = i + 3 and k = i + 2, analogous, the second
edge in Π must be a back edge (pk, pk′). Since k =
i + 2 implies k′ ≤ i, it holds k′ = l and therefore Π =
(pr, pi+2), (pi+2, pl), thus case b.

For j = i + 3 and k = i + 1, if the second
edge in Π is a back edge (pk, pk′) with k′ ≤ i, it
holds Π = (pr, pi+1), (pi+1, pl), thus case b. Other-
wise, if the second edge is (pi+1, pi+2), it holds Π =
(pr, pi+1), (pi+1, pi+2), (pi+2, pl), thus case c. □

Due to Lemmas 1, 2 and 3, the dilation of a minimum
spanner for a given point set P is contained in the set

pi pjpl pr

(a) Π = (pr, pl)

pi pjpkpl pr

(b) Π = (pr, pk), (pk, pl) with i < k < j

pi pi+3pl prpi+1 pi+2

(c) Π = (pr, pi+1), (pi+1, pi+2), (pi+2, pl)

Figure 1: CG(pi, pj) consists of the baseline from pl to
pr and a path Π from pr to pl with j ∈ {i + 2, i + 3}
and l ≤ i < j ≤ r

T ⊂ R+ with

T =
⋃

1≤i≤n−2
1≤l≤i

i+2≤r≤n

{
pr − pl
pi+2 − pi

}
∪

⋃

1≤i≤n−3
1≤l≤i

i+3≤r≤n

{
pr − pl
pi+3 − pi

,
pr − pl + pi+2 − pi+1

pi+3 − pi

︸ ︷︷ ︸
only for 2-PPB graphs

}
.

So, there are |T | = O(n3) possible values for the op-
timal dilation. Buchin et al. [5] bounded the oriented
dilation of any 1-PPB spanner by 5 and any 2-PPB
spanner by 2. Therefore, we first order T and do a bi-
nary search for each value t ∈ T in the range [1, 5] for
1-PPB graphs and [1, 2] for 2-PPB graphs.
Thus, to obtain the minimal dilation for some point

set P , we consider the following decision for each can-
didate dilation t: Given a one-dimensional point set P
and a parameter t, is there a 1-PPB (respectively 2-
PPB) graph which is a t-spanner for P?
Now, we introduce our SAT model to solve this deci-

sion problem.

Variables. For every pair i, j with j > i + 1, there
is a variable eijφ with φ ∈ {1, 2} which is true if and
only if the solution set contains the back edge (pj , pi)
on page φ.

For every pair l, r with l+1 < r, due to Lemma 3, we
are interested in only three possibilities for paths with
pl as leftmost and pr as rightmost point. For each path
possibility, we define a variable which is true if and only
the corresponding path exists:

(a) Πa(l, r) represents the edge (pr, pl).
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(b) Πb(l, k, r) represents the path (pr, pk), (pk, pl) for l+
1 < k < r − 1.

(c) For 2-PPB graphs: Πc(l, k, r) represents the path
(pr, pk−1), (pk−1, pk), (pk, pl) for l + 2 < k < r − 1.

Clauses. For every pair i, j, we list all the possible
paths from pj to pi with length bounded by t · |pj − pi|.
Note that for 1-PPB graphs it suffices to consider only
point pairs pi, pi+2 (Lemma 2), and for 2-PPB graphs
only pairs pi, pi+2 and pi, pi+3 (Lemma 1).
If a 1- or 2-PPB graph is maximal, for Lemma 3,

case a holds either l = i, r = j or both (compare to
Fig. 1a). Since there is a minimum spanner with this
property, this reduces the combinations that have to be
considered for Πa(l, r).

Formally, for every pair i, j with j = i+ 2 for 1-PPB
graphs and with j ∈ {i+2, i+3} for 2-PPB graphs, we
define:

(a) Pa(i, j) = {Πa(i, j)} ∨
{
Πa(l, j) | pj−pl

pj−pi ≤ t
}
∨{

Πa(i, r) | pr−pipj−pi ≤ t
}
,

(b) Pb(i, j) =
{
Πb(l, i + 1, r) | pr−plpj−pi ≤ t

}
∨
{
Πb(l, i +

2, r) | pr−plpj−pi ≤ t
}
, and

(c) For 2-PPB graphs: Pc(i, j) =
{
Πc(l, i + 2, r) |

pr−pl + pi+2−pi+1

pi+3−pi ≤ t
}
.

Finally, for every pair i, j with j = i + 2 for 1-PPB
graphs and with j ∈ {i+2, i+3} for 2-PPB graphs, we
add the following clause to the SAT formula:

� Bounded Dilation: Cij = Pa(i, j)∪Pb(i, j)∪Pc(i, j)

For each introduced path variable Πx with x ∈
{a, b, c}, we add the following clause:

� Path-Constraint:
Cx = {Πx} ∪ {¬emq1 ∨ ¬emq2 | (pm, pq) ∈ Πx}

Finally, we add the following constraints for every
edge (pj , pi) which occurs in our SAT formula:

� No-Repetition: ¬eij1 ∨ ¬eij2, and

� Planarity: ¬eijφ ∨ ¬elkφ and ¬eijφ ∨ ¬ekrφ with
φ ∈ {1, 2} and l < i < k < j < r.

4 One-Page Plane Spanners

In previous work [5], an upper lower bound of 2 for the
dilation of one-page plane spanners is shown.

In the following, we present an instance of 6 points,
which improves the lower bound for the minimum dila-
tion of one-page plane spanners to 2.618.

Theorem 4 There are one-dimensional point sets
where no one-page plane t-spanner exists for t < 1 +
Φ− δ, where Φ is the golden ratio Φ = 1.618033 . . . and
δ > 0 is an arbitrarily small value.

Proof. Given δ > 0 we define a point set P such that
for every 1-PPB t-spanner for P holds t ≥ 1 + Φ − δ.
Let P be a set of 6 one-dimensional points with the
following pairwise distances: p2 − p1 = p6 − p5 = Φ,
p3 − p2 = p5 − p4 = ϵ and p4 − p3 = 1 for a small ϵ > 0
(depending on δ).

It suffices to look at all maximal 1-PPB graphs for P .
We enumerate all maximal 1-PPB graphs for P and,
since P is symmetric, prune out every graph, which has
an axial symmetric copy. Computing the dilation of
every remained graph (listed in Appendix Fig. 5), we
conclude that a minimum 1-PPB spanner for P has di-
lation t = 1+ Φ+ϵ

1+ϵ < 1+Φ. For an arbitrary small ϵ > 0,
this value approaches the bound arbitrarily closely. □

Computing optimal 1-PPB spanners. It suffices to
look at maximal 1-PPB graphs to upper bound the min-
imum dilation of one-page plane spanners in general [5].

We solve our SAT formulation for 1-PPB graphs (Sec-
tion 3) for uniform randomly generated point sets. Due
to the limited computation resource, we started our ex-
periments with small point sets. Note that a lower
bound of 2.618, Theorem 4, is reached with only 6
points. (Experimental setup is given in section 2.)

Figure 2 shows the results of our experiments. Since
the dilations are rounded down to three decimal places,
a dilation of 1 seems to occur in the experiments. How-
ever, there is no one-page plane 1-spanner for n > 3.
The maximum and average dilation is listed in Table 1.
As the number n of points grows, we see that the average
dilation increases and the variance shrinks. A possible
explanation for this could be that the maximum dila-
tion requires specific local configurations, which become
more likely when the number of points is increased. The
maximum dilation for n = 6 is significant larger than
the maximum dilation for n = 5. The maximum dila-
tion of the minimum spanner for point sets of sizes n ≥ 6
is very similar, and stays slightly below 1 + Φ ≈ 2.618.

Based on this, we conjecture that 1 + Φ is a general
upper bound on the dilation of the minimum spanner.
This would in particular mean that increasing the num-
ber of points beyond 6, does not result in a larger max-
imum dilation.

5 Two-Page Plane Spanners

Trivially, the dilation of two-page plane spanners is
lower bounded by 1. An upper lower bound for this
value has not been considered yet.
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n 5 6 7 8 9 10 16 32
max 2.0 2.539 2.538 2.518 2.522 2.569 2.593 2.598
avg 1.463 1.591 1.668 1.732 1.779 1.816 1.943 2.059

Table 1: Maximum and average oriented dilation of minimum 1-PPB spanners on uniform randomly generated point
sets of size n.

Figure 2: Boxplot of the dilation of minimum 1-PPB
spanners. The x-axis shows the number of random
points, the y-axis shows the dilation.

Analogous to Section 4, we present an instance of 6
points, which bounds the minimum dilation of 2-PPB
spanners by 1.414.

Theorem 5 There are one-dimensional point sets
where no 2-PPB t-spanner exists for t <

√
2.

Proof. Let P be a set of 6 one-dimensional points with
the following pairwise distances: p2 − p1 = p4 − p3 =
p6 − p5 = 1 and p3 − p2 = p5 − p4 = 1√

2
. We will show

that for every 2-PPB t-spanner for P holds t ≥
√
2.

Since it suffices to consider only maximal 2-
PPB spanners for P , we bruteforce all these span-
ners. We prune out every graph G = (P,E) with
(pj′ , pj), (pj , pi), (pj′ , pi) ∈ E for i+ 1 < j < j′ − 1 and
either i ̸= 1 or j′ ̸= 6, because G has always the same
dilation as G′ = (P,E \{(pj′ , pi)}). Further, taking into
account the symmetry of P , we prune out point sym-
metric duplicates. (All 2-PPB graphs for P are shown in
Appendix Figure 6.) Computing the dilation of every
remained graph, we conclude that a minimum 2-PPB
spanner for P has dilation t =

√
2. □

Computing optimal 2-PPB spanners. We solve our
SAT formulation for 2-PPB graphs (Section 3) for uni-
form randomly generated point sets. Since our lower
bound of 1.414 is reached with only 6 points (Theo-

Figure 3: Boxplot of the dilation of minimum 2-PPB
spanners. The x-axis shows the number of random
points, the y-axis shows the dilation.

rem 5), we start our experiments with small point sets.
(The experimental setup is given in Section 2.)

Figure 3 shows the results of our experiments. Every
dilation is rounded down to three decimals; in partic-
ular the dilation is always strictly larger than 1, since
there is no two-page plane 1-spanner for n > 4. The
maximum and average dilation is listed in Table 2. As
in the experiments for one-page plane graphs, the aver-
age dilation increases and the variants of dilation shrink
with a growing number of points. The maximum dila-
tion of a minimum 2-PPB spanner varies between 1.329
for n = 5 and 1.413 for n = 32, which is below, but very
close to the bound of

√
2 ≈ 1.414.

As for one-page plane spanners, the results of the ex-
periments suggest that

√
2 is also an upper bound on

the minimum dilation.

Bounded edge-distances For one-page plane span-
ners, there are point sets, where no minimum spanner
has a constant edge-distance. (An example is the point
set with pairwise distances pi − pi−1 = 2i.) For every
considered point set, we computed a minimum 2-PPB
spanner with edge-distance of at most 5. Therefore, in
the last experiment, we explore the edge-distances in 2-
PPB spanners. We compare the minimum spanner to
the minimum spanner with bounded edge-distance.
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n 5 6 7 8 9 10 16 32
max 1.329 1.412 1.412 1.412 1.412 1.413 1.413 1.413
avg 1.076 1.076 1.096 1.112 1.126 1.138 1.184 1.236

Table 2: Maximum and average oriented dilation of minimum 2-PPB spanners on uniform randomly generated point
sets of size n.

16 32 64 128 256 512
3 2% 1% 0% 0% 0% 0%
4 92% 95% 92% 90% 91% 91%
5 100% 100% 100% 100% 100% 100%

Table 3: Percentage of instances where a minimum
spanner with edge-distance constraint has the same dila-
tion than a minimum spanner without constraints. The
row indices are the maximal allowed edge-distances and
the column indices are for the number of random points.

For each d ∈ [3, 20], we computed for each generated
random instance a minimum spanner where for every
back edge (pj , pi) it holds j − i ≤ d and a minimum
spanner without constraints. Due to the limited compu-
tation resource, our extract solver only provides results
for 91 (of 100) largest instances of 512 points.

We first consider the optimality ratios: The percent-
age of instances where a minimum spanner with only
short edge-distance edges has the same dilation as a
minimum spanner without constraints. The ratios are
shown in Table 3. In our experiment, for each of the
solved instances, a minimum spanner exists where the
edge-distance of each edge is bounded by 5.

We proceed to check the qualities of spanners with
only short edge-distance edges. Here we explain the re-
sult of instances of 64 points (see Fig. 4). The results for
other point set sizes are similar (see Appendix Fig. 7).
It is shown that from an edge-distance of 4, the range
of dilations is quite similar, and from an edge-distance
of 5 it is not changing anymore.

6 Conclusion

In this work, we experimentally explored the minimum
dilation of oriented spanners on one-dimensional point
sets. Specifically, we studied the worst-case (i.e. supre-
mum of) the minimum dilation taken over all point sets.

The minimum dilation in the experiments stayed be-
low 1 +Φ and

√
2 for one- and two-page plane oriented

spanners, respectively, where Φ is the golden ratio. In-
terestingly, the worst-case seems to already occur for
point sets of size 6.

The experiments provide new lower bounds on the
worst case minimum dilation. The current gap for the
worst-case minimum dilation t is 1+Φ ≤ t ≤ 5 for min-
imum one-page plane spanners, where Φ is the golden

3 unltd.4 5 
edge distance

1.2

1.4

1.6

1.8

2.0

di
la

tio
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Figure 4: Boxplot of the dilation of minimum 2-PPB
spanners with edge-distance constraints on point set of
64 points. The x-labels indicate the allowed longest
edge-distance in the solutions, “unltd.” is for minimum
2-PPB spanners without edge-distance constraints.

ratio, and
√
2 ≤ t ≤ 2 for minimum 2-PPB spanners.

Closing these gaps is an open problem. Based on the
experiments we conjecture that that the lower bounds
are tight.

The experiments suggest that there are minimum 2-
PPB spanners only using “short” back edges, i.e., back
edges (pj , pi) with |j − i| ≤ 5 (edge-distance bounded
by 5). If this property holds in general, it could be used
as a base of a polynomial time algorithm, computing
the spanner from left to right by a suitable dynamic
program. Thus, following these experimental results,
we aim to prove this property in future work.
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Appendix
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Φ+ϵ

, Φ+ϵ
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} > 2
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1Φ ε Φε

(c) t = 1 + max{ 1+Φ+ϵ
Φ+ϵ

, Φ+ϵ
1+ϵ

} > 2

p1 p2 p3 p4 p5 p6

1Φ ε Φε

(d) t = 1 + 2Φ+ϵ
1+ϵ

p1 p2 p3 p4 p5 p6

1Φ ε Φε

(e) t = 1 + Φ+ϵ
1+ϵ

< 1 + Φ

Figure 5: All 1-PPB graphs for P with p2 − p1 = p6 −
p5 = Φ, p3 − p2 = p5 − p4 = ϵ and p4 − p3 = 1, taking
account to the symmetry of the point set, and their
dilation t. Graphs with the same dilation are drawn in
one subfigure with different coloured edges.
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Figure 7: Boxplots of the oriented dilation of minimum 2-PPB spanners on uniform randomly generated point sets
for bounded edge-distance. The x-axis shows the bound on the edge-distance, the y-axis shows the oriented dilation.
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Fast Area-Weighted Peeling of Convex Hulls for Outlier Detection∗

Vinesh Sridhar† Rolf Svenning‡

Abstract

We present a novel 2D convex hull peeling algorithm for
outlier detection, which repeatedly removes the point on
the hull that decreases the hull’s area the most. To find
k outliers among n points, one simply peels k points.
The algorithm is an efficient heuristic for exact meth-
ods, which find the k points whose removal together
results in the smallest convex hull. Our algorithm runs
in O(n log n) time using O(n) space for any choice of
k. This is a significant speedup compared to the fastest
exact algorithms, which run in O

(
n2 log n+ (n− k)3

)

time using O
(
n log n+ (n− k)3

)
space by Eppstein

et al. [12, 14], and O
(
n log n+

(
4k
2k

)
(3k)kn

)
time by

Atanassov et al. [4]. Existing heuristic peeling ap-
proaches are not area-based. Instead, an approach by
Harsh et al. [17] repeatedly removes the point furthest
from the mean using various distance metrics and runs
in O(n log n+ kn) time. Other approaches greedily peel
one convex layer at a time [20, 2, 19, 30], which is
efficient when using an O(n log n) time algorithm by
Chazelle [7] to compute the convex layers. However, in
many cases this fails to recover outliers. For most values
of n and k, our approach is the fastest and first practi-
cal choice for finding outliers based on minimizing the
area of the convex hull. Our algorithm also generalizes
to other objectives such as perimeter.

1 Introduction

When performing data analysis, a critical first step is
to identify outliers in the data. This has applications
in data exploration, clustering, and statistical analy-
sis [31, 9, 23]. Typical methods of outlier detection such
as Grubbs’ test [15] are based in statistics and require
strong assumptions about the distribution from which
the sample is taken. These are known as parametric out-
lier detection tests. If the sample size is too small or the
distribution assumptions are incorrect, parametric tests
can produce misleading results. For these reasons, non-
parametric complementary approaches based in compu-
tation geometry have emerged. Our work follows this

∗This work is supported in part by Independent Research Fund
Denmark grant 9131-00113B and a fellowship from the Depart-
ment of Computer Science at UC Irvine.

†University of California, Irvine, vineshs1@uci.edu
‡The Department of Computer Science, Aarhus University,

rolfsvenning@cs.au.dk

Figure 1: Here point v was peeled from the convex hull
and replaced by v′. The previous triangle △tuv for u
contained no points. However, when u’s triangle be-
comes △tuv′, the set of points ∆A affect the sensitivity
σ(u) of u. The size of ∆A may be Ω(n).

line of research and is based on the fundamental notion
of a convex hull. For a set of points P , the convex hull
is the smallest convex set containing P [10].

There are numerous definitions of outliers [22, 28, 3],
but a general theme is that points without many close
neighbors are likely to be outliers. As such, these out-
lying points tend to have a large effect on the shape
of the convex hull. Prior work has applied this insight
in different ways to identify possible outliers, such as
removing points from the convex hull to minimize its
diameter [1, 13], its perimeter [11], or its area [14, 12].
Motivated by the last category, we will consider likely
outliers to be points whose removal causes the area of
the convex hull to shrink the most. We propose a greedy
algorithm that repeatedly removes the point p ∈ P such
that the area of P ’s convex hull decreases the most. We
call the amount the area would decrease if point p is re-
moved its sensitivity σ(p). The removed point is guar-
anteed to be on the convex hull, and such an algorithm
is known as a convex hull peeling algorithm [19, 30]. To
find k outliers, we peel k points. Our algorithm is con-
ceptually simple, though it relies on the black-box use
of a dynamic (or deletion-only) convex hull data struc-
ture [18, 6]. We assume that points are in general posi-
tion. This assumption may be lifted using perturbation
methods [25].
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Figure 2: This figure demonstrates the limitations of our
heuristic weighted-peeling approach. Clearly, the red
squares are outliers, but because there are two squares
close-by, the sensitivity of the red squares is minimal.
Thus, our algorithm may peel all the valid points before
peeling the outlier squares. Note that two k-peels for
k = 2 would be sufficient to remove all outliers.

The main challenge is maintaining the sensitivities as
points are peeled. When peeling a single point v, there
may be Ω(n) new points affecting the sensitivity σ(u)
for a different point u ̸= v, as in Figure 1. In that case,
naively computing the new sensitivity σ(u) would take
Ω(n) time. Nevertheless, we show that our algorithm
runs in O(n log n) time for any 1 ≤ k ≤ n.

2 Related work

The two existing approaches for finding outliers based
on the area of the convex hull took a more ideal ap-
proach. They considered finding the k points (outliers)
whose removal together causes the area of the convex
hull to decrease the most. We call this a k-peel and
note that it always yields an area smaller or equal to
that of performing k individual 1-peels. It is not hard
to come up with examples where the difference in area
between the two approaches is arbitrarily large such
as in Figure 2. Still, these examples are quite artifi-
cial and require that outliers have at least one other
point close by. More importantly, these methods are
combinatorial in nature, and much less efficient than
our algorithm. The state-of-the-art algorithms for per-
forming a k-peel run in O

(
n2 log n+ (n− k)3

)
time and

O
(
n log n+ (n− k)3

)
space by Eppstein [12, 14] and

O
(
n log n+

(
4k
2k

)
(3k)kn

)
time by Atanassov et al. [4].

While excellent theoretical results, for most values of
1 ≤ k ≤ n and n, the running time of both of these
algorithms is prohibitive for practical purposes. Our
contribution is a fast and practical heuristic for these
ideal approaches. There are also several results for find-
ing the k points minimizing other objectives such as the
minimum diameter, perimeter, or area-enclosing rectan-
gle [13, 29].

Figure 3: This example shows points drawn uniformly
from a target disk P . Clearly, the outliers are the points
marked as red squares. It shows the downside of peeling
based on depth since many points have to be peeled be-
fore reaching the outliers on the second and third layers.
In particular, if there are n points drawn uniformly from
P , then its convex hull has expected size O

(
n1/3

)
[16].

Another convex hull peeling algorithm is presented
in [17]. Unlike in area-based peeling, they repeatedly
remove the point furthest from the mean under various
distance metrics. Letting d be the time to compute the
distance between two points, their algorithm runs in
O(n log n+ knd) time, which is also significantly slower
than our algorithm for most values of k. Since they
maintain the mean of the remaining points during the
peeling process, each peel takes Θ(n) time.
Some depth-based outlier detection methods also

use convex hulls. They compute a point set’s con-
vex layers, which can be defined by iteratively com-
puting P \ CH(P ) and are computable in O(n log n)
time [7]. Here, points are deleted from the outermost-
layer-in [20, 2, 19, 30]. While efficient, the natural ex-
ample in Figure 3 is a bad instance for this approach.

3 Results

The main result of our paper is Theorem 1, that
there exists an algorithm for efficiently performing area-
weighted-peeling.

Theorem 1 Given n points in 2D, Algorithm 1 per-
forms area-weighted-peeling, repeatedly removing the
point from the convex hull which causes its area to de-
crease the most, in O(n log n) time.

To prove Theorem 1, we derive Theorem 5, which
bounds the total number of times points become active
in any 2D convex hull peeling process to O(n).

Definition 3.1 (Active Points) Let (t, u, v) be con-
secutive points on the first layer in clockwise order. A
point p is active for u if, upon deleting u and restoring
the first and second layers, p moves to the first layer.
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Intuitively, the active points are the points not on the
convex hull that affect the sensitivities. Note that the
active points form a subset of the points on the second
convex layer. We define A(u) to be the set of active
points for point u in a given configuration. Further-
more, all points in A(u) can be found by performing
gift-wrapping starting from u’s counterclockwise neigh-
bor t while ignoring u. We use this ordering for the
points in A(u). In Theorem 7, we show that our algo-
rithm generalizes to other objectives such as perimeter
where the sensitivity only depends on the points on the
first layer and the active points.

4 Machinery

In this section, we describe some of the existing tech-
niques we use. To efficiently calculate how much the
hull shrinks when a point is peeled, we perform tangent
queries from the neighbours of the peeled point to the
second convex layer. The tangents from a point q to a
convex polygon L can be found in O(log n) time both
with [27] and without [21] a line separating q and L. In
our application, such a separating line is always avail-
able, and either approach can be used. Tangent queries
require that L is represented as an array or a balanced
binary search tree of its vertices ordered (cyclically) as
they appear on the perimeter of L. To allow efficient
updates to L we use a binary tree representation that
is leaf-linked such that given a pointer to a vertex its
successor/predecessor can be found in O(1) time.

The convex layers of n points can be computed in
O(n log n) time using an algorithm by Chazelle [7].
Given l convex layers, after a single peel they can be
restored in O(l log n) time (Lemma 3.3 [24]). However,
for our purposes we only need the 2 outermost layers
for area calculations. As such, we explicitly maintain
the two outermost layers L1 and L2, and we store all re-
maining points P\

{
L1 ∪ L2

}
in a center convex hull. To

restore L1 we use tangent queries on L2 as in [24]. To re-
store L2 we use extreme point queries on the center con-
vex hull which we maintain using a semi-dynamic [18] or
fully-dynamic [6] convex hull data structures supporting
extreme point queries in worst case O(log n) time and
updates in amortized O(log n) time.

5 Area-Weighted-Peeling Algorithm

In this section, we describe Algorithm 1 in detail and
show that its running time is O(n log n).
At a high level, we want to repeatedly identify and

remove the point which causes the area of the convex
hull to decrease the most. Such an iteration is a peel,
and we call the amount the area would decrease if point
u was peeled the sensitivity σ(u) of u. To efficiently
find the point to peel, we maintain a priority queue Q

Figure 4: Using u’s neighbors, we can perform two tan-
gent queries on L2 to recover the first and last active
point of u, labeled us and ue respectively, in O(log n)
time. Because we represent L2 as a leaf-linked tree, we
can walk along L2 to recover all points of A(u). The
shaded part of the figure represents σ(u).

on the sensitivities of hull points. Only points on the
convex hull may have positive sensitivity, and in lines 2-
6 we compute the initial sensitives of the points on the
convex hull and store them in Q. For a hull point u,
to compute its sensitivity σ(u) we find its active points
A(u). Note they must be on the second convex layer,
and if u’s neighbors are t and v, then the points A(u) are
in the triangle△tuv. In line 1 we compute the two outer
convex hull layers represented as balanced binary trees.
That allows us to compute A(u) using tangent queries
on the inner layer from t and v. Then σ(u) can be found
by computing the area of the polygon D(t ◦ v ◦A(u)).

As points are peeled (lines 8-17) layers L1 and L2

must be restored. To restore L1 when point u is peeled
(line 9) we perform tangent queries on L2 as in [24] to
find u’s active points A(u) (line 10) and move A(u) from
L2 to L1. See Figure 4 for an example of tangent queries
from L1 to L2.

To restore the broken part of L2, we perform extreme
point queries on the remaining points efficiently using
a dynamic convex hull data structure DCH (line 7) as
in [18] or [6]. As described in Lemma 6, A(u) is always
contiguous on L2. Therefore, removing A(u) from L2

requires us to restore it between two ”endpoints” a and
b. The first extreme point query uses line ab in the
direction of u. If a point z from DCH is found then at
least two more queries are performed with lines za and
zb. In general, if k points are found then the number of
queries is 2k + 1. The k points are deleted from DCH .
This all happens on line 11.

Next, we compute the sensitivities of the new points
on the hull (line 14) and insert them into the priority
queue. Finally, we update the sensitivities of u’s neigh-
bors t and v (line 17), which, by Lemma 2(4), are the
only two points already in Q whose sensitivity changes.
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Algorithm 1: Weighted peeling

Input: A set of n points P in 2D
1 L1, L2 ←− the first two convex layers of P
2 Q←− empty max priority queue

3 for i = 1 to
∣∣L1
∣∣ do

4 u←− L1
i

5 Compute sensitivity σ(u) for u
6 Q.insert(u, σ(u))

7 DCH ←− a dynamic convex hull data structure

on P \
{
L1 ∪ L2

}

8 for i = 1 to n do
9 u←− Q.extractMax

10 A(u)←− u’s active points
11 Delete u from L1 and update L1, L2 and

DCH

12 for i = 1 to |A(u)| do
13 ū←− A(u)i
14 Compute sensitivity σ(ū) for ū
15 Q.insert(ū, σ(ū))

16 t, v ←− neighbors of u in L1

17 Update Q[t] and Q[v]

5.1 Analysis

The hardest part of the analysis is showing that the
overall time spent on lines 14 and 17 is O(n log n).
We first show that, excluding the time spent on these
lines, the running time of Algorithm 1 is O(n log n). In
line 1 we compute the first and second convex layers
in O(n log n) time by running any optimal convex hull
algorithm twice. In lines 2 to 6, we compute the ini-
tial sensitivities by finding the points active for each
u ∈ L1. As described above, we can do this by apply-
ing two tangent queries, allowing us to recover the first
and last extreme point for u. We can walk along L2 be-
tween them to recover A(u). Once A(u) is found for each
u, we find σ(u) by computing the area of the polygon
D(t ◦ u ◦ v ◦A(u)), where t and v are u’s neighbors. By
Lemma 2(1), in this initial configuration each point on
L2 is active in at most three triangles. Thus, we make
in total O

(
|L2|

)
= O(n) tangent queries, each of which

costs O(log n) time. Since the area of a simple polygon
can be computed in linear time [26], all the area compu-
tations take

∑
u∈L1 Θ(1 + |A(u)|) = O

(∣∣L1
∣∣+
∣∣L2
∣∣) =

O(n) time. Therefore, the overall time to initialize the
priority queue is O(n log n).

Initializing DCH in line 7 takes O(n log n) time [18].
In line 10, we can perform tangent queries on L2 from
t and v to find the first and last active points of u. In
line 11, it will take no more thanO(n) tangent queries to
restore L1 and L2 throughout the algorithm by charging
the queries to the points moved from the center con-
vex hull to L2 or from L2 to L1. Using an efficient

dynamic convex hull data structure, it takes O(log n)
amortized time to delete a point and thus O(n log n)
time overall [18, 6]. We add points to the priority queue
n times, delete points from the priority queue n times,
and perform O(1) priority queue update operations for
each iteration of the outer loop on line 8. Excluding
lines 14 and 17 this establishes the overall O(n log n)
running time.

To bound the total time spent on line 14 toO(n log n),
we prove Theorem 5, bounding the total number of
times points becomes active to O(n). Computing σ(ū)
in line 14 requires us to find A(ū), where ū is a new point
added to the first layer. From the theorem, it takes
O(n log n) time to compute A(ū) for every ū. In ad-
dition, because it takes Θ(1 + |A(ū)|) to compute σ(ū)
from A(ū), overall it takes O(n) time to compute σ(ū)
for every ū.

To bound the total time spent on line 17 on updating
the sensitivities of u’s neighbors to O(n log n), we prove
Lemma 6. Together with Theorem 5, it implies the
desired result.

6 Geometric properties of peeling

In this section, we develop an amortized analysis of
peeling to show that lines 14 and 17 can be computed
efficiently. We ultimately aim to show that the num-
ber of times that any point becomes active for any tri-
angle is O(n), bounding the amount of work done to
initialize new triangles to O(n log n). Then we show
that the amount of work done to update the sensitiv-
ities of neighbor points is proportional to the number
of new active points for them and an additive O(log n)
term. Thus, updating the sensitivities over all n itera-
tions takes O(n log n).

6.1 Preliminaries

When considering outer hull points, we use the notation
△tuv for the triangle formed by u, its counterclockwise
neighbor t, and its clockwise neighbor v. For a set of
ordered vertices V we let D(V ) be the polygon formed
by the points in the (cyclical) order. We say p ∈ D(V )
if p is strictly inside the polygon.

The following Lemma 2 combines a number of simple
but useful propositions.

Lemma 2 For a set of points P , the following proposi-
tions are true:

1. Any point p ∈ P is active for at most three points
on the first layer.

2. Let △tuv be a triangle for consecutive vertices
(t, u, v) on the first layer and let p ̸= q be points
p ∈ △tuv and q ∈ △tpv. Then q /∈ A(u).

232



CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

3. Let p be a point on any layer k. After deleting any
point q ̸= p and reconstructing the convex layers, p
is on layer k − 1 or k.

4. Let (t, u, v) be consecutive vertices on the first layer
L1. Then if u is deleted, among the vertices in L1,
only the sensitivities of vertices t and v change.

5. For adjacent points (u, v) on the hull, |A(u) ∩
A(v)| ≤ 1.

Proof. See Section 7.2 in the appendix. □

6.2 Bounding the active points

We will show that once a point is active for a hull point,
it remains active for that hull point until the point is
moved to the first layer. This implies a much stronger
result by Lemma 2(1): over the entire course of the al-
gorithm, a point becomes active for at most three other
points. To do so, we first show that for each peel the
active points A(u) remain in u’s triangle (Lemma 3) and
second that the points inA(u) remain active (Lemma 4).

Lemma 3 Given a set of points P , for all adjacent hull
points (u, v) and for all points p ∈ A(u) \ A(v), if v is
deleted then p still remains within u’s triangle.

Proof. Let t be u’s other neighbor, and w.l.o.g. let the
clockwise order on the hull be (t, u, v). Then if v′ is u’s
new neighbor after deleting v, the clockwise order on
the new hull will be (t, u, v′). Because p is active for u
before v is deleted, p ∈ △tuv.
First, we consider the case where v′ /∈ △tuv. We

want to show that p ∈ △tuv′. Equivalently, that p is

in the intersection of the three half-planes
−→
tu,
−→
uv′, and−→

tv′. Clearly, p must satisfy the half-planes
−→
tu and

−→
uv′ as

these coincide with hull edges. In addition, since v′ /∈
△tuv, the half-plane for

−→
tv is a subset of the half-plane

for
−→
tv′. Because p ∈ △tuv, p satisfies

−→
tv . Therefore, p

must satisfy
−→
tv′.

Now we consider the case where v′ ∈ △tuv. Assume
that p /∈ △tuv′. Then because we know that p ∈ △tuv,
either p ∈ △tv′v or p ∈ △uv′v. If p ∈ △tv′v, by
Lemma 2(2), p could not have been active for u prior to
deleting v. If p ∈ △uv′v, p is now outside of the convex
hull. Either way, this is a contradiction.

□

The following Lemma 4 shows that if p is in A(u),
it remains in A(u) until moved to the first layer, after
which it never becomes active again. It also shows that
the active points A(u) only change by adding or deleting
points from either end, and thus can easily be found.

Lemma 4 Given a set of points P , for all hull points u
and v and for all points p ∈ A(u) \ A(v), upon deleting
v, p is in A(u)′, u’s new set of active points.

Proof.

Case 1 (u is not adjacent to v)

If u is not adjacent to v, there are no changes to △u
upon deleting v, and thus, A(u) = A(u)′.

For the following cases, assume that u was adjacent
to v. Then by Lemma 3, p is still in the triangle defined
by u even after deleting v. Also, w.l.o.g. let (u, v) be
the clockwise ordering of the points, and let v′ be u’s
new neighbor.

Case 2 (v′ ∈ A(u))

By Lemma 2(5), A(u) ∩ A(v) = v′. By Lemma 3, all
points A(u)\{v′} are in△tuv′. Because the second layer
is a convex hull, each consecutive pair of points (a, b) in

t ◦ A(u) define a half-plane
−→
ab with only points from

the first layer to the left of each half-plane. This is still
the case after deleting v by Lemma 3. Since the only
new points on the first layer are A(v) then all points
in A(u) \ {v′} remain on the second layer. Thus, the
gift-wrapping starting from t wraps around all points
in A(u) \ {v′}. Gift wrapping can hit no new points
because, if that were true, there must be some point on
the second layer to the left of one of the half-planes in
described above. Thus, A(u)′ = A(u) \ {v′}.

Case 3 (v′ /∈ A(u))

Let ue be the last point A(u). Similar to the previ-
ous case, the gift-wrapping certifies all points in A(u).
Again, wrapping will not hit new active points be-
fore wrapping around ue because that would imply the
points hit were to the left of the half-planes described
previously. When wrapping continues around ue, sev-
eral new active points may appear, until the wrapping
terminates at v′. Thus, A(u) ⊆ A(u)′. □

Theorem 5 For any 2D convex hull peeling process on
n points the total number of times any point becomes
active in any triangle is at most 3n.

Proof. This follows directly from the results of
Lemma 2(1) and Lemma 4. □

6.3 Updating sensitivities

Next, we show that the total time to update the sen-
sitivities in line 17 when peeling all n points takes
O(∆ + n log n) time. Here ∆ is the the number of times
any point becomes active for any triangle. Theorem 5
proves that ∆ = O(n). The following lemma shows
that the sensitivity of a point u can be updated in
time proportional to the increase to |A(u)| and an addi-
tive O(log n) term. Figure 5 shows an example of how
the sensitivity of a point changes when its neighbor is
peeled.
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Figure 5: This figure shows how the sensitivity σ(u)
changes when point v is peeled. The point q is the inter-
section of the tangent from v to ue and the tangent from
u to v′, where ue is the last active point in A(u) and v′ is
the first active point in A(v). After the peel, v′ replaces
v as u’s neighbor, and the points ∆A are newly active
for u. The sensitivity σ(u) before peeling v was equal to
the area of D(t ◦ u ◦ v ◦A(u)). After peeling v, the sen-
sitivity σ(u) equals the area ofD(t ◦ u ◦ v′ ◦∆A ◦A(u)).
Note how this can be computed in O(|∆A|) time from
σ(u) before the peel of v by subtracting the red area of
△uvq and adding the green area of D(ue ◦ q ◦ v′ ◦∆A).

Lemma 6 Let (u, v) be points on the first layer. Con-
sider a peel of v where δu new points become active
points for u. Then the updated sensitivity σ(u) can be
computed it Θ(δu + log n) time, excluding the time to
restore the second and first layer.

Proof. The sensitivity σ(u) is equal to the area of the
polygon U = D(t ◦ u ◦ v ◦A(u)). By the shoelace for-
mula, the area of U can be computed as the sum S(U) of
certain simple terms for each of its edges [5, 8]. We con-
sider how U , and thus S(U), changes when v is peeled.
Inspecting the proof of Lemma 4, we see that at most
two vertices are removed from U and at most 1 + δu
vertices are added to U . Furthermore, all the new ver-
tices are located contiguously on the restored second
layer and can be found in O(δu + log n) time using a
tangent query from u’s new neighbor which replaces v.
To update σ(u) = S(U), we simply add and subtract
the appropriate O(δu) terms depending on the removed
and added edges.

□

7 Generalization and open problems

Theorem 7 shows that Algorithm 1 generalizes straight-
forwardly to other objectives such as peeling the point
that causes the perimeter of the convex hull to decrease
the most each iteration.

Theorem 7 Let u be a point and O an objective where
σO(u) is the sensitivity of u under O. Consider the
following three conditions:

C1: If u /∈ L1, then σO(u) = 0.

C2: If u ∈ L1, then σO(u) > 0, and σO(u) depends only
on u, u’s neighbors and its active points A(u).

C3: If a single point p is added or removed from A(u),
then provided σO(u) and the neighbors ai and aj of
p in A(u), the new sensitivity σO(u)

′
can be com-

puted in O(log n) time.

If O satisfies the above conditions, then Algorithm 1
runs in O(n log n) time for objective O.

Proof. By conditions C1 and C2, it is always a point
u on the first layer that is peeled. Furthermore, when u
is peeled only the sensitivities of the new points on the
first layer and the neighbors of u must be updated since
they are the only points for which their active points
or neighbors change. Thus, Algorithm 1 can be used
for objective O. Now we will show that the runtime of
Algorithm 1 remains O(n log n).

First, observe that all parts unrelated to computing
sensitivities behave the same and still take O(n log n)
time. By condition C3, for a point u on the first
layer, its sensitivity σO(u) only depends on its neigh-
bors and active points A(u). As described in the proof
of Lemma 6, when the set of points that affect σO(u)
changes, these points are readily available. The total
number of neighbor changes is O(n) since, in each iter-
ation, only the neighbors of the points adjacent to the
peeled point change. The total number of changes to
active points is O(n) by Theorem 5. If there are mul-
tiple changes to the active points in one iteration, such
as when deleting one of u’s neighbors, we perform one
change at a time and, by condition C3, the total time
to update sensitivities is O(n log n). □

For concrete examples, we show how the three objec-
tives area (OA), perimeter (OP ), and number of active
points (ON ) fit into this framework.

Let f(σ(u) , ai, p, aj) = σ(u) − d(ai, aj) + d(ai, p) +
d(p, aj) be a function for computing the sensitivity σ(u)
when p is added to A(u) between ai and aj (the func-
tions where a point is removed from A(u) or a neighbor
of u changes are similar). For f to match each of the
objectives it is sufficient to implement d(·, ·) as follows
for points a, b ∈ R2:

OA: d(a, b) =
1
2 (a2b1 − a1b2)

OP : d(a, b) =

√
(b2 − a2)2 + (b1 − a1)2

ON : d(a, b) = 1
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The case with OA is based on the shoelace formula.
Additionally, for ON to satisfy condition C2, we add 1
when computing the sensitivity of u ∈ L1 to ensure that
σ(u) > 0 even if |A(u)| = 0. For the three objectives,
f takes O(1) time to compute satisfying the O(log n)
time requirement from condition C3.

7.1 Open problems

The first open problem is extending the result to R3 or
higher. Directly applying our approach requires a dy-
namic 3D convex hull data structure, and Theorem 5
has to be extended to 3D. Second, is it possible to im-
prove the quality of peeling by performing z-peels, even
for z = 2 in O(n) time? Third, is there an efficient
approximation algorithm for k-peeling?
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Appendix

7.2 Proof of Lemma 2

Lemma 2(1) Fix a point set P . Any point p ∈ P is active
in at most three triangles.

Proof. First, note that a point can only be active for a
hull point u if it is located inside △u, so it is sufficient to
show that any p is strictly inside at most three triangles.
In addition, one can prove this by showing that △u only
intersects with its neighbors’ triangles △t and △v.

Consider some △z, such that z is not a neighbor of u.
That is, u is not one of the vertices of △z. If △z inter-
sects with △u, then either a vertex of △z is inside △u or
the convex hull is a self-intersecting polygon, both violating
convexity.

□

Lemma 2(2) Let △tuv be a triangle for consecutive ver-
tices (t, u, v) on the first layer and let p ̸= q be points
p ∈ △tuv and q ∈ △tpv. Then q /∈ A(u).

Proof. By definition, p ∈ D(t ◦ v ◦A(u)) or p ∈ A(u). Ei-
ther way, q ∈ △tpv implies that q ∈ D(t ◦ v ◦A(u)), so
q ̸∈ A(u). □

Lemma 2(3) Let p be a point on any convex layer k. Af-
ter deleting any point q ̸= p and reconstructing the convex
layers, p is on layer k − 1 or k.

Proof. First we show that p never moves inward to layer
k′ > k. Consider the outermost layer L1. By a property of
convex hulls, every point v inside the convex hull is a convex
combination of the hull points whereas any point u ∈ L1 is
not a convex combination of L1 − {u}. If deleting q causes
p ∈ L1 to descend to a layer inside L1, that implies that p
is a convex combination of some subset of P − {q, p}. This
contradicts the fact that p is not a convex combination of
L1 − {p} and by extension is not a convex combination of
P −{p}. Because of the recursive definition of convex layers,
the proof for subsequent layers is symmetric.

Now we will show that p never moves up more than one
layer at a time. This is clearly true for L1 and L2 because

only one point is completely removed from the structure at
at time (i.e. shifts to layer 0). For layers k ≥ 3, consider a

point p on layer k that moves to layer k′ ≤ k − 2. Let L∗k′

be the set of points on layer k′ after deleting q. Let Lk−1 be
the set of points on layer k − 1 before deleting q.

Because p ∈ L∗k′
, no convex combination of the points

in L∗k′ − {p} equals p by convexity. By the inductive hy-

pothesis, all points on Lk−1 are convex combinations of L∗k′

because upon deleting q no point on Lk−1 advances above
layer k′. Furthermore, they are all convex combinations of
L∗k′ − {p} as p itself is a convex combination of Lk−1. But

if p is not a convex combination of L∗k′ − {p}, and all the

points on layer k− 1 are convex combinations of L∗k′ −{p},
then prior to deleting q, p was above layer k − 1, which is a
contradiction. □

Lemma 2(4) Let (t, u, v) be consecutive vertices on the first
layer L1. Then if u is deleted, among the vertices in L1, only
the sensitivities of vertices t and v change.

Proof. Consider a vertex z not adjacent to u. By the same
arguments as in the proof of Lemma 2(1), the vertices defin-
ing △z do not change upon deleting u because it does not
intersect △u. In addition, because their triangles do not in-
tersect, |A(u)∩A(z)| = 0. Therefore, no points are removed
from A(z) upon deleting u.

Lastly, we will show that no points are added to A(z)
upon deleting u. Assume that there is some point p added
to A(z) when we delete u. But if p satisfies the conditions of
being active for z and △z did not change upon deleting u,
it should have been active for z before u was deleted, which
is a contradiction.

Because △z and A(z) do not change upon deleting u, it
must be that σ(z) remains the same. □

Lemma 2(5) For adjacent points (u, v) on the hull, |A(u)∩
A(v)| ≤ 1.

Proof. We assume the contrary. Let p ̸= p′ be two points
such that p, p′ ∈ A(u)∩A(v). By the definition of active and
Lemma 2(3), p and p′ must be on the second layer. W.l.o.g.
let (u, v) be the clockwise ordering of the points on the first
layer. In addition, let t be u’s counterclockwise neighbor.

Say that p is the first point in A(v). Then we have the
tangent line −→up that defines p. By definition of tangent lines,
no point on the second layer can be to the left of −→up. But for
p′ to be active for v, then p′ must be to the left of −→pv. The
only way to satisfy both half-planes is for p′ to be placed
such that p ∈ △tp′v, in which case by Lemma 2(2) p cannot
be in A(u), which is a contradiction.

□
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Geometric Localization of Homology Cycles

Amritendu Dhar∗ Vijay Natarajan† Abhishek Rathod‡

Abstract

Computing an optimal cycle in a given homology
class, also referred to as the homology localization
problem, is known to be an NP-hard problem in general.
Furthermore, there is currently no known optimality
criterion that localizes classes geometrically and admits
a stability property under the setting of persistent
homology. We present a geometric optimization of
the cycles that is computable in polynomial time and
is stable in an approximate sense. Tailoring our
search criterion to different settings, we obtain various
optimization problems like optimal homologous cycle,
minimum homology basis, and minimum persistent
homology basis. In practice, the (trivial) exact
algorithm is computationally expensive despite having
a worst case polynomial runtime. Therefore, we
design approximation algorithms for the above problems
and study their performance experimentally. These
algorithms have reasonable runtimes for moderate sized
datasets and the cycles computed by these algorithms
are consistently of high quality as demonstrated via
experiments on multiple datasets.

1 Introduction

Homology groups and their persistent version called
persistent homology play a central role in topological
data analysis (TDA), a thriving research field of equal
interest to computer scientists, mathematicians and
data scientists [17, 18]. The ranks for homology groups
and the barcodes for persistent homology groups have
been extensively studied both from algorithmic and
mathematical perspectives. With the growth of TDA in
applications, there is an increasing need for computing
homology cycles that localize given homology classes
or constitute a basis for the homology group. Often
applications require these cycles to be tightest possible
or geometry-aware in some sense rather than being
completely oblivious of the embedding space. This
demand has led to studying homologous or basis cycles

∗Department of Computer Science and Automation, Indian
Institute of Science, Bangalore, amritendud@iisc.ac.in

†Department of Computer Science and Automation, Indian
Institute of Science, Bangalore and Zuse Institute, Berlin,
vijayn@iisc.ac.in

‡Department of Computer Science, Ben Gurion University of
the Negev, arathod@post.bgu.ac.il

under various optimization criteria. A number of
optimization results in this direction have now appeared
in the literature both in persistent and non-persistent
settings [4, 5, 7, 8, 10–13,16,27].

The quality of the optimal cycles depends on the
choice of a weight function. For instance, one may
choose a weight for each p-cycle ζ to be the sum of
non-negative weights assigned to each p-simplex in ζ.
Optimizing this measure over a class of a given cycle
ζ localizes the class [ζ] in the sense that it selects a
cycle in the class with the least weight. Unfortunately,
this problem is known to be NP-hard in general [7, 10]
except for some special cases [13, 15]. Polynomial
time algorithms are known for certain optimization
criteria [9, 15] or in lower dimensions [4, 7, 16,20].

Outline and Contributions. Precisely, we achieve
the following. Given a simplicial complex K with the
vertices in a point set P ⊂ Rd and linearly embedded
simplices, we define the weight of a cycle ζ as the
radius of the smallest (d − 1)-sphere that encloses ζ.
This measure, in some sense, captures the locality of
ζ with respect to its geometry. In Section 4, we
study how homology localization serves as an archetype
application. Then, we solve other versions of the
optimal cycle problem including minimum homology
basis in Section 5 and minimum persistent homology
basis in Section 6. For the persistent version, in
Appendix B, we show optimal persistent homology
bases are stable in an approximate sense. For
previous results on optimal persistent cycles [11,15] such
stability is not known. The approximation algorithms
described in this paper have been implemented. In
Section 7, we report experimental results for the
approximate algorithms. In our experiments, we found
that even the approximate algorithms return cycles
of consistently high quality confirming the value of
ℓ2–radius as an optimization criterion. We further
compare experimental results on persistent homology
with that of PersLoop [28], which is a state of the art
software for computing optimal persistent 1-cycles. We
visually infer that our cycles are "tighter" than those of
PersLoop on multiple datasets of practical importance.

Related work. A criterion related to ours was
considered by Chen and Freedman [9] who proposed to
compute a minimum homology basis while optimizing
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the shortest path radius of the geodesic balls containing
the basis cycles. With an embedding in the Euclidean
space, the ℓ2–radius of the geometric balls capture
locality more concisely than the shortest path radius.
Yet another measures of optimality for cycles that
is tractable, namely lexicographically optimality [11],
suffers from the drawback that it requires a parameter:
a total order on simplices. In applications, it is
sometimes desirable that the optimal cycles be stable
with regard to the change in the input data [2].
An optimization criterion that is geometry-aware,
polynomial time computable, and results in some kind of
stability is volume optimal cycles by Obayashi [25, 26].
However, unlike our measure, the approach described
in [25] works only for computing representatives of finite
bars. In another related work, Li et al. [24] obtain
minimal representatives using linear programming for
a variety of optimization criteria with impressive
runtimes. However, their software does not work for
arbitrary filtrations yet [22]. In summary, our key
contribution in this work is that we introduce a natural
measure of optimality of cycles that has good theoretical
properties and is well-behaved in practice.

2 Background and preliminaries

In this section, we recall some preliminaries on
persistent homology. For the rest of this section, we
work only with simplexwise filtrations: That is, we have
a filtration F on R where the complexes change only at
finite set of values a1 < a2 < . . . < an and every change
involves addition of a unique simplex σai for i ∈ [n].

F : ∅ = Ka0
σa0
↪→ Ka1

σa1
↪→ Ka2

σa2
↪→ . . .

σan−1

↪→ Kn = K

Using p-th homology groups of the complexes over the
field Z2, we get a sequence of vector spaces connected
by inclusion-induced linear maps:

HpF : Hp(Ka0)→ Hp(Ka1)→ Hp(Ka2)→ . . .

The sequence HpF with the linear maps is called
a persistence module. There is a special persistence
module called the interval module I[b,d) associated to
the interval [b, d). Denoting the vector space indexed at
a ∈ R as Ia, this interval module is given by

I[b,d)a =

{
Z2 if a ∈ [b, d)

0 otherwise

together with identity maps ida,a′ : I[b,d)a → I[b,d)a′ for
all a, a′ ∈ [b, d) with a ≤ a′.

It is known due to a result of Gabriel [21] that a
persistence module defined with finite complexes admits
a decomposition

HpF ∼=
⊕

α

I[bα,dα)

which is unique up to isomorphism and permutation of
the intervals. The intervals [bα, dα) are called the bars.
The multiset of bars forms the barcode of the persistence
module HpF , denoted by Bp(F). The following two
definitions are taken from [14].

Definition 1. For an interval [b, d), we say that ζ is
a representative cycle for [b, d), or simply ζ represents
[b, d), if one of the following holds:

• d ̸= +∞, ζ is a cycle in Kb containing σb, and ζ is
not a boundary in Kd−1 but becomes one in Kd.

• d = +∞, and ζ is a cycle in Kb containing σb.

Definition 2 (Persistent cycles). A p-cycle ζ that
represents an interval [b, d) ∈ Bp(F) is called a persistent
p-cycle for [b, d).

For a bar [b, d), σb is said to be a creator simplex and
σd is called a destroyer simplex.

It is easy to check that if ζ is a representative cycle
for [bi, di) and ξ is a representative cycle for [bj , dj),
where bj < bi and dj < di, then ζ + ξ is also a
representative cycle for [bi, di). The set of representative
cycles for interval [bi, di) is denoted by R([bi, di)).
Representatives of bars of the form [b,∞) are called
essential cycles.

Definition 3 (Persistent basis). Let J be the indexing
set for the intervals in the barcode Bp(F) of filtration
F . That is, for every j ∈ J , [bj , dj) is an interval in
Bp(F). Then a set of p-cycles {ζj | j ∈ J} is called a
persistent p-basis for F if

HpF =
⊕

j∈J
Iζj where Iζj is defined by

Iζja =

{
[ζj ] if a ∈ [bj , dj)

0 otherwise.

Here, for every j ∈ J and every a, a′ ∈ [bj , dj) with
a ≤ a′ the maps Iζja → Iζja′ are the induced maps on
homology restricted to [ζj ], respectively.

The following theorem by Dey et al. [14] relates
persistent cycles to persistent bases.

Theorem 1 ( [14, Theorem 1]). Let J be the indexing
set for the intervals in the barcode Bp(F) of filtration
F . Then, an indexed set of p-cycles {ζj | j ∈ J} is a
persistent p-basis for a filtration F if and only if ζj ∈
R([bj , dj)) for every j ∈ J .
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3 The ℓ2–radius metric

Given a complex K, let Zp(K) denote its p-th cycle
group, Bp(K) its p-th boundary group and Hp(K) its
p-th homology group with Z2 coefficients. Given a cycle
ζ, our goal is to define a non-negative weight function
w : Zp(K) → R+ on the cycles in Zp(K) and compute
a minimum-weight (optimal) cycle ζ∗ in its homology
class [ζ], that is,

ζ∗ ∈ arg min
ζ̂∈[ζ]

w(ζ̂). (1)

We show that the ℓ2–radius is an alternative natural
geometric objective function defined on cycles that
guarantees tractability. Let P be the vertex set of
K. Then, KV denotes the subcomplex of K induced
by a subset V ⊆ P . Extending this notation, we say
a complex is induced by a sphere Sc,r if it is induced
by the subset of vertices of P that are enclosed by Sc,r
(including on the sphere). Let the complex induced by
Sc,r be denoted as Kc,r. We define a weight function
r : Cp(K)→ R+, ξ 7→ r(ξ) where

r(ξ) = min
c,δ
{δ | ξ ∈ Cp(Kc,δ)}. (2)

In words, r(ξ) is the radius of the smallest Euclidean
sphere whose induced complex in K contains ξ.

We now define an ℓ2–radius measure for intervals in
a barcode. For an interval [b, d) ∈ Bp(F), we define
r([b, d)) as the radius of the smallest sphere that encloses
a subset of vertices V of Kb that induces a subcomplex
KVb ⊂ Kb, which supports a representative cycle for
[b, d). Equivalently,

r([b, d)) = min
ζ∈R([b,d))

r(ζ), (3)

where in Equation (3), the radius function r is restricted
to the subcomplex Kb ⊂ K.

4 Computing optimal homologous cycle

Following Equation (1), we define an optimal cycle ζ∗

in the class [ζ] by requiring ζ∗ ∈ argminζ̂∈[ζ] r(ζ̂). The
cycle ζ∗ represents an optimal localization of the class
[ζ] with respect to the ℓ2–radius. We consider the
following Optimal Homologous Cycle problem:

Given an p-cycle ζ ∈ Zp(K), compute an optimal
cycle ζ∗ in [ζ] and r(ζ∗).

Remark 4.1. To compute the optimal homologous cycle,
it is sufficient to look at the minimum circumspheres
of all k-subsets of points P = V (K), where k ∈
{2, . . . , d + 1}, and check if the circumsphere encloses

a cycle homologous to the input cycle. When the
dimension d of the complex K is fixed, the search
terminates in polynomial time. This describes a trivial
exact algorithm which was found to be too expensive in
our experiments in spite of polynomial time complexity.
Remark 4.2. By restricting the centers of the spheres in
Equation (1) to the the sites P = V (K) (vertices of K)
yields a 2-approximation of ℓ2–radius as follows: let S
be a sphere that minimizes ℓ2–radius of a chain ξ and
let v be a vertex on S. Then, a sphere of twice the
optimal radius centered at v encloses S, and therefore
also encloses ξ. We define rc(ξ) = min{δ | ξ ∈ Cp(Kc,δ)}
and rP (ξ) = minc∈P,δ{δ | ξ ∈ Cp(Kc,δ)}.

Notations and Conventions. The notations and
conventions described are common to all the problems
in the paper. In our algorithms, a cycle (or a chain)
ζ is represented by a 0–1 vector in the standard chain
basis. That is, a p-cycle ζ is represented by a vector ζ
where ζ[i] = 1 (ζ[i] = 0) if a p-simplex σi is (not) in the
support of ζ. We often use cycle vectors of subcomplexes
in computations involving cycles and boundaries of
larger complexes. To ensure that we are working with
vectors/matrices of the right dimensions, we make the
following adjustment. For complexes L ⊂ K, the
inclusion map L ↪−→ K induces maps Zp(L) → Zp(K)
for every p. A cycle ξ in L is mapped to a cycle ξ in
K with ξ[i] = ξ[i] for simplices σi ∈ L, and ξ[i] = 0
for simplices σi ∈ K \ L (using standard chain basis).
Likewise, a matrix M of cycle vectors of L can be treated
as a matrix of cycle vectors M of K by padding zeros
in the rows corresponding to the simplices in K \ L. We
call such cycle vectors ξ and matrices M, the extensions
of ξ and M in K.

Let K be a simplicial complex, K ⊂ Rd. For any v ∈
Rd we can define a total ordering ≺v on the simplices
of K as follows. If σ1 is a face of σ2 or rv(σ1) < rv(σ2),
then σ1 ≺v σ2. Otherwise (when rv(σ1) = rv(σ2) and
σ1 is neither a face or coface of σ2), ties are arbitrarily
broken. If ζ = σ1 + . . . + σs such that σ1 ≺v . . . ≺v
σs, then we define κ(ζ) = σs. Further, we extend this
ordering to chains as follows: If ζ1, ζ2 ∈ Cp(K) such that
ζ1 = σ1 + . . .+ σs, ζ2 = σ′1 + . . .+ σ′s′with σ1 ≺v . . . ≺v
σs and σ′1 ≺v . . . ≺v σ′s′ , then ζ1 ≺v ζ2 if σs ≺v σ′s′
i.e. κ(ζ1) ≺v κ(ζ2). Note that rv(ζ) = rv(κ(ζ)). The
ordering ≺v induces a simplex-wise filtration on K which
we denote by Dv(K).

The standard reduction algorithm [3] is used in many
of our algorithms as subroutines. For completeness, we
present an outline of the algorithm and recall some facts
arising out of it in Appendix C. Algorithm 1 relies on
the following proposition (Proof in Appendix C).

Proposition 4. Let ζ1 ≺v . . . ≺v ζs be the essential
p−cycles of Dv(K) computed using standard reduction.
Let ζ be a p-cycle, [ζ] ̸= 0 ∈ Hp(K), such that ζ = ζi1 +
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. . .+ ζim +∂cp+1 where each ζik ∈ {ζ1, . . . , ζs} and cp+1

is a p+1 chain. If i1 < . . . < im then rv([ζ]) = rv(ζim).
In particular, ζi1 + . . .+ ζim ∈ argminξ∈[ζ] rv(ξ).

We now describe a 2-approximation algorithm for
Optimal Homologous Cycle for an input cycle
ζ by optimizing with respect to rP . For each site
v, the algorithm invokes the subroutine optimal-
hom-cycle-forsite (Line 15 of Algorithm 1) which
computes rv([ζ]) = minη∈[ζ]{rv(η)} and ζ∗v ∈
argminη∈[ζ]{rv(η)}. Finally it reports the minimum
among all sites and the corresponding optimal
homologous cycle. Procedure optimal-hom-cycle-
forsite is motivated by Proposition 4. It first sorts the
simplices of K based on distance from v. The ordering is
monotonic, that is, faces gain precedence over cofaces.

In this way the ordering ≺v and hence the filtration
Dv(K) is defined. Let ζ1 ≺v . . . ≺v ζm be the essential
p−cycles of Dv(K) computed using standard reduction.
As noted before we consider cycle vectors to represent
the cycles. To compute the linear combination of
cycles {ζi} which is homologous to ζ, we solve for the
system of equations [ζ1 . . . ζs |Bp(K)].x = ζ. (We invoke
subroutine SolveByReduction which solves Ax = b
over Z2, using standard reduction as a subroutine.
Refer to Appendix C, Algorithm 5 for definition of this
routine). If i1, . . . is, j1 . . . , jt is a solution where indices
i1, . . . is correspond to cycles in {ζi}mi=1) and j1 . . . jt
correspond to boundaries in Bp, then by Proposition 4
ζi1 + . . .+ ζis ∈ argminη∈[ζ]{rv(η)}.

Remark 4.3. Algorithm 1 runs in O(|P |N3), where N
is the number of simplices in K.

5 Optimal homology basis

A set of p-cycles {ζ1, . . . , ζβ} (βp = βp(K)) is called a
homology cycle basis if the set of classes {[ζ1], . . . , [ζβ ]}
forms a basis for Hp(K). For simplicity, we use the term
homology basis to refer to the set of cycles {ζ1, . . . , ζβ}.

Definition 5. A p−homology basis {ζ1, . . . , ζm} will
be called a minimum p−homology basis (p > 0)
with respect to a non-negative weight function w :
Zp(K) → R, if for all p−homology bases ζ ′1 . . . ζ

′
m,

w([ζ1]) + . . . + w([ζm]) ≤ w([ζ ′1]) + . . . + w([ζ ′m]) and
each ζi ∈ argminη∈[ζi] w(η)

We consider the following Optimal Homology
Basis problem.

For a given p > 0 compute a minimum p−homology
basis with respect to the weight function r.

Algorithm 2 describes a 2βp-approximation algorithm
for Optimal Homology Basis by computing a

Algorithm 1: Computing optimal homologous
cycle for given set of sites
Input : K, ζ ∈ Cp(K)
Output: rP ([ζ]), ζ∗ (Optimal homologous cycle)

1 Procedure OptHomologousCycle
2 rP ([ζ])←∞, ζ∗ ← ∅
3 for v ∈ P do
4 rv([ζ]), ζ

∗
v ←

Optimal-Hom-Cycle-ForSite(v)
5 If rv([ζ]) is less than the current value of

rP ([ζ]), then update rP ([ζ]) with rv([ζ])
and ζ∗ with ζ∗v

6 Procedure Optimal-Hom-Cycle-ForSite(v)
7 ▷ Description: Computes rv([ζ]) =

minη∈[ζ] rv(η), ζ∗v ∈ argminη∈[ζ] rv(η)

8 Define ≺v on K. Compute Dv(K)
9 Compute the essential cycles of Dv(K) by

standard reduction. Let ζ1, ..., ζm be essential
cycles ordered with respect to ≺v.

10 Compute the pthboundary matrix of K,
denote it by Bp.

11 Assemble matrix ∂ = [ζ1, ..., ζm |Bp]
12 Solve ∂.x = ζ. Invokes(

SolveByReduction(∂, ζ)). Let
i1, . . . , is, j1, . . . , jt be the solution where
i1, . . . , is ≤ m (indices that correspond to
cycles in {ζi}mi=1) and j1 . . . jt > m ( indices
correspond to boundaries in Bp.)

13 ζ∗v ← ζi1 + . . .+ ζis .
14 rv([ζ])← rv(ζ

∗
v )

15 Return rv([ζ]), ζ∗v

minimum homology basis with respect to rP by
restricting the centers of minimal spheres to sites. To
compute the minimum homology basis M from Ω,
(see Line 5) standard reduction is performed on ∂ =
[Bp(K) |Ω]. We examine the columns of the reduced
matrix ∂̃ from left to right. For every non-zero column
i that is an index from Ω, we add the corresponding
cycle in Ω to M . Algorithm 2 runs in O(|P |N3). See
Appendix C.1 for a proof of correctness.

6 Optimal persistent homology basis

We now consider a filtration of a simplicial complex K
with the aim of studying an extension of the problem to
persistent homology [19]. We introduce the Minimum
persistent homology Basis problem:

Given a filtration F of complex K, compute a
persistent p-basis Λp = {ζi | i ∈ [|Bp(F)|]} that
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Algorithm 2: Optimal homology basis for sites
Input : Complex K ⊂ Rd, p > 0
Output: A minimum homology basis with

respect to rP
1 Procedure Opt-hom-basis-for-sites(K, p)
2 For each v ∈ P , define ≺v. Using standard

reduction compute the essential p−cycles of
the filtration Dv(K), denote them by
ζv,1, . . . , ζv,m.

3 Let Ω = {ζv,i}v∈P,1≤i≤m. Sort the cycles in Ω
so that if rv(ζv,i) < rv′(ζv′,i′) then ζv,i
precedes ζv′,i′ in Ω. If ζv,i ≺v ζv,i′ , then ζv,i
precedes ζv,i′ as well. Ties are broken
arbitrarily. Denote this ordering on Ω as ≺Ω.

4 M ← ∅.
5 for ζ in the ordered list Ω do
6 Let η1, . . . ηk be the cycles currently in M .
7 if [ζ] ∈ span{[η1], . . . [ηk]} then
8 Discard ζ and continue.

9 else
10 Add ζ to M .

11 Report M as a minimum homology basis.

minimizes r(Λp) =
∑|Bp(F)|
i=1 r(ζi).

Theorem 1 states that for computing an optimal
persistent homology basis it suffices to compute the
minimum representative of each bar. Formally, an
optimum representative of a bar [b, d) is a cycle ζ∗ ∈
argminη∈R([b,d)){rP (η)}.

Algorithm 3 computes an minimum representative of
a input bar [b, d) ∈ Bp(F) for a simplex-wise filtration
F of K with V (K) = P with respect to rP . For each
site v ∈ P the subroutine Opt-Pers-Cycle-Site is
invoked which computes ζ∗v ∈ argminη∈R([b,d)){rv(η)}.
Finally the minimum ζ∗P = argminv∈P {rv(ζ∗v )} among
all sites is reported. Similar to Algorithm 1 a filtration
Dv is defined on Kb. The essential p−cycles Y = {ζ1 ≺v
. . . ≺v ζm} of Dv(Kb) are computed using standard
reduction. We then compute the smallest i > 0 such
that ∃ ξ ∈ span{ζ1, . . . , ζi}, ξ ∈ R([b, d)). If σb was
added at index b of F and α is the index of the first
cycle in Y containing σb, then update Y by adding Yα
to all other cycles containing σb. This ensures that only
a single cycle now contains σb. Denoting these cycles of
Y \ {ζα} by Y ′ and the first i cycles of Y ′ by Y ′≤i, it
suffices to check if [Bp(Kd) |Y≤i].x = Yα has a solution.
This is determined in Line 15 with a binary search over
i ∈ [1..m− 1].

The proof of correctness of Algorithm 3 can be found
in Appendix C.2. It runs in O(|P |N3 logN).

Algorithm 3: Computing optimal
representative of bar of persistence wrt rP .
Input : K,F(simplex-wise filtration), [b, d) ∈

Bp(F)
Output: ζ∗P ([b, d)) ∈ argminv∈P,η∈R([b,d)){rv(η)}

1 Procedure Opt-PersHom-Rep(K,F , [b, d))
2 rP ([b, d))←∞, ζ∗P ([b, d))← ∅
3 for v ∈ P do
4 rv(ζ

∗
v ), ζ

∗
v ←

Opt-Pers-Cycle-Site([b, d), v)
5 if rv(ζ∗v ) < rP ([b, d)]) then
6 rP ([b, d))← rv(ζ

∗
v ) ζ

∗
P ([b, d))← ζ∗v

7 Return rP ([b, d)), ζ∗P ([b, d))

8 Procedure Opt-Pers-Cycle-Site([b, d), v)
9 Define ≺v on Kb. Compute Dv(Kb)

10 Compute the essential p-cycles
ζ1 ≺v . . . ≺v ζm of Dv(Kb) using standard
reduction

11 Y ← ζ1, ..., ζm. (Y is a matrix of m columns,
the column Yi is the cycle-vector of ζi). Let α
be index of first cycle in Y containing σb

12 Add cycle Yα to all other cycles in Y
containing σb, resulting in matrix Ŷ .

13 Assemble matrix Y ′ by dropping the αth

column of Ŷ . Denote by Y ′≤i the first i
columns of Y ′.

14 ∂d ← Bp(Kd)(∂d is empty if d =∞)
15 Compute the smallest i ∈ [1..m− 1] such that

[∂d|Y ′≤i].x = Yα has a solution.
16 Let b1, ..., bt, i1, ..., is be the solution

computed by the previous step where b1, ..., bt
are indices in ∂d and i1, ..., is are in Y ′≤i

17 ζ∗v ← Y ′≤i,i1 + ...+ Y ′≤i,is + Yα
18 Return ζ∗v , rv(ζ∗v )

7 Experiments

We report results of experiments on real world datasets
with a focus on computing cycle representatives of H1.
These results demonstrate the utility of the ℓ2–radius
towards the identification of meaningful representatives
of homology classes. We consider three applications:
localizing individual 1-cycles, optimal 1-homology basis
computation, and minimum persistent 1-homology basis
computation. Computing the exact ℓ2–radius via an
enumeration of all circumspheres is expensive. So, all
experiments were conducted on implementations of the
approximate algorithms described above.

We implement a heuristic to minimize the length
of the cycle representative while preserving its radius.
Essentially, we replace one of the paths P between
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two vertices in the cycle with the shortest length path
between them if it is homologous to P . This heuristic
results in smoother and shorter cycles for all datasets.
This also addresses the issue with the non-unicity of the
ℓ2-metric in the sense that in our experiments we always
find tighter cycles within a sphere when there are several
homologous cycles of varying lengths within a sphere.

All experiments were performed on an Intel Xeon(R)
Gold 6230 CPU @ 2.10 powered workstation with 20
cores and 384GB RAM running Ubuntu Linux. The
algorithms were parallelized using Intel Thread Building
Blocks (TBB). The PHAT library [3] was used in all
routines that invoke the standard reduction algorithm.

Figure 1: (top) The localization algorithm computes
optimal (blue) 1-cycles that are homologous to input 1-
cycles (red). (bottom) Minimum 1-homology basis.

Homology localization. Given an input simplicial
complex representing a surface and a 1-cycle, we
compute a localized cycle that is homologous to the
input cycle. Figure 1(top) shows two input cycles
(red) and their localized versions (blue) for the Happy
Buddha dataset. We can visually infer that the localized
cycle computed by our approximate algorithm is close
to the optimal cycle.

Optimal homology basis. Figure 1(bottom) shows
the optimal homology basis computed for two 3D
models. We observe that the cycles are tight and
capture all tunnels and loops of the model. Results on
additional datasets are available in Appendix D.

Optimal persistent homology cycle. We report
our results on three classes of filtrations: Rips, lower
star, and Delaunay. Figure 2 (a,b) shows the

(a) Lorenz’63(60%) (b) Lorenz’63(80%)

(c) Retina (d) 1OED

Figure 2: The green persistent 1-homology cycles
computed by our algorithm are tighter than the red (or
yellow) cycles computed by PersLoop [15].

Lorenz’63 data set for 60% and 80% densities and
the representatives of the longest and the top two
longest bars, respectively, of a Rips filtration. These
are of relevance in simulating weather phenomena [29].
Figure 2 (c) highlights the representative of the longest
lived bar for a lower star filtration on a retinal image [23]
with a retinal disorder. The cycle represents the region
of the disorder. Figure 2 (d) highlights representatives
of the top two bars of an alpha complex on a protein
molecule (PDB-ID: 1OED). Cycles computed by our
algorithm (green) appear “tighter” than those computed
by PersLoop (red or yellow).

Execution time. Our algorithms are parallelizable
if the optimization subroutines for each site can be
executed independently. We obtain fast running times
(∼ few minutes) for moderate to large-sized datasets
(∼ millions of simplices) for all algorithms, see Table 1.

Data set #Simplices Execution time
Lorenz-63(60%) ∼ 2× 106 120s
Lorenz-63(80%) ∼ 3× 106 120s

Retina ∼ 5× 106 140s
1OED ∼ 2.5× 106 130s

Table 1: Mean time to compute optimal representative
of each of the top-40 bars in the persistence barcode.
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Generalizing Combinatorial Depth Measures to Line Segments∗

Stephane Durocher† Myroslav Kryven†

Abstract

A data depth measure quantifies the depth of a given
datum relative to a given set of data. Depth measures
are important tools for statistical data inference. Com-
mon depth measures such as simplicial depth and Tukey
depth have been studied extensively for sets of points in
Rd. We generalize definitions for these depth measures
to the setting of sets of line segments in R2. That is,
given a line segment q and a set S of line segments in
R2, we seek to evaluate how deeply nested q is relative
to S. In this paper, we introduce three depth measures
for sets of line segments, as well as efficient algorithms
for computing them.

1 Introduction

Depth measures quantify the centrality or outlyingness
of an individual object relative to a population (a set,
multiset, or probability distribution) of objects. Com-
mon depth measures for point data in Rd include simpli-
cial depth [11] and Tukey (half-space) depth [13]. Sim-
plicial depth is equal to the number of simplices (tri-
angles in the two-dimensional case) defined on a point
set that contain the query point, while Tukey depth is
equal to the smallest number of vertices of the point
set contained in any half-plane that also contains the
query point. While much previous work on depth mea-
sures has focused on multivariate point data, some re-
cent work examines generalizations to other types of
data in Rd, including curves and polylines [6, 9]. Ap-
plications include evaluating the degree of similarity of
a given polyline (e.g., an individual GPS trajectory or
animal migration track) relative to a given population
of such polylines [9]. In this paper, we examine depth
for sets of line segments in R2, seeking to bridge the
gap between depth measures for points and depth mea-
sures for polylines and curves. Although existing depth
measures for curves and polylines (e.g., curve stabbing
depth [9]) can be applied to line segments, a broader
range of techniques for defining and computing depth
can be applied to line segments, allowing natural gen-
eralizations of previous depth measures and resulting in

∗This work is funded in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

†Department of Computer Science, University of Manitoba,
{stephane.durocher,myroslav.kryven}@umanitoba.ca

simpler definitions for depth measures and significantly
more efficient algorithms for computing them.

The paper is organized as follows. In Section 2 we
provide definitions for the combinatorial depth mea-
sures under consideration and their generalizations to
segments. For each depth measure, we first present an
algorithm to compute the depth of a given point q rel-
ative to a given set S of n line segments, and then give
an algorithm to compute the depth of a given line seg-
ment s relative to S. In Section 3, we show how to
compute the simplicial depth of s relative to S in O(n2)
time using half-space counts introduced by Rousseeuw
and Ruts [12] and a sweep-line technique. In Section 4,
we give a randomized algorithm with expected time
O(n4/3 log n) for computing the eutomic depth of s rela-
tive to S. Our algorithm uses a randomized algorithm of
Chan [3] for constructing a k-level of a line arrangement.
Finally, in Section 5, we give an optimal randomized al-
gorithm with expected time O(n log n) to compute the
Tukey depth of s relative to S using a randomized op-
timization technique of Chan [4].

2 Defintions

Let P be a set of points and let q be a point in R2. The
half-space depth [13] (also known as Tukey depth) of q
relative to P , denoted TD(q, P ), is the minimum num-
ber of points of P in any closed half-plane h containing
q:

TD(q, P ) = min
h:q∈h,
h∈H

|P ∩ h|,

where H is the set of all closed half-planes in R2.
We generalize Tukey depth for segments, which we as-

sume to be closed (that is, the endpoints are included).
First, we define the Tukey depth of a query point q rel-
ative to a set S of segments in R2 as the minimum num-
ber of segments in S that intersect any closed half-space
containing q:

˙TD(q, S) = min
h:q∈h,
h∈H

|S ∩ h|.

Next, we define the Tukey depth of a segment s rela-
tive to a set S of segments in R2 as the maximum depth
˙TD(q, S) of any point q ∈ s relative to S:

TD(s, S) = max
q:q∈s

˙TD(q, S).
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Another classical depth measure of a point q relative
to a set P of points in R2 is simplicial depth [11], denoted
SD(q, P ), which is the number of open simplices (some
definitions use closed simplices) determined by points in
P that contain q:

SD(q, P ) =
∑

{x,y,z}⊆P
I(q ∈ △xyz),

where I is an indicator function such that I(A) = 1 if A
is true and I(A) = 0 otherwise, where A is a predicate.
We generalize simplicial depth for segments. As we did
for Tukey depth, we first define the simplicial depth of a
point q relative to a set S of line segments in R2 as the
number triples of segments {s1, s2, s3} ⊆ S such that
some simplex (triangle) with respective vertices on s1,
s2, and s3 contains q:

˙SD(q, S) =
∑

{s1,s2,s3}⊆S
max
x∈s1,
y∈s2,
z∈s3

I(q ∈ △xyz).

We define simplicial depth for a segment s relative
to a set S of segments in R2 as the maximum depth
˙SD(q, S) of any point q ∈ s relative to S:

SD(s, S) = max
q:q∈s

˙SD(q, S).

Recently, a new combinatorial depth measure
ED(q, P ), called eutomic depth [8], was defined for a
point q relative to a set P of points in R2 as the number
of combinatorially distinct (that is, they induce distinct
partitions of P ) halving lines (lines that partition P into
two sets whose cardinalities differ by at most one) pass-
ing through q (halving lines do not pass through any
points of P ), more precisely:

ED(q, P ) =
∑

p∈P
I
(∣∣ |H+

q,p ∩ P | − |H−q,p ∩ P |
∣∣ ≤ 1

)
,

where H+
q,p and H−q,p denote the two open half-planes

determined by the line through the points q and p.
We again first generalize eutomic depth for a point q

with respect to a set S of segments. A halving line of S
is a line having equal number of endpoints of segments
of S on each side (points may not be on the line). Thus,
the definition of eutomic depth for points naturally ex-

tends to segments. The eutomic depth ˙ED(q, S) of a
point q with respect to S is the number of combinato-
rially distinct halving lines passing through q, that is,

we define ˙ED(q, S) = ED(q, PS), where PS is the set of
endpoints of the segments in S. As before, we use this
definition to define eutomic depth of a segment s with
respect to S.

ED(s, S) = max
q:q∈s

˙ED(q, S).

An object s with maximum depth (for a given depth
measures) relative to a set S is a depth median of S.
Another helpful notion, introduced by Rousseeuw and
Ruts [12], for defining and measuring Tukey depth and
simplicial depth of a point q relative to a set P of n
points is half-space counts, denoted hi(q), and defined
as follows. Suppose the points (in general position) in
P are labelled in radial order around q so that 0 ≤
α1 < · · · < αn < 2π, where αi is the angle between
the vectors pi − q and (1, 0). Because the set P ∪ {q}
is in general position, the angles are all unique. The
half-space count hi(q) is the largest integer k such that
αi < αi+1 ≤ αi+k < αi + π, where αn+j = αj + 2π
for all j. This definition is equivalent to counting the
number of points of P in the right open half-plane γi(q)
defined by the line through the points (pi, q) and the
vector pi− q. Rousseeuw and Ruts [12] showed that we
can compute hi(q) for all i in O(n) time when the points
P are sorted as described above (or O(n log n) time if
unsorted). Using half-space counts, we can compute
simplicial depth (see also Section 3) and Tukey depth
of a point relative to a set of n segments in O(n log n)
time [2]. See Aloupis’ survey of geometric measures of
data depth [1] for further discussion.

3 Simplicial Depth

From now on we assume that our input is in general po-
sition; that is, no three input points (including segment
endpoints) are collinear.

The brute-force approach for computing SD(q, P ) for
a point q and a set P of n points follows from the def-
inition: among all triangles formed by the points in P ,
count those that contain q. This approach can also be

used to compute ˙SD(q, S) for the point q and a set S of
n segments: among all triples of segments in S, count
those that form a triangle containing q (each segment
contains one triangle vertex). Given segments s1, s2, s3
and a point q, we can determine in O(1) time whether
there exist points x ∈ s1, y ∈ s2, and z ∈ s3 such that
q ∈ △xyz. Simplicial depth for points can be computed
faster using half-space counts [2]:

SD(q, P ) =

(
n

3

)
−

n∑

i=1

(
hi(q)

2

)
, (1)

where the second term counts the triangles that do not
contain the point q;

(
hi(q)

2

)
counts triangles ∆pipi1pi2

such that pi1 and pi2 are in the half-plane γi(q) corre-
sponding to hi(q). Note that we do not double count
as the sets of triangles ∆pipi1pi2 for each i are disjoint.
Rousseeuw and Ruts [12] showed that we can compute
hi(q) for all i in time O(n log n) by first sorting the data
points radially (in counter-clockwise order) around q as
described above and then performing a radial sweep.
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Computing ˙SD(q, S) We can use the approach of

Rousseeuw and Ruts [12] to compute ˙SD(q, S) in time
O(n log n) as follows. First, we sort the segments in
S radially counter-clockwise around q (in the order
in which the segments are first met during the radial
sweep). Then for each segment si in this order, let γi(q)
be the closed half-plane through q and one of the end-
points of si, such that γi(q) contains the entire segment
si (this avoids double counting in Equation (2)). Note
that no triangle formed by si and any other two seg-
ments entirely contained in γi(q) can contain q in its
interior. Therefore, we can use the same idea as in (1)

to compute ˙SD(q, S):

˙SD(q, S) =

(
n

3

)
−

n∑

i=1

(
h̄i(q)

2

)
, (2)

where h̄i(q) is the number of segments entirely contained

in γi(q);
(
h̄i(q)

2

)
counts triples of segments (si, si1 , si2)

such that si1 , si2 ∈ γi(q). Again there is no double
counting because the sets of triples (si, si1 , si2) for each
fixed i are disjoint. Using the approach of Rousseeuw
and Ruts [12], we can also compute h̄i(q) for all i in time
O(n log n) by sorting the segments by their endpoints
radially around q and then performing a radial sweep.

Computing SD(s, S) Let s be a segment and let S
be a set of n segments. Recall that SD(s, S) is the

depth of a point q ∈ s that maximizes ˙SD(q, S). Sim-
plicial depth does not have convex depth contours (in
particular, point sets where the deepest points form sev-
eral disjoint clusters are known [8]). Consequently, it
is unlikely that the O(n log n)-time algorithm for com-

puting ˙SD(q, S) can be used to compute SD(s, S) in
O(n polylog(n)) time by using some parametric search
technique (e.g., binary search). Below we prove that we
can compute SD(s, S) in O(n2) time.

Theorem 1 For a segment s and set S of n segments,
we can compute SD(s, S) in time O(n2).

Proof. We sweep the segment s = ab from one end-
point to the other, show that we only need to consider
O(n2) discrete event points, and show how to update
˙SD(q, S) at each event point in O(1) time.

First we compute ˙SD(q, S) at one of the endpoints
of s, say for q = a, using the approach of Rousseeuw
and Ruts [12] as described above. Then we show how

to update ˙SD(q, S) as q moves along s from a to b. Ob-
serve that as we move the point q along the segment s,
˙SD(q, S) changes only if some half-space count h̄i(q)

(for the endpoints of the segments) changes. A half-
space count h̄i(q) changes only if the radial order of the
endpoints of the segments in S changes with respect to

s

q

si
sj

(a) sj has started leaving γi(q)

q

s

si

sj

(b) sj has finished entering γi(q)

Figure 1: Illustration for the proof of Theorem 1.

q. That happens when q passes the intersection point
of the segment s and some line through the endpoints
of two segments in S. Denote such an event q(xi, xj),
where xi is an endpoint of the segment si ∈ S and xj
is an endpoint of the segment sj ∈ S, si ̸= sj , and q
crosses the line through xi and xj . Because our input is
in general position, the only half-space counts that may
change at the event q(xi, xj) are h̄i(q) and h̄j(q). More
precisely, if the segment sj has started leaving (see Fig-
ure 1a) the half-plane γi(q), then we decrement h̄i(q)
by one; if the segment sj has finished entering (see Fig-
ure 1b) γi(q), then we increment h̄i(q) by one. There-
fore, we can update h̄i(q) and h̄j(q) and consecutively
˙SD(q, S) in O(1) time. Finally, we report the maximum

value of ˙SD(q, S) reached at an event q(xi, xj). Because
there are at most O(n2) such events and we can update
˙SD(q, S) at each event in O(1) time, the total runtime

of our algorithm is O(n2). □

4 Eutomic Depth

As is the case for the simplicial depth and Tukey depth,
the eutomic depth of a point q relative to a set P of
n points in R2 can be computed in O(n log n) time [8]
using half-space counts. For any point q and any set S

of n segments, ˙ED(q, S) = ED(q, PS), where PS is the
set of endpoints of the segments in S. Consequently, we

can compute ˙ED(q, S) in time O(n log n). Durocher et
al. [8] also described an O(n8/3)-time algorithm to find a
eutomic median (that is, a deepest point with respect to
eutomic depth). Their algorithm works in three steps:
First, they construct all halving lines through every two
input points in time O(n4/3) [7]. Second, they analyze
O(n8/3) many cells in the resulting line arrangement;
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Figure 2: Illustration of median corridor for n = 3; the
lower 3-level is in red and the upper 3-level is in blue.

for each cell, each point q in the cell has the same num-
ber of combinatorially distinct halving lines through q,
and thus, the same eutomic depth. Finally, they tra-
verse each cell of the arrangement to find a point of
maximum depth. Inspired by their application of the
result of Dey [7], we apply a similar technique to com-
pute ED(q, S). Instead of constructing an arrangement
of halving lines, we switch to dual space [10], where our
input n segments become a set of pairs of lines, each
pair representing a segment. We construct an n-level,
that is, the curve consisting of the points that lie on
one of the 2n lines and have exactly n− 1 lines strictly
above. We call this an upper n-level. We also construct
a lower n-level which is defined symmetrically, that is,
the polyline consisting of the points that lie on one of
the 2n lines and have exactly n− 1 lines strictly below.
A k-level of an arrangement of x-monotone curves is an
x-monotone polygonal chain on the arrangement that
switches curves at every vertex of the arrangement it
encounters [3]. We call the closed region bounded by
the lower n-level and the upper n-level the median cor-
ridor. The size of a k-level is the number of vertices that
it contains. Dey [7] showed that it is of order O(nk1/3)
for n lines; therefore, the size of our median corridor is
O(n4/3). The complexity of the median corridor is the
number of cells from the arrangement of the 2n lines
that it contains relative to its size.

Observation 1 For an arrangement of 2n lines the
complexity of median corridor is O(n4/3).

The above observation easily follows from the size of
the upper and lower n-levels [7] and the fact that me-
dian corridor does not have any intersections of the lines
strictly inside. Moreover, because the number of lines
is even, the median corridor is a chain consisting of the
cells (that is, connected regions after removing the lines)
of the arrangement. In other words, the cells of the me-
dian corridor form a path where two consecutive cells
share a crossing point; see Figure 2.

We show that we can compute ED(s, S) in O(n4/3)
expected time using Chan’s [3] randomized algorithm
for constructing k-level.

Theorem 2 For a segment s and a set of n segments S
we can compute ED(s, S) in O(n4/3 log n) expected
time.

Proof. First we translate and rotate the input seg-
ments so that the segment s becomes vertical and one
of its endpoints matches the origin of the coordinate
system. Then we switch to dual space where our input
set S becomes a set of 2n lines. We construct a median
corridor using Chan’s [3] algorithm in O(n4/3) expected
time. Recall that to compute ED(s, S) we need to find

a point q on s that maximizes ˙ED(q, S). Because our
segment s is vertical with one endpoint at the center of
the coordinate system, any point on the segment corre-
sponds to a horizontal line in the dual space. Therefore,
in the primal space, a point on the segment that maxi-

mizes eutomic depth ˙ED(q, S), that is, a point that has
the largest number of combinatorially different halving
lines corresponds, in the dual space, to a horizontal line
that intersects the maximum number of cells (connected
regions after removing the lines) of the median corridor.
Because the complexity of the median corridor is linear
in its size O(n4/3) (in particular, the median corridor
does not have any line intersections strictly inside, see
Observation 1), we can project the cells of the median
corridor on the vertical line by projecting each point of
the cell onto the vertical line. Then the problem reduces
to finding a point contained in the maximum number
of 1-dimensional intervals (or finding maximal clique of
the resulting interval graph). There are O(n4/3) such
intervals, and thus, after sorting them we can find the
maximum number of intervals containing the same point
in time O(n4/3 log n).

Therefore, the total expected runtime is
O(n4/3 log n).

□

5 Tukey depth

Unlike eutomic depth, the Tukey depth of a point q rel-
ative to a set S of n line segments cannot be expressed
in terms of Tukey depth relative to the set of endpoints
of segments in S; this is because for each half-plane h in

the computation of ˙TD(q, S), each segment contributes
one unit to the depth regardless whether it is completely
contained in h or whether it only partially intersects h.
We show, however, that we can apply a randomized op-
timization technique developed by Chan [4] to compute

both ˙TD(q, S) and TD(s, S) for a segment s in optimal
expected time O(n log n).

Chan [4] gave a randomized optimization technique
for a class of optimization problems, called LP-type
problems (see Definition 1) that share properties with
linear and convex programming [4]. Many geomet-
ric optimization problems can be reduced to such LP-
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type problems, including answering linear program-
ming queries, finding the minimum diameter of mov-
ing points, inverse parametric minimum spanning trees,
and, in particular, finding a Tukey median of a set of
points. We show that this approach also extends to com-

puting ˙TD(q, S) as well as TD(s, S); in particular, we
show that both problems can be expressed as LP-type
problems with recursive substructure (see Lemma 3) so
that the randomized technique of Chan can be applied
to get an O(n log n)-time randomized algorithm.

Definition 1 Let w : 2H →W be a function that maps
sets of constraints (members of H) to values in a totally
ordered set W. We say that w is LP-type of dimension
at most d if the following properties hold for all sets
H ⊆ H and all constraints h ∈ H:
1. w(H) = w(B) for some B ⊆ H of size at most d.

2. w(H ∪ {h}) ≥ w(H).

3. Suppose w(H) = w(B) with B ⊆ H. Then w(H ∪
{h}) = w(H)⇔ w(B ∪ {h}) = w(B).

A set B of size d is called a basis, and if (1) holds, a basis
for H. If w(B∪{h}) = w(B), we say B satisfies h and if
w(B∪H) = w(B), we say B satisfiesH. The algorithms
solving LP-type problems may use some primitive oper-
ations, such as basis evaluation (computing w(B) for a
basis B) and satisfaction/violation test, that is, deter-
mining if a basis B satisfies or violates constraint h.
Chan [4] proved the following lemma.

Lemma 3 ((Chan 2004) Lemma 2.3 [4]) Let w :
2H → W be an LP-type function of constant dimen-
sion d and let α < 1 and r be fixed constants. Suppose
f : P → 2H is a function that maps inputs to sets of
constraints, with the following properties:

0. For inputs P1, . . . , Pd ∈ P of constant size, a basis
for f(P1) ∪ · · · ∪ f(Pd) can be computed in O(1)
time.

1. For any input P ∈ P and any basis B, we can
decide whether B satisfies f(P ) in time D(n).

2. For inputs P ∈ P, we can construct inputs
P1, . . . , Pr ∈ P each of size at most ⌈αn⌉, in time
no more than D(n), such that

f(P ) = f(P1) ∪ · · · ∪ f(Pr).

Then we can compute a basis for f(P ) in O(D(n)) ex-
pected time.

Let s be a segment and let S be a set of n segments.
We first study the problem of finding a point on s with
Tukey depth at least k. This problem is closely related

to linear programming because we are checking whether
the following intersection of half-planes

⋂
{γ : over all half-planes γ with |S \ γ| < k} (3)

together with the segment s is not empty. In our further
discussion it is helpful to switch to dual space [10]. Each
segment ab ∈ S becomes in the dual space a pair of lines
a⋆ and b⋆ that we call a wedge. A point q on the segment
ab corresponds in the dual space to a line h = q⋆, passing
through the intersection of the upper half-plane defined
by a⋆ (the half-plane above the line a⋆) and the lower
half-plane defined by b⋆, as well as the intersection of
a⋆ and b⋆; we say that h is a line of the cone formed by
a⋆ and b⋆.

For each segment ab ∈ S, let H := {(a⋆, b⋆) : ab ∈
S}. When the segment ab intersects an upper half-plane
defined by h (in other words, one of the endpoints a or
b is above the line of h), the point h⋆ is above one of
the lines a⋆ and b⋆. In this case, we say the point h⋆

is above the lower v-shaped ray formed by the two lines
a⋆ and b⋆. Similarly, when the segment ab intersects a
lower half-plane defined by h, we say that the point h⋆

is below the upper v-shaped ray formed by a⋆ and b⋆; see
Figure 3. For the pairs of lines in H, denote the set of
upper v-shaped rays V , the set of lower v-shaped rays
Λ, and let W = V ∪ Λ.

For a half-plane γ from the intersection (3), let ℓγ be
its underlying line in the primal space. If γ is an upper
half-plane, color the point in the dual space correspond-
ing to ℓγ blue or red otherwise; see Figure 3. Then each
upper half-plane γ corresponds, in the dual space, to a
blue point that has at least n − k lower v-shaped rays
below (because the upper half-plane γ contains at least
n − k segment pieces). Similarly, if γ is a lower half-
plane, it corresponds, in the dual space, to a red point
that has at least n − k upper v-shaped rays above; see
Figure 3b. Alternatively, each blue point has less than
k lower v-shaped rays above it and each red point has
less than k upper v-shaped rays below it.

For any blue point q, let its level ℓΛ(q) be the number
of lower v-shaped rays above q. Similarly, for any red
point q, let its level ℓV (q) be the number upper v-shaped
rays below q. Let Uk(V ) be the set of all blue points of
level ℓV (q) < k and Lk(Λ) be the set of all red points of
level ℓΛ(q) < k. Then, the linear program in the dual
space becomes the following: given the set of blue and
red points K = Lk(Λ) ∪ Uk(V ) in the plane, compute

w(K) = min ϕ(h) (4)

s.t. h is a line of the cone formed by a⋆s and b⋆s

all red points of K are below h

all blue points of K are above h,
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a

b

(a) the segments S, an upper half-plane, and a lower
half-plane

a⋆

b⋆

(b) dual image of S and the underlying lines of the two half-
planes; the wedge a⋆b⋆ is dark grey

Figure 3: The segments S and their dual transforma-
tion. In (a) the segment ab intersects the lower half-
plane (red) iff in (b) the red point is below the upper
v-shaped ray (red). Similarly in (a) the segment ab in-
tersects the upper half-plane (blue) iff in (b) the blue
point is above the lower v-shaped ray (blue).

where a⋆sb
⋆
s is the wedge in the dual space of the query

segment s and ϕ(h) can be any linear function over the
coefficients of h’s half-plane equation.

Even though Lk(Λ) ∪ Uk(V ) may contain infinitely
many points, to construct our linear program (4) we
only need to consider the points on the boundary of
Lk(Λ) ∪ Uk(V ). This boundary is the k-level in the
arrangement of v-shaped rays V and Λ. To solve our
problem, we could compute this region using standard
algorithms for computing the k-level of a line arrange-
ment [3] (this would give us the set of constraints for our
linear program) and then solve the linear program. The
size of this k-level may be superlinear, however, and the
best upper bound so far is O(nk1/3) [7].

We show how to design an efficient algorithm using
Lemma 3. To divide our problem into subproblems we
use the following geometric result.

Lemma 4 ((Chazelle 1993) Cutting Lemma [5])
Given n lines and some r ∈ N, we can cut the plane
into O(r2) simplices (triangles) such that each sim-
plex intersects at most ⌈αn⌉ lines, α = 1/r. The
construction takes linear time for constant r.

For our input, n segments correspond to n pairs of lines;
we can use Lemma 4 to cut the plane into triangles
intersecting at most ⌈αn⌉ v-shaped rays by applying
Lemma 4 for 2n lines.

5.1 Deciding whether ˙TD(q, S) ≥ k

First we prove that we can decide whether ˙TD(q, S) ≥ k
for some q ∈ s in O(n log n) expected time.

Theorem 5 For a segment s and an n-segment set S

in the plane, we can decide whether ˙TD(q, S) ≥ k for
some q ∈ s in O(n log n) expected time.

Proof. We use Lemma 3. To partition the problem
into subproblems (see requirement 2 in Lemma 3) we
will apply the cutting Lemma 4. To enable this appli-
cation we need to solve a slight generalization of the dual
problem: given a simplex ∆ that intersects the set of v-
shaped rays W∆ ⊆W , W∆ = V∆ ∪ Λ∆ and has strictly
x lower v-shaped rays below it and y upper v-shaped
rays above it, compute w(f(W∆,∆, x, y)), where

f(W∆,∆, x, y) = (Lk−x(Λ) ∪ Uk−y(V ))

Let us now check that the requirements 1 and 2 of
Lemma 3 can be fulfilled:
Requirement 1. The line h that optimizes w is defined
by two points: one point is the intersection of a⋆s and b

⋆
s,

and the other is in (Lk−x(Λ∆)∪Uk−y(V∆)). Therefore,
for any subset of constraints F ⊆ f(W∆,∆, x, y), the
basis B ⊆ F is just one point b ∈ F , that is, B = {b}.
Thus, to check whether basis {b} satisfies f(W∆,∆, x, y)
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we only need to check whether for the line h defined
by b and the intersection of a⋆s and b⋆s such that h is of
the cone1 formed by a⋆ and b⋆ the following holds: (a)
Lk−x(Λ∆)∩∆ is completely below h and (b) Uk−y(V∆)∩
∆ above h. We show how to verify (a); an analogous
argument can be applied for (b).

(a) We need to test whether h crosses the region
Lk−x(Λ∆) ∩ ∆. Recall that the region Lk−x(Λ∆) is
a (k − x)-level of n lower v-shaped rays, constructing
this region might be expensive. However, for testing
whether a line intersects the region we only need to solve
the 1-dimensional problem: construct the 1-dimensional
(k − x)-level of the intersection points of the lower v-
shaped rays V∆ on the line h and check if it intersects
with the part of h contained in the triangle. This can
be done in time O(n log n) by sorting the intersection
points of the v-shaped rays Λ∆ with the line h. There-
fore, the entire basis satisfaction test can be done in
time D(n) = O(n log n) time.
Requirement 2. For the initial input (W∆,∆, x, y)
of size n, we form the r triangles using the cutting
Lemma 4. We then intersect these triangles with ∆
and retriangulate ∆ to obtain a triangulation of ∆ for
which the bound from Lemma 4 clearly holds. We then
discard those triangles that do not intersect the wedge
formed by a⋆s and b⋆s (representing the segment in the
primal), since those triangles do not have a feasible solu-
tion. Let the set of the resulting triangles be ∆1, . . . ,∆r′

for r′ ≤ r. Then,

f(W∆,∆, x, y) =

r′⋃

i=1

f(Wi,∆i, x+ xi, y + yi),

where Wi denotes the set of v-shaped rays of W∆ in-
tersecting ∆i (of size at most ⌈αn⌉), and xi and yi de-
note the number of v-shaped rays strictly below ∆i and
above ∆i.
The theorem follows from Lemma 3. □

5.2 Computing TD(s, S)

To find TD(s, S) for the segment s and the set S of n
segments, we consider a more general linear program-
ming problem, where each constraint has a label k and
the objective is to maximize k such that there exists a
point inside all given half-planes with label less than k,
or in dual form

w′(K) = min (−k, ϕ(h)) (5)

s.t. all red points of K with label < k are below h

all blue points of K with label < k are above h,

where h is a line of the cone formed by a⋆s and b⋆s, and
the minimum is taken lexicographically. For example, a

1Recall that in the primal this enforces the point to be on the
segment.

special case of the above is the following problem: given
a sequence C of linear constraints, find the longest prefix
of C whose linear program is feasible. Interestingly, as
observed by Chan [4], this problem is LP-type and can
be solved in O(|S|) expected time; Chan also showed
that w′ in (5) is LP-type of constant dimension.
The problem of computing TD(s, S) dualizes to find-

ing w′(f ′(W∆,∆, x, y)) for ∆ = R2 and x = y = 0,
where

f ′(W∆,∆, x, y) = {q ∈ ∆ in red with label ℓΛ(q) + x}
∪ {q ∈ ∆ in blue with label ℓV (q) + y}.

Theorem 6 For a segment s and a set S of n segments
in the plane, we can compute TD(s, S) in O(n log n)
expected time.

Proof. We have to show again that the require-
ments 1 and 2 of Lemma 3 hold.

For the requirement 1 we need to test whether a basis
satisfies f ′(W∆,∆, x, y) with respect to w′, which again
reduces to testing whether Lk−x(Λ∆)∩∆ is below h and
Uk−y(V∆)∩∆ is above h. As in the proof of Theorem 5,
this requires D(n) = O(n log n) time.
For the requirement 2, we can form the simplices ∆i

and indices xi, yi for i = 1, . . . , r′ similarly as in the
proof of Theorem 5. Therefore, we have

f ′(W∆,∆, x, y) =

r′⋃

i=1

f(Wi,∆i, x+ xi, y + yi).

The theorem follows from Lemma 3. □

6 Discussion

We have generalized three classical combinatorial depth
measures for sets of points in the plane to sets of seg-
ments. For a given set S of n line segments and a
given segment s in R2, we compute our generalization
of Tukey depth TD(s, S) in optimal time, as our algo-
rithm takes the same expected time O(n log n) as for
computing the Tukey depth TD(q, P ) for a point q rel-
ative to a set of n points in R2 (for which a lower bound
of Ω(n log n) time is known [2]). On the other hand,
we need O(n2) time and expected O(n4/3 log n) time,
respectively, to compute our generalization of simplicial
depth SD(s, S) and eutomic depth ED(s, S), whereas
both SD(q, P ) and ED(q, P ) can be computed in time
O(n log n) for sets of points. It remains open to deter-
mine whether SD(s, S) and ED(s, S) can be computed
faster (a lower bound of Ω(n log n) time for computing
simplicial depth is also known [2]).
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How Small Can Faithful Sets Be? Ordering Topological Descriptors

Brittany Terese Fasy * David L. Millman � Anna Schenfisch �

Abstract

Recent developments in shape reconstruction and
comparison call for the use of many different (topo-
logical) descriptor types, such as persistence diagrams
and Euler characteristic functions. We establish a
framework to quantitatively compare the strength of
different descriptor types, setting up a theory that al-
lows for future comparisons and analysis of descriptor
types and that can inform choices made in applica-
tions. We use this framework to partially order a set
of six common descriptor types. We then give lower
bounds on the size of sets of descriptors that uniquely
correspond to simplicial complexes, giving insight into
the advantages of using verbose rather than concise
topological descriptors.

1 Introduction

The persistent homology transform and Euler charac-
teristic transform were first explored in [41], which
shows the uncountable set of persistence diagrams
(or Euler characteristic functions, respectively) cor-
responding to lower-star filtrations in every possi-
ble direction uniquely represents the shape being fil-
tered. That is, the uncountable set of topologi-
cal descriptors is faithful for the shape. Faithful-
ness of topological transforms is closely related to to-
mography [22, 39], and the alternate proof of faith-
fulness given in [16] makes use of tools from this
field. Of course, applications can only use finite
sets of descriptors, which are not guaranteed to be
faithful. This motivates theoretical work on find-
ing finite faithful sets of descriptors [3, 7, 13, 32], and
such work supports the use of topological descriptors
in shape comparison applications. Many descriptor
types are used in applications, such as versions of
persistence diagrams [4, 21, 23, 37, 42, 45], Euler char-
acteristic functions [1, 6, 20, 26, 31, 33, 36], Betti func-
tions [15,25,35,38,44,46], and others [2, 17,40].

Faithfully representing a shape with a small number
of descriptors is desirable for computational and stor-
age reasons. How, then, should investigators choose
the particular topological descriptor type to use in
applications? While computational complexities of
computing each topological descriptor type are well-
studied, it is not yet known how the use of particular
descriptor types impacts the minimum size of faithful
sets. This uncertainty motivates our main questions:
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how can we rigorously compare descriptor types in
terms of their ability to uniquely correspond to shapes,
and how do popular descriptor types compare?

We prove the parital order of Figure 1. Addition-

Figure 1: Summary of the relations between common
descriptor types. For example, concise persistence di-
agrams are always at least as efficient as concise Betti
functions at forming faithful sets, where efficiency is
measured by cardinality of faithful sets.

ally, we provide lower bounds on the cardinality of
faithful sets for both concise and verbose descriptors,
and identify properties that indicate concise descrip-
tors are generally much weaker than verbose descrip-
tors. This suggests applications research may benefit
from the use of verbose descriptors instead of the more
widely adopted concise descriptors.

2 Preliminary Considerations

In this section, we provide background and definitions
used throughout.

Simplicial Complexes and Filtrations We assume
the reader is familiar with foundational ideas from
topology, such as homology, Betti number (βk) and
Euler characteristic (χ). See, e.g., [9, 18]. For a
simplicial complex K and i ∈ N, we use the no-
tation Ki for the set of its i-simplices and ni as
the number of i-simplices. Furthermore, we assume
our simplicial complexes are abstract simplicial com-
plexes immersed in Euclidean space such that each
simplex is embedded and the vertices are in gen-
eral position; see Assumption 1 in Appendix C. A
filter of K is a map f : K → R such that, each
sublevel set f−1(−∞, t] is either empty or a simpli-
cial complex. Letting F (t) := f−1(−∞, t], the se-
quence {F (t)}t∈R is the filtration associated to f . For
each k ∈ N, the inclusion F (i) ↪→ F (j) induces a lin-
ear map on homology, Hk(F (i)) → Hk(F (j)). We
write βi,jk (K, f) to mean rank of this map, or sim-

ply βi,jk if K and f are clear from context. We call a
filter function f ′ : K → {1, 2, . . . ,#K} a compatible
index filter for f if, for all τ, σ ∈ K with f(τ) ≤ f(σ),
then f ′(τ) ≤ f ′(σ). Every filter function has at least
one compatible index filter.

The lower-star filter of a simplicial complex K im-
mersed in Rd with respect to some direction s ∈ Sd−1,253
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is the map fs : K → R that takes a simplex σ to the
maximum height of its vertices with respect to direc-
tion s, i.e., fs(σ) := max{s ·v | v ∈ K0∩σ}, where s ·v
denotes the dot product.

Faithfully Representing a Simplicial Complex Since
we define relations based on the ability of descriptor
types to represent particular filtrations of simplicial
complexes, we take the following definition.

Definition 1 (Topological Descriptors) A (topo-
logical) descriptor type is a map whose domain is the
collection of filtered simplicial complexes. Given such
map, D, a (topological) descriptor of type D is the
image of a specific filtered simplicial complex under D.

When considering many filtrations of the same sim-
plicial complex, we may index the filtrations by some
parameter set, P . If a descriptor of type D corre-
sponds to a filtration of a simplicial complex K where
the filtration is parameterized by p ∈ P , we use the
notation D(K, p), or D(p) when K is clear from con-
text. We refer to the parameterized set of descriptors
as D(K,P ) := {(p,D(K, p))}p∈P .
We compare descriptor types by quantifying the

number of descriptors needed to uniquely identify a
shape. Specifically:

Definition 2 (Faithful) Let K be a simplicial com-
plex, P parameterize a set of filtrations of K, and D
be a topological descriptor type. We say that D(K,P )
is faithful if, for any simplicial complex L we have the
equality D(L,P ) = D(K,P ) if and only if L = K.

We note here that |D(K,P )| = |P |. See Appendix B
for a reformulation of Definition 2 in terms of set in-
tersections, as well as a lemma that can be gained
from this perspective.

3 Six Common Descriptor Types

The set we partially order is the strength equivalence
classes of six popular descriptor types, which we define
here. We begin with concise persistence diagrams.

Definition 3 (Concise Persistence Diagram)
Let f : K → R be a filter function. For k ∈ N,
the k-dimensional persistence diagram is:

ρfk :=
{
(i, j)µ

(i,j)

s.t. (i, j) ∈ R2

and µ(i,j) = βi,j−1k − βi,jk − β
i−1,j−1
k + βi−1,jk

}
,

where R = R∪{±∞} and (i, j)m denotes m copies of
the point (i, j). The concise persistence diagram of f ,
denoted ρf , is the indexed union of all k-dimensional
concise persistence diagrams ρf := ∪k∈Nρfk .

Since simplices can appear at the same parameter
value in a filtration, not all cycles are represented in
the persistence diagram. However, having every sim-
plex “appear” in a topological descriptor is helpful,
in addition to being natural. Thus, we introduce ver-
bose descriptors, which contain this information. We

define verbose descriptors via compatible index filtra-
tions; by Lemma 52 and Corollaries 54-55 of [12], the
resulting descriptors are well-defined and independent
of our choice of compatible index filtration. We begin
with verbose persistence diagrams:

Definition 4 (Verbose Persistence Diagram)
Let f : K → R be a filter for K, and let f ′ be a
compatible index filter. For k ∈ N, the k-dimensional
verbose persistence diagram is the following multiset:

ρ̃fk :=
{
(f(σi), f(σj)) s.t. (i, j) ∈ ρf

′

k

}
.

The verbose persistence diagram of f , denoted ρ̃f , is
the indexed union of all ρ̃fk .

Recording invariants other than homology leads to
other topological descriptor types; recording Betti
numbers gives us Betti functions.

Definition 5 (Betti Functions) Let f : K → R be

a filter function. The kth Betti function, βfk : R→ Z,
is defined by

βfk (t) := βk
(
f−1(−∞, t]

)
.

The indexed collection of Betti functions for all di-
mensions, βf := {βfk | k ∈ N}, is the Betti function.

Let f ′ be an index filter compatible with filter func-
tion f . We call σ ∈ K positive (respectively, nega-
tive) for βk if the inclusion of σ into the index filtra-
tion of f ′ increases (resp., decreases) βk. We denote
the positive (resp., negative) simplices by K+

k ⊆ Kk

(and K−k+1 ⊆ Kk+1). Then, the kth verbose Betti

function, β̃fk : R→ Z2, is defined by

β̃fk (p) :=

( ∣∣{σ ∈ K+
k s.t. f(σ) ≤ p}

∣∣ ,

∣∣{σ ∈ K−k+1 s.t. f(σ) ≤ p}
∣∣
)
.

The collection of verbose Betti number functions for
each dimension is known as the verbose Betti function
and is denoted β̃f .

If we record Euler characteristic in a filtration, we
obtain Euler characteristic functions.1

Definition 6 (Euler Characteristic Functions)
Let f : K → R be a filter function. The Euler charac-
teristic function, χf : R→ Z, is defined by:

χf (p) := χ
(
{f−1(−∞, p]}

)
.

Let f ′ be an index filter compatible with f . We
call σ ∈ K even (respectively, odd) if the dimension
of σ is even (resp., odd). Denoting the set of even
(resp., odd) simplices by E (and O), the verbose Eu-
ler characteristic function, χ̃f : R→ Z2, is defined by

χ̃f (p) := (|σ ∈ E s.t. f(σ) ≤ p|, |σ ∈ O s.t. f(σ) ≤ p|) .
In other words, χ̃f represents χf as a parameterized
count of even- and odd-dimensional simplices.

1Euler characteristic functions and Betti functions are some-
times called Euler (characteristic) curves or Betti curves.254
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In each of the descriptor types above, we drop the
superscript f when it is clear from context. See
Appendix A for examples of these descriptor types.
While concise descriptors may feel more familiar, ver-
bose descriptors are not new. Many algorithms for
computing persistence (e.g., [9, Chapter VII]), explic-
itly compute events with trivial lifespan. In [27], the
definition of persistence diagrams agrees with our Def-
inition 4. Verbose descriptors are closely connected to
the charge-preserving morphisms of [14, 28]. In [43],
verbose persistence is defined via filtered chain com-
plexes; [5, 29, 30, 47] also take this view as a founda-
tional definition. The behavior of verbose versus con-
cise descriptors is explored in [10,30,48].

Verbose (concise) descriptors are sometimes called
augmented (non-augmented, respectively) in the lit-
erature. We refer to points on a verbose diagram
with zero-lifespan as instantaneous. Such points cor-
respond to length-zero barcodes in a verbose barcode,
which are sometimes referred to as ephemeral.
While we chose the six descriptor types above due

to their relevance in applications, we emphasize that
Definition 1 is very general. We explore a few patho-
logical descriptor types in Appendix C.

4 Relating Descriptor Types

We now develop tools to compare descriptor types,
by comparing the sizes of faithful sets. Given a topo-
logical descriptor type D and a simplicial complex K
immersed in Rd, let the infimum size of faithful sets
for K be denoted

Γ(K,D) := inf
D(K,P ) faithful

{|P |} .

Intuitively, the stronger D is, the smaller Γ(K,D).
Often, we find Γ(K,D) is finite. For some descrip-
tors and K, we find Γ(K,D) = ℵ0 (the cardinality
of N) or Γ(K,D) = ℵ1 (the cardinality of R); see Ap-
pendix C for examples. If no faithful set of type D
exists for K, we write infx∈∅{x} = ℵ⊤, and we think
of this as “the highest” cardinality. By the axiom of
choice, ℵ0 < ℵ1; see e.g., [19, Ch. 2]. Thus, we have a
total order on possible values of Γ(K,D):

c < ℵ0 < ℵ1 < ℵ⊤,

where c ∈ N.

Definition 7 (Strength Relation) Let A and B be
two topological descriptor types. If, for every simpli-
cial complex K immersed in Rd, we have Γ(K,A) ≥
Γ(K,B), then we say that A is weaker than B (and B
is stronger than A) denoted [A] ⪯ [B]. If [A] ⪯ [B]
and [B] ⪯ [A], then we say that A and B have equal
strength, denoted [A] = [B].

The relations = are ⪯ are well-defined on strength
equivalence classes. See Lemma 16 in Appendix D.1.
Also see Example 1 of Appendix C for two different
descriptor types in the same equivalence class.

We write [A] ≺ [B] if [A] ⪯ [B] and [A] ̸= [B].
That is, if [A] ⪯ [B] and there exists a simplicial com-
plex for which the minimum faithful set of type B is
strictly smaller than that of type A, or for which there
exists a faithful set of type B but not of type A. De-
scriptor types need not be comparable; see Lemma 14
of Appendix C.

We conclude this section by defining reduction of
one descriptor to another, and show this is a valid
strategy for determining equivalence class order.

Definition 8 (Reduction) Let A and B be two topo-
logical descriptor types. We say B is reducible to A
if, for all simplicial complexes K and any filtration f
of K, we can compute A(f) from B(f) alone.2

Intuitively, B is at least as informative as A. More
formally, we have the following lemma, whose proof is
in Appendix D.1:

Lemma 1 Let A and B be two topological descriptor
types. If B is reducible to A, we have [A] ⪯ [B].

5 A Proof of Partial Order

In this section, we provide a partial order on the six
topological descriptors of Section 3. Omitted proofs
are in Appendix D.2. While the results and definitions
of previous sections were general, we now focus on
descriptors corresponding to lower-star filtrations.

By simple reduction arguments, we immediately
have the following lemma.

Lemma 2 [χ] ⪯ [β] ⪯ [ρ] and [χ̃] ⪯ [β̃] ⪯ [ρ̃].

We also use reduction to order a class of a concise
descriptor type and its verbose counterpart.

Lemma 3 [χ] ⪯ [χ̃], [β] ⪯ [β̃], and [ρ] ⪯ [ρ̃].

Next, we see that no concise class is equal to a ver-
bose class.

Lemma 4 For D ∈ {χ, β, ρ} and D̃ ∈ {χ̃, β̃, ρ̃}, we
have [D] ̸= [D̃].

The proof is given by considering a single edge
in R2, and showing a minimal faithful set of type D̃
has cardinality two; whereas, a minimal faithful set
of type D has cardinality at least three; see Ap-
pendix D.2 for full details.

(a) K (b) K′

Figure 2: Complexes used in the proof of Lemma 5.

2In this reduction, we asusme the real-RAM model of com-
putation.255
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In [13], faithfulness is shown via knowing the di-
mension of event rather than any birth-death pair-
ings, so the resulting faithful sets of verbose persis-
tence diagrams and verbose Betti functions have equal
cardinality for every simplicial complex. One might
wonder, then, if [ρ̃] equals [β̃]. However, this is an
incorrect leap; faithful sets of [13] are almost cer-
tainly not minimal. The next lemma gives an instance
where birth-death pairings matter, rather than just an
event’s existence or dimension.

Lemma 5 [β̃] ≺ [ρ̃].

Proof. We know by Lemma 2 that [β̃] ≤ [ρ̃]. We
must show that equality does not hold; that is, that
there exists a simplicial complex for which the cardi-
nality of the minimal faithful sets of augmented Betti
functions and augmented persistence diagrams differ.
Consider the simplicial complex K in R2 consisting
of: four vertices v1 = (0, 0), v2 = (0, 1), v3 = (1, 0),
and v4 = (1, 1) and two edges [v1, v4] and [v2, v4], as
in Figure 2(a).

Let e1 = (1, 0) and e2 = (0, 1). We first claim
that ρ̃(K, {e1, e2}) is faithful, meaning Γ(K, ρ̃) ≤ 2.
Such diagrams uniquely identify the vertex set of K
by [3, Lemma 4]; we provide further details here.
From ρ̃(e1), we know K has four vertices, two with x-
coordinate 0, and two with x-coordinate 1. Similarly,
from ρ̃(e2), we know two of the four vertices have y-
coordinate 0 and two have y-coordinate 1. There are
exactly four ways to pair our x- and y-coordinates, so
we know the locations of each vertex. See Figure 3(b).

For the edges, we first note that from ρ̃(e2) in degree
zero we see an instantaneous birth/death at height one
as well as a connected component born at height zero
that dies at height one, so we know K has exactly
two edges with height one in direction e2. Namely,
we know we have either the edges [v1, v3] and [v2, v3],
or [v1, v4] and [v2, v4], i.e., we have one of the two
complexes shown in Figure 2. Because ρ̃(e1) sees two
zero-dimensional births at height zero with an infinite
lifespan, we know there is no edge from v1 to v3. Fi-
nally, since higher homology is trivial, we know there
are no other simplices and have determinedK exactly;
thus, we have a faithful set of size two.

We next show that Γ(K, β̃) > 2. Suppose, by
way of contradiction, that s1 and s2 are two direc-
tions such that β̃(K, {s1, s2}) is a faithful set. We
first show, without loss of generality, s1 ∈ {e1,−e1}
and s2 ∈ {e2,−e2}. Suppose this is not the case. Be-
cause s1 = −s2 does not correspond to a faithful set,
we assume (wlog) that s1 ̸= −s2. Then, at least one
of s1 or s2 sees the vertices of K at more than two
distinct heights; see Figure 3(a). In order to know
the precise coordinates of each vertex, we need to cor-
rectly pair heights in directions s1 and s2. However,
since at least one of s1 or s2 reports more than two
distinct heights, we have more than four possible pair-
ings (see also [3, Lemma 4]). We claim it is not possi-
ble to find the four correct pairings. The degree-zero
information β̃0(s1) and β̃0(s2) alone is insufficient, as
it only tells us the heights of vertices. From β̃1, we

know the height of edges, which only confirms the
height of the top vertex and that there is some vertex
below, information we already had from β̃0. Thus, we
must have s1 ∈ {e1,−e1} and s2 ∈ {e2,−e2}. How-
ever, for each of these four directions, the associated
verbose Betti function is not able to distinguish the
two complexes shown in Figure 2(b). For instance,
both β̃(K, e1) and β̃(K

′, e1) see two vertices at height
zero, and two vertices and two edges at height one,
i.e., β̃(K, e1) = β̃(K ′, e1). The other cases of s1 and s2
are similar. Thus, we have found a faithful set of ver-
bose persistence diagrams with cardinality two, but
have shown any faithful set of verbose Betti functions
must have cardinality greater than two. □

(a) (b)

Figure 3: For the given vertex set, heights of filtration
events in the indicated directions are shown as dashed
grey lines. While we know the number of vertices on
each line, for two directions not both in {±e1,±e2},
as in (a), we can not identify vertex locations. Only
when choosing one each of ±e1 and ±e2, as in (b), is
the set of vertices satisfying these constraints unique.

Combining results, we arrive at our main theorem.

Theorem 6 (Partial Ordering) The partial or-
der of strength classes of topological descriptor types
shown in Figure 1 is correct.

6 Bounds on Faithful Sets

Here, we provide lower bounds on the size of faithful
sets of the six descriptor types of Section 3.

6.1 Concise Descriptor Bounds

A defining feature of concise descriptors is that there
are not generally events at every vertex height in a
filtration. The closer a feature is to coplanar, the
smaller the range of directions that can detect it be-
comes ( [11, Sec. 4] explores this specifically for Eu-
ler characteristic functions). Difficulty detecting the
presence or absence of structures near to the same
affine subspace puts greater restrictions on the ability
of concise descriptors to form faithful sets. We use
the following definition to help this claim precise.

Definition 9 (Simplex Envelope) Let K be a sim-
plicial complex in Rd, let σ ∈ K, and let S ⊆ Sd−1.
Then, we define the envelope of σ, denoted ESσ , as the
intersection of (closed) supporting halfspaces

ESσ =
⋂

s∈S
{p ∈ Rd | s · p ≥ min

v∈σ
(s · v)}.

256
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If S is clear from context, we write Eσ. By the dimen-
sion of Eσ, we mean the largest dimension of ball that
can be contained entirely in Eσ.

Since ESσ is an intersection of convex regions, it is itself
convex. Furthermore, with respect to each s ∈ S, the
height of each point of σ is greater than or equal to
its minimum vertex, so ESσ contains σ.

Remark 1 The simplex envelopes of Definition 9
have connections to well-studied topics such as con-
vex cones, support functions, etc. See [8, 34]. In par-
ticular, [34, Thm 3.1.1, Cor 3.1.2] establish that a
simplex envelope corresponding to the entire sphere of
directions is the simplex itself.

We use simplex envelopes to define a necessary condi-
tion for concise descriptors to form a faithful set.

Lemma 7 (Envelopes for Faithful Concise Sets)
Let K be a simplicial complex immersed in Rd, let D ∈
{χ, β, ρ}, and let S ⊆ Sd−1 so that D(K,S) is faithful.
Then, for any maximal simplex σ in K, the dimension
of Eσ equals the dimension of σ.

(a) (b)

Figure 4: With only the single direction s perpen-
dicular to maximal edge σ in R2, the envelope Esσ is
two-dimensional. Then, we could place an adversar-
ial two-simplex contained in Esσ that is undetectable
by D(s), for D ∈ {χ, β, ρ}, as in (a). In (b), the inclu-

sion of s′ reduces E{s,s
′}

σ to a linear subspace (purple
intersection of pink and blue halfspaces) and the ad-
versarial two-simplex would be detected by D(s′).

A proof of Lemma 7 appears in Appendix D.3. See
Figure 4 for an example of what might go wrong if a
simplex envelope does not satisfy the conditions of
Lemma 7. Since we require the envelopes of a k-
simplex to be k-dimensional, and since envelopes are
the intersections of closed half spaces, standard argu-
ments from manifold theory give us the following.

Corollary 1 (Concise Descriptors Per Maximal
Simplex) Let K be a simplicial complex immersed
in Rd, let D ∈ {χ, β, ρ}, and let S ⊆ Sd−1. If D(K,S)
is faithful, then for each maximal simplex σ ∈ K of
dimension k < d, the set S has at least d − k + 1
directions perpendicular to σ. If k < d − 1, these
directions are pairwise linearly independent.

Lemma 7 and Corollary 1 each give us the following.

Corollary 2 (Tight Lower Bound) Let K be a
simplicial complex in Rd, D ∈ {χ, β, ρ}, and S ⊆
Sd−1. Suppose that D(K,S) is faithful. Then, |S| ≥
d+ 1, and this bound is tight.

This bound is met whenever K is a single vertex.
However, minimal faithful sets of concise descriptors
are generally much larger. Counteracting the need
for perpendicular directions is the fact that, as d in-
creases, more simplices span common hyperplanes, so
perpendicular directions can increasingly be shared.
We use these observations to lower bound bound the
worst-case size of faithful set of consice descriptors.

Theorem 8 (Lower Bound for Worst-Case Con-
cise Descriptor Complexity) Let D ∈ {χ, β, ρ}
and let K be a simplicial complex in Rd with n1 edges.
Then, the worst-case cardinality of a minimal descrip-
tor set of type D is Ω(d+ n1).

Proof. We construct a simplicial complex, K, and
bound the minimum cardinality of a faithful set forK.
Suppose that, for d > 2, that K is a graph in Rd
with n1 < d − 1 edges, and for some S ⊆ Sd−1,
the set D(K,S) is faithful. Then, by Lemma 7,
the envelope of each maximal edge σ must be one-
dimensional. Then, by Corollary 1, for every such σ, S
contains d − 1 + 1 = d pairwise linearly independent
directions perpendicular to σ. Let S∗ be a minimal
subset of directions in S satisfying the conditions of
perpendicularity and one-dimensional envelopes.

To build S∗, first note all edges of K are contained
in a common n1-plane, so there is a (d − n1 − 1)-
sphere’s worth of directions perpendicular to all edges
simultaneously. Such directions are maximally effi-
cient in the sense that each can “count” for all edges
at once. We choose any d − 1 pairwise linearly in-
dependent directions from this sphere to be included
in S∗. Now we need an additional perpendicular di-
rection for each edge to bring the total for each edge
to d. To ensure the envelopes of each edge are one-
dimensional, these additional directions must not be
perpendicular to any hyperplane defined by subsets of
more than one edge. This means we must consider a
total of n1 additional directions, so that S∗ has car-
dinality d − 1 + n1. Since |S∗| lower bounds |S|, we
find |S| ∈ Ω(d+ n1). □

6.2 Verbose Descriptor Bounds

We now shift to verbose descriptors, and begin with
the tight lower bound.

Lemma 9 (Tight Lower Bound) Let K be a
simplicial complex in Rd and D̃ ∈ {χ̃, β̃, ρ̃}. Sup-
pose for some S ⊆ Sd−1 the set D̃(K,S) is faithful.
Then, |S| ≥ d, and this bound is tight.

Proof. No vertex in K can be described using fewer
than d coordinates, so a set of descriptors of type D̃
with cardinality less than d can never be faithful. To
see that this bound is tight, when K is a single ver-
tex, verbose descriptors generated by any d pairwise
linearly independent directions form a faithful set. □

Next, we identify a family of simplicial complexes
for which minimal faithful sets of verbose descriptors
are at least linear in the number of vertices. We257
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use αi,j to denote the angle that vector vj − vi makes
with the x-axis, taking value in [0, 2π). We first ob-
serve a consequence of a specific instance of the gen-
eral phenomenon that a simplicial complex stratifies
the sphere of directions based on vertex order [7, 24].

Observation 1 Suppose a simplicial complex in R2

contains an isolated edge [v1, v2]. Then, a birth event
occurs height s ·v1 in ρ̃(K, s) for all s the interval I =
(α1,2−π/2, α1,2+π/2) of S1 (all s so that s·v1 > s·v2)
and as an instantaneous event for all s ∈ IC .

We now construct the building block that forms the
complexes used in our bound.

Construction 1 (Clothespin Motif) Let K
be a simplicial complex in R2 with a vertex
set {v1, v2, v3, v4} such that only v3 is in the interior
of the convex hull of {v1, v2, v4}, and that the edge set
consists of [v1, v2] and [v3, v4]. See Figure 5a.

(a) K (b) K′

Figure 5: The two simplicial complexes of Lemma 10.

Construction 1 was built specifically for the follow-
ing necessary condition, the proof of which may be
found in Appendix D.3.

Lemma 10 (Clothespin Representability) Let K
be as in Construction 1, and suppose that ρ̃(K,S) is
faithful. Then, there is some s ∈ S so that the angle
formed between s and the x-axis lies in the region

W = [α3,2−π/2, α3,4−π/2]∪ [α3,2+π/2, α3,4+π/2].

We callW , the intervals of directions in S1 for which
corresponding verbose descriptors can distinguish K
from K ′ a clothespin’s region of observability (similar
to observability for concise Euler characteristic func-
tions in [7, 11]). Crucially, W is defined by ∡v2v3v4,
so we have the following.

Remark 2 (W Can be Arbitrarily Small) As the
angle ∡v2v3v4 approaches zero, the region of observ-
ability from Lemma 10 also approaches zero.

We use Remark 2 to piece together clothespins so
their regions of observability do not overlap.

Construction 2 (Clothespins on a Clothesline)
Let K(m) be a simplicial complex in R2 formed by m
copies of Construction 1 (m clothespin motifs) such
that the regions of observability for each clothespin do
not intersect. This is possible for any m by Remark 2.

See Figure 6. Construction 2 implies a lower bound
on the worst-case size of faithful sets of verbose per-
sistence diagrams.

Figure 6: An example of K(m) for m = 4. Regions
of observability are shown below each clothespin. By
construction, each of these regions of S1 are disjoint.

Lemma 11 (Verbose Persistence Diagram
Complexity) Let K(m) be as in Construction 2 and
suppose ρ̃(K(m), S) is a faithful set. Then, S contains
at least one direction in each of the m regions of ob-
servability, so |S| ≥ m = n0/4. Thus, |S| is Ω(n0).

By Theorem 6, Lemma 11 implies the following:

Theorem 12 (Lower Bound for Worst-Case
Verbose Descriptor Complexity) Let D̃ ∈
{χ̃, β̃, ρ̃}. Then, the worst-case cardinality of a mini-
mal descriptor set of type D̃ is Ω(n0).

7 Discussion

We provide a framework for comparing topological de-
scriptor types by their ability to efficiently represent
simplicial complexes. The tools developed here are
a first step towards more theoretical justifications for
the use of particular descriptor types in applications.

We focus on the descriptors that are particularly
relevant to applications and related work, and give a
partial order on this set of six descriptors, including
the strict inequality, [β̃] ≺ [ρ̃]. We also identify tight
lower bounds for descriptor types, as well as bounds
for worst-case complexity of sizes of faithful sets. Be-
cause faithful sets of concise descriptors require many
perpendicular directions to each maximal simplex, a
huge hiderance in practice, we believe applications re-
search may benefit from the use of verbose descriptors
rather than the current standard of concise descrip-
tors. We are investigating other descriptor types in
this framework as well, including merge trees.

Perhaps the strength classes [χ], [β], and [ρ] in-
tuitively feel as though they should be related by
strict inequalities. However, this issue is nuanced.
Lemma 15 (Appendix C) shows the impact that gen-
eral position assumptions have on relations in this set.
But even with general position, the seemingly advan-
tageous “extra” information of homology compared
to, e.g., Euler characteristic may no longer be so useful
when we require tight envelopes around each maximal
simplex. That is, once we have all the (many) required
directions, we have already carved out the space filled
by the complex, and already know quite a lot simply
from the presence of events. Non-equality/equality of
concise descriptors remains an area active of research.258
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A Example Filtration with Six Descriptor Types

We consider the simplicial complex on four vertices
given in Figure 7(a). In the e1 direction we see four
distinct heights of vertices, a, b, c, and d.

First, we describe what happens in ρ(K) and ρ̃(K).
At height a, and then again at height b, we see con-
nected components born. At height c, the homology
of the sublevel set does not change, so no change is
recorded in ρ(K). However, a corresponding index fil-
tration sees the connected component corresponding
to first adding the vertex at c, which then immedi-
ately dies as we include the edge at height c. Thus, in
ρ̃(K), we have the point (c, c). For similar reasons, we
see the point (d, d) in ρ̃(K). Also at height d, our two
connected components merge into a single connected
component. It is a standard convention to choose the
eldest component to survive, so we have the point
(b, d) in both diagrams. We also see a cycle appear
at height d, giving us the point (d,∞) in both dia-
grams. Finally, since the connected component born
at height a did not die, we have the point (a,∞) in
both diagrams.

Next, we describe what happens in β(K) and β̃(K).
At the height a, only the Betti number in dimension
zero changes, going from zero to one. Since the in-
clusion of this vertex increased Betti zero, we count
the vertex as positive in β̃0(K). At the height b,
again, only Betti zero changes, going from one to two,
and we also count the corresponding vertex as posi-
tive for β̃0(K). At the height of c, no Betti number
changes, and thus there is no event in β(K). How-
ever, in a correpsonding index filtration, the inclusion
of the vertex at height c increases β0 by one, and the
inclusion of the edge then reduces β0 by one. This is
recorded in β̃(K) at c as an additional positive sim-
plex (going from two total to three total), and our
first negative simplex. We see similar behavior in di-
mension zero at the height of d. At height d we also
see β1 go from zero to one, which is recorded in the
concise Betti function. In a corresponding index fil-
tration, the inclusion of the second edge at height d
increases β1, and is thus recorded as positive.

Finally, we describe what happens in χ(K) and
χ̃(K). At both heights a and b, the Euler charac-
teristic of the sublevel sets increases by one. Since
this is due to inclusions of vertices, which are even-
dimensional simplices, both of these increases are
recorded as even-dimensional in χ̃(K). At c, the Eu-
ler characteristic remains the same, so no change oc-
curs in χ(K). In a corresponding index filtration, we
see the vertex (an even-dimensional simplex) and an
edge (odd-dimensional simplices), which are recorded
in χ̃(K). Finally, the Euler characteristic at d changes260
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from two to zero, which is recorded directly in χ(K).
An index filtration witnesses the appearance of one
even and two odd simplices at height d, and this is
recorded in χ̃(K).

B Faithfulness and Set Intersections

In this appendix, we explore reframing the definition
of faithful in terms of set intersection. In Definition 2,
we identify D(K,P ) as faithful topological transform
if, for any simplicial complex L, we have D(L,P ) =
D(K,P ) if and only if K = L. To unpack the equality
D(L,P ) = D(K,P ), recall

D(K,P ) := {(p,D(K, p))}p∈P .

Thus, D(L,P ) = D(K,P ) if and only if for all p ∈ P ,
we have D(K, p) = D(L, p). Then, D(K,P ) is faithful
if and only if

⋂

p∈P

{
K ′ ⊂ Rd | D(K ′, p) = D(K, p)

}
= {K}. (1)

From this perspective, we prove the following lemma
providing a sufficient condition for finite faithful sets.

Lemma 13 (Sufficient Conditions for Finite
Faithful Set) Let K be a simplicial complex im-
mersed in Rd and let D be a type of topological de-
scriptor that can faithfully represent K. Suppose there
exists a finite set of descriptors of type D that is faith-
ful for K0. Then, there exists a finite faithful set of
descriptors of type D for K.

Proof. Let P be a parameter set such that D(K,P )
that is faithful for K, and let P0 be a finite parameter
set such that D(K,P0) that is faithful for K0.
Now, let B be the set of simplicial complexes that

are indistinguishable from K using only parameter
set P0; that is,

B :=
⋂

p∈P0

{
K ′ ⊂ Rd | D(K ′, p) = D(K, p)

}
(2)

Since P0 is faithful for K0, we know that B ⊆ {K ′ |
K ′0 = K0}, i.e., B is a subset of all simplicial com-
plexes built out of the vertices of K. In particular, we
note that this set is finite; since |K0| is finite, there are
a finite number of simplicial complexes we can build
over this set of vertices.

If B = {K}, we are done. Otherwise, sinceD(K,P )
is faithful for K, for each L ̸= K in B, there exists
a direction pL ∈ P such that D(L, pL) ̸= D(K, pL).
Let P ∗ = P∪{pL | L ∈ B}. Then, D(K,P ∗) faithfully
represents K. Furthermore, since P and B are finite,
we also know that P ∗ is finite. □

C Zoo of Other Descriptor Types

In Section 2, we adopt a general definition of topo-
logical descriptor (Definition 1). In this appendix, we
explore non-standard topological descriptors, and cor-
responding scenarios that may arise as a result of this

generality. The descriptors presented here are not in-
tended to be taken as anything that would necessar-
ily make sense to use in practice, but rather, as a
sort of zoo of examples to get a quick glance at the
mathematical extremes and properties of the space of
strength classes of topological descriptors.

First, we give an example of two distinct descrip-
tor types that are in the same equivalence class of
strength.

Example 1 Consider the topological descriptor de-
noted −ρ that takes a lower-star filtration in direction
s, and produces ρ(−s), the persistence diagram in di-
rection −s. Although generally ρ(s) ̸= ρ(−s) (as mul-
tisets), a faithful set ρ(K,S) has the same cardinality
as the faithful set −ρ(K,−S), and if a simplicial com-
plex has no faithful set of type ρ, then it has no faithful
set of type −ρ. Thus, [ρ] = [−ρ].

Next, we observe that many examples of topological
descriptors are not capable of faithfully representing
most simplicial complexes, such as the following.

Descriptor Type 1 (First Vertex) Consider a
descriptor DV that returns (1) the coordinates of the
first vertex (or vertices) encountered and (2) the car-
dinality of the vertex set, but no other information.

If the filtrations are directional filtrations, then this
descriptor is only faithful for convex point clouds. Any
set of vertices that defines the corners of a convex
region can be faithfully represented by this Descrip-
tor Type 1. However, since no vertex interior to the
convex hull nor any higher dimensional simplices are
witnessed by any direction, this descriptor type is in-
capable of faithfully representing any other type of
simplicial complex.

We can also construct descriptor types that are sim-
ply never able to form faithful sets.

Descriptor Type 2 (Trivial) Consider the trivial
descriptor type D0 that returns zero for all sublevel
sets in a lower-star filtration.

Although this trivial descriptor type is an invariant
of any filtration, it can not faithfully represent any
simplicial complex. Thus, Γ(K,D0) = ℵ⊤ for all K.
And so, in the space of all topological descriptors,
Descriptor Type 3 is in the minimum strength class.
We can (also trivially) construct a descriptor type that
is in the maximum strength class.

Descriptor Type 3 (Filtration-Returning) Con-
sider the descriptor type DFilt that returns the in-
put filtration.

Thus, a single descriptor of this type is always faith-
ful for a simplicial complex.

Finally, we can find instances of topological descrip-
tors that are able to faithfully represent a simplicial
complex, but with a set no smaller than uncountably
infinite.261
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(a) K (b) ρ(K) (c) ρ̃(K)

(d) β(K) (e) β̃(K) (left: positive for βk, right: negative for βk

(f) χ(K) (g) χ̃(K) (left: even-dimensional, right: odd-dimensional)

Figure 7: Six descriptors corresponding to the lower-star filtration in the direction indicated by the arrow of the
simplicial complex in (a).

Descriptor Type 4 (Indicator) Let K be a sim-
plicial complex immersed in Rd let DR be a descriptor
type parameterized by Rd that is constant over a fil-
tration and is defined by

D(K,x) =

{
1 if x ∈ |K|
0 else.

Note that then, D(K,Rd) is the (only) minimum
faithful set for K, and so Γ(K,DR) = ℵ1 for all
K. Thus, the (minimal) strength class of Descrip-
tor Type 4 is greater than the strength class of the
trivial descriptor in Descriptor Type 3, and there are
no strength equivalence classes between them.
We now know the space of strength classes of topo-

logical descriptors has a minimum and maximum, and
we have identified a second smallest descriptor type;
is it a total order? The following example shows that
it is not; there do indeed exist incomparable descrip-
tor types.

Lemma 14 (Incomparable Strength Classes)
There exist incomparable strength classes of topologi-
cal descriptor types.

Proof. Let DV denote Descriptor Type 1. That is,
given a direction s, D returns: (1) the coordinates
of the lowest vertex (or vertices) in direction s, and

(2) the cardinality of the vertex set. We compare DV
with verbose persistence diagrams. Let v1 = (0, 0)
and v2 = (0, 1).

First, consider the simplicial complex K = {v1}.
Then, regardless of direction, a single descriptor of is
faithful for K. However, since K is in R2, any faithful
set of augmented persistence diagrams must have at
least two linearly independent directions to recover
both coordinates of K.

Next, consider the simplicial complex K ′ =
{v1, v2}. No set of descriptors of type DV is faithful
for K ′ (it cannot distinguish between K ′ and the sim-
plicial complex consisting of the two disconnected ver-
tices v1 and v2 without an edge). However, two aug-
mented persistence diagrams suffice to form a faith-
ful set for K ′; for example, using the standard ba-
sis vectors {e1, e2} as the set. Thus, if DV (K,SDV

)
and ρ̃(K,Sρ̃) are both minimal faithful sets, we see
that |SDV

| < |Sρ̃| but |SDV
| > |Sρ̃|. Thus, although

we have shown [DV ] ̸= [ρ̃], they are incomparable. □

Finally, we give a lemma that shows an impact of
not adopting the general position assumption for the
vertices. Specifically, the general position assumption
we use throughout this paper is:

General Position 1 A simplicial complex K im-
mersed in Rd is in general position if, for all sub-
sets V ⊆ K0 with |V | ≤ d+ 1 is affinely independent262
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Removing this assumption, we obtain:

Lemma 15 (Concise Equality) Without Assump-
tion 1, the strength equivalence classes of the three
concise topological descriptor types from Section 3 are
all equal.

Proof. Let D ∈ {χ, β, ρ}. We must consider faith-
ful sets of such descriptors for an arbitrary simplicial
complex K immersed in Rd (that may not be in gen-
eral posistion). The argument differs depending on if
K is a vertex set, or contains at least one edge; we
consider each case.

First, suppose n1 = 0. Then, K has no edges and is
a vertex set, meaning each vertex is a maximal simplex
of K. Then, by Corollary 1, faithful sets of type D
must include descriptors from at least d + 1 direc-
tions. By Lemma 7, the envelopes of each vertex must
be zero-dimensional. Since the only zero-dimensional
convex sets are singleton points, the envelope of each
vertex contains that vertex and nothing else.

Let S be a set of d+ 1 directions such that the en-
velope of each vertex is zero-dimensional (note that
such a set exists, for example, the standard basis
directions (ei), and the negative diagonal direction,
−1/
√
d(1, 1, . . . , 1)). Consider a single direction, s ∈

S and a ≤ b ∈ Rd. If no event occurs in D(s) between
heights a and b, we know no connected component
of K has its lowest vertex (or vertices) with respect
to s in the range from a to b. Then, from D(s), we
identify that K has n0 connected components, and
we know their starting heights with respect to the s
direction. In other words, we know these connected
components are contained in the (closed) upper half-
spaces defined by s.

Each additional direction in S gives us more infor-
mation about these n0 connected components, and,
just like s, each additional direction provides an ad-
ditional upper half-space in which we know the con-
nected component is contained; each connected com-
ponent must lie in the intersection of these half-spaces.
Since we use a total of d + 1 directions, chosen so
that the envelope of each vertex, ESv (the intersection
of half-spaces), is zero-dimensional, we conclude each
connected component is zero-dimensional.

That is, we know the exact location of each ver-
tex by identifying its envelope. Thus, minimal faith-
ful sets of type D have cardinality of exactly d +
1, meaning the infimums considered in Definition 7
are Γ(K,D) = d+ 1 for such K.

Next, suppose n1 > 1. We show no set of descrip-
tors of type D can faithfully represent K. Let τ be an
edge in K and construct another complex L by start-
ing withK and taking the barycentric subdivision of τ
and all simplices containing τ . Then, since |K| =
|L| the Euler characteristics/Betti numbers/homology
throughout the filtrations ofK or L agree. That is, for
every direction s, D(K, s) = D(L, s). Since this is true
for every s, the descriptor type D is incapable of form-
ing a faithful set for K, meaning the infimums consid-
ered in Definition 7 are Γ(K,D) = ℵ⊤ for such K.

We have shown that, for each K without a general
position assumption, we have Γ(K,χ) = Γ(K,β) =
Γ(K, ρ). Thus, when removing the general position
assumption, we find [χ] = [β] = [ρ]. □

Fortunately, as shown in Section 5, the relations
among concise descriptors becomes more interesting
when we assume general position. This also has the
benefit of reflecting the general position assumptions
that are often taken in practical applications.

D Omitted Proofs and Lemmas

In this appendix, we provide proofs that were omitted
from the main text.

D.1 Proof from Section 4

The following lemma is stated, but not proven, in Sec-
tion 4.

Lemma 1 Let A and B be two topological descriptor
types. If B is reducible to A, we have [A] ⪯ [B].

Proof. Let K be a simplicial complex. Define the
sets WA := {P s.t. A(K,P ) is faithful} and WB :=
{P s.t. B(K,P ) is faithful}. For each P ∈ WA, by
definition, A(K,P ) is faithful. Since B is reducible
to A, this also means B(K,P ) is faithful, and so P is
also inWB . Hence,WA ⊆WB . Hence, infP∈WA

|P | ≥
infP∈WB

|P |. Note that these are exactly the infimums
in Definition 7, and so, we have [A] ⪯ [B]. □

The following lemmas are referenced, but not ex-
plicitly stated, in Section 4.

Lemma 16 The relation = is an equivalence rela-
tion, and the relation ⪯ is well-defined on sets of
strength equivalence classes.

Proof. When we compare infimums in Definition 7,
we compare values in N∪{ℵ0,ℵ1,ℵ⊤}. The relation ≤
on values in this set is reflexive, antisymmetric, and
transitive. The relation = on this set is reflexive, sym-
metric, and transitive. The result follows. □

D.2 Proofs from Section 5

We prove two lemmas that were originally stated in
Section 5.

Lemma 2 [χ] ⪯ [β] ⪯ [ρ] and [χ̃] ⪯ [β̃] ⪯ [ρ̃].

Proof. The proof follows directly from a reduction
argument. We can reduce any ρ(s) to β(s) by “forget-
ting” the relationship between birth and death events.
We can then reduce β(s) to χ(s) by taking the alter-
nating sum of points from β(s). A nearly identical
argument shows the relationship between verbose ver-
sions of these descriptors. □

The reductions described above are well-known,
and are observed in other work; for example [7, Prop
4.13] points out the reduction from an Euler charac-
teristic function to a persistence diagram.263
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Lemma 3 [χ] ⪯ [χ̃], [β] ⪯ [β̃], and [ρ] ⪯ [ρ̃].

Proof. Each verbose descriptor has a clear reduction
to its concise counterpart. A verbose persistence di-
agram becomes a concise persistence diagram by re-
moving all on-diagonal points. Verbose Betti func-
tions and verbose Euler characteristic functions be-
come concise if we subtract their second coordinates
from their first coordinates. Then, by Lemma 1, we
have the desired relations. □

Lemma 4 For D ∈ {χ, β, ρ} and D̃ ∈ {χ̃, β̃, ρ̃}, we
have [D] ̸= [D̃].

Proof. To show inequality of strength classes, we find
a simplicial complex for which minimum faithful sets
of type D and D̃ have different cardinalities. Let K be
the simplicial complex that is a single edge in R2 with
vertex coordinates (1, 1) and (1, 2). See Figure 8 for
this complex, and an illustration for the specific case
D̃ = ρ̃. In the direction e1 = (1, 0), if D̃ = ρ̃, we see
an instantaneous birth/death and an infinite birth in
degree zero. If D̃ = β̃, we see two positive simplices
and one negative simplex for Betti zero. If D̃ = χ̃,
we see two even simplices and one odd simplex. This
all occurs at height 1, and there are no other events,
which, is only explainable by the presence of a single
edge. From D̃(e2), we see a non-instantaneous and
instantaneous event at heights 1 and 2, respectively,
which give us the y-coordinates of our two vertices.
Then, K is the only complex that could have gener-
ated both D̃(e1) and D̃(e2), i.e., the set D̃(K, {e1, e2})
is faithful.

Next, consider the descriptor type D. For any
s ∈ S1, D(s) contains exactly one event; if the lowest
vertex of K with respect to s has height a in direc-
tion s, then D(s) records a change in homology/Betti
number/Euler characteristic at height a and records
no other changes. Thus, D(s) can only give us infor-
mation about one coordinate of the vertex set of K
at a time, corresponding to whichever vertex is lowest
in direction s. However, K has three relevant coordi-
nates; namely, x = 1, y = 1, and y = 2 meaning it
is not possible for any faithful set of type D to have
size less than three. Thus, since 3 ̸= 2, we have shown
[D] ̸= [D̃], as desired. □

The specific inequality [χ] ̸= [ρ̃] is also implied by
[32, Thm. 10].

D.3 Proofs from Section 6

We provide proofs of Lemmas 7 and 10.

Lemma 7 (Envelopes for Faithful Concise Sets)
Let K be a simplicial complex immersed in Rd, let D ∈
{χ, β, ρ}, and let S ⊆ Sd−1 so that D(K,S) is faithful.
Then, for any maximal simplex σ in K, the dimension
of Eσ equals the dimension of σ.

Proof. Let k be the dimension of σ, and let c be the
dimension of Eσ. First, we observe that since σ is
contained in Eσ, we must have k ≤ c. The claim is

Figure 8: The simplicial complex considered in the
proof of Lemma 4 as well as the verbose diagrams in
directions e1 and e2. Note that ρ̃(K, {e1, e2}) is indeed
a faithful set, since we can recover the coordinates
of both vertices (ρ̃(K, e1) tells us the x-coordinates
and ρ̃(K, e2) tells us the y-coordinates), as well as
determine there is only a single edge present (there
is only one instantaneous zero-dimensional point in
each verbose diagram). The concise versions of these
diagrams do not have on-diagonal points, and each
only contain a single point at ∞. This is true for
concise diagrams corresponding to any direction.

trivial when k = d, so we proceed with the case k < d
and assume, by way of contradiction, that k < c.
We claim that in this case, 1) at every interior point

of σ, there is a vector normal to σ that ends in the
interior of Eσ, and 2) letting p denote the endpoint of
such a vector, p is higher than the lowest vertex of σ
with respect to each s ∈ S.
The first part of the claim, 1), is true since other-

wise, Eσ would be k-dimensional. 2) is true since each
halfspace defining Eσ contains the lowest vertex (or
vertices) of σ with respect to the corresponding direc-
tion. Thus, since p is in the interior of Eσ, it must
be higher than this lowest vertex (or vertices) with
respect to the corresponding direction.

Now consider the simplicial complex K ′, defined
as having all the simplices of K in addition to the
simplex formed by taking the geometric join of p
and σ, i.e., the simplex p ∗ σ. We claim that, for
any s ∈ S, we have D(K ′, s) = D(K, s). First, we
note that since p ∗ σ deformation retracts onto σ,
K ′ has the same homology as K. Next, we observe
that D(K ′, s) and D(K, s) cannot differ by more than
a connected component birth/death; higher dimen-
sional differences would require more than the join of
a point with an existing face.

Finally, since p is higher than the lowest vertex
of σ with respect to any direction s ∈ S, the sim-
plex p ∗ σ ∈ K ′ does not correspond to any con-
nected component birth or death in D(K ′, s) that
was not present in D(K, s). Thus, we have shown264
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D(K ′, S) = D(K,S). This contradicts the assumption
that D(K,S) is faithful, so we must have k = c. □

The next statement we wish to prove is Lemma 10.
We first establish the following lemma.

Lemma 17 Consider a pair of nested triangles as in
Figure 9. Then, angle A is larger than θ, ϕ − B,
and ψ − C.

Proof. Adding angles in the larger triangle, we see
θ + ϕ+ ψ = π. Then,

θ + (ϕ−B) +B + (ψ − C) + C = π

A+ θ + (ϕ−B) +B + (ψ − C) + C = A+ π

(A+B + C) + θ + (ϕ−B) + (ψ − C) = A+ π

π + θ + (ϕ−B) + (ψ − C) = A+ π

θ + (ϕ−B) + (ψ − C) = A.

All the terms in the last line are positive, meaning A
is larger than θ, ϕ−B, and ψ − C. □

Figure 9: Nested triangles as discussed in Lemma 17

Now, we are armed with the tools needed to prove
the following lemma.

Lemma 10 (Clothespin Representability) Let K
be as in Construction 1, and suppose that ρ̃(K,S) is
faithful. Then, there is some s ∈ S so that the angle
formed between s and the x-axis lies in the region

W = [α3,2−π/2, α3,4−π/2]∪ [α3,2+π/2, α3,4+π/2].

Proof. Let K ′ be a simplicial complex immersed
in R2 with the same vertex set as K, but with
edges [v1, v4] and [v2, v3] (see Figure 5b). Recall that,
since ρ̃(K,S) is faithful, by definition, the set S must
contain some direction s so that ρ̃(K, s) ̸= ρ̃(K ′, s).

Each vertex corresponds to either a birth event or
an instantaneous event depending on the direction of
filtration. We proceed by considering each vertex vi
individually and determining subsets Ri ⊂ S1 such
that, whenever s ∈ Ri, the event at s · vi is different
when filtering over K versus K ′, but for s∗ ̸∈ Ri, the
type of event at s∗ · vi is the same between the two
graphs. Figure 10 shows these regions, and in what
follows, we define them precisely.

First, consider v1. By Observation 1, v1 ∈ K cor-
responds to a birth event for all directions in the in-
terval B = (α1,2 − π/2, α1,2 + π/2) and v1 ∈ K ′ cor-
responds to a birth event for all directions in the in-
terval B′ = (α1,4 − π/2, α1,4 + π/2). Then, we write
R1 = (B \ B′) ∪ (B′ \ B), which is the wedge-shaped

region such that for any s ∈ R1, the type of event
associated to v1 ∈ K and v1 ∈ K ′ differ, mean-
ing ρ̃(K, s) ̸= ρ̃(K ′, s).
Using this same notation, identify the wedge shaped

region Ri for vertex i ∈ [2, 3, 4] such that any direction
from Ri generates verbose persistence diagrams that
have different event types at the height of vertex vi
when filtering over K versus K ′. Similar arguments
for i ∈ [2, 3, 4] give us the complete list;

R1 = (α1,2 − π/2, α1,4 − π/2] ∪ [α1,2 + π/2, α1,4 + π/2)

R2 = (α2,3 − π/2, α2,1 − π/2] ∪ [α2,3 + π/2, α2,1 + π/2)

R3 = (α3,2 − π/2, α3,4 − π/2] ∪ [α3,2 + π/2, α3,4 + π/2)

R4 = (α1,4 − π/2, α3,4 − π/2] ∪ [α1,4 + π/2, α3,4 + π/2)

Let W = ∪4i=1Ri. Then, for any s ∈ W , we
have ρ̃(K, s) ̸= ρ̃(K ′, s), and for any s∗ ∈ WC , we
have ρ̃(K, s∗) = ρ̃(K ′, s∗).
Finally, we claim that W is the closure of R3,

denoted R3, i.e., exactly the region described in
the lemma statement. This is a direct corollary to
Lemma 17; the angles swept out by each regions cor-
respond to the angles formed by pairs of edges in K
and K ′; in particular, the angle ∡v2v3v4 is the largest
and geometrically contains the others. This means the
extremal boundaries over all Ri’s are formed by the
angles α2,3±π/2 and α3,4±π/2, the defining angles of
R3. Each of these four angles appears as an included
endpoint for some Ri, so R1, R2, R4 ⊆ R3 = W (Fig-
ure 10) and we have shown our claim. □

Figure 10: The regions described in the proof of
Lemma 10, with additional shading in the interior of
the sphere of directions to aid in visibility. K is shown
as solid black edges and K ′ as dashed edges. For any
lower-star filtration in a direction contained in Ri, the
event at vertex vi differs when considering K or K ′,
thus, such directions are able to distinguish K from
K ′. Note that any direction outside the regions of ob-
servability (i.e., the non-shaded portions of the circle)
is not able to distinguish K from K ′.
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On the crossing number of symmetric configurations

Bernardo Ábrego∗ Silvia Fernández-Merchant†

Abstract

The crossing number of a finite set P of points in gen-
eral position in the plane is the number of pairs of seg-
ments joining points in P that cross each other. The
minimum crossing number over all sets P of n points in
general position is known as the rectilinear or geometric
crossing number of the complete graph Kn. We bound
this crossing number when the minimum is restricted to
m-fold symmetric configurations of points in the plane.
Our bounds are tight for even symmetry.

1 Introduction

In a drawing of a simple graph G (on the plane) the
vertices of G are represented by points in the plane and
the edges are curves joining the vertices. The number of
crossings in a drawingD of a graph is denoted by Cr(D).
The minimum number of crossings over all drawings
of a graph G is denoted by cr(G) := min{Cr(D) :
D drawing of G}. Note that we are counting pairs of
edges that cross, so if k edges cross at the same point,
this point represents

(
k
2

)
crossings.

In the 1940s, Paul Turán [16] considered this problem
for complete bipartite graphs and due to its history [13]
the problem is now known as the Brick Factory Problem.
Independently, Harary and Hill studied the problem for
complete graphs [14] and conjectured that

cr(Kn) = H(n) :=
1

4

⌊n
2

⌋ ⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
.

This conjecture remains open, however in the last 10
years a lot of progress has been made [2, 3, 9, 11]. These
results were based on tools that were first developed for
a related problem, where the minimum number of cross-
ing is taken over a smaller family of drawings. Namely,
those where the edges are straight line segments. This is
known as a geometric drawing. In this context, we define
the geometric crossing number of a graph G, denoted
by cr(G) (also known as rectilinear crossing number),
as the minimum number of crossings over all geometric

∗California State University, Northridge, 18311 Nordhoff St,
Northridge, CA, 91330, USA. bernardo.abrego@csun.edu, sup-
ported by a 2024 RSP CSUN Campus Funding Initiative

†California State University, Northridge, 18311 Nordhoff St,
Northridge, CA, 91330, USA. silvia.fernandez@csun.edu, sup-
ported by a 2024 RSP CSUN Campus Funding Initiative

drawings of G. The geometric crossing number of the
complete graph, cr(Kn) has also been extensively stud-
ied [1, 7, 10, 11, 12]. Note that cr(Kn) ≤ cr(Kn). In
fact, it is known that cr(Kn) and cr(Kn) are different
even for n = 8. The latest improvements on the geomet-
ric variation of the problem use the following approach.

Let P be a finite set of points in general position in the
plane. We say that a pair of points {p, q} ⊂ P is a k-edge
of P if the line spanned by p and q separates k points of
P from the rest. An at-most-k-edge is a j-edge for some
j ≤ k. We denote the number of k-edges and at-most-
k-edges of P by Ek(P ) and E≤k(P ), respectively. In
2004, a breakthrough was made by relating the crossing
number of a geometric drawing to the number of k-edges
determined by its set of vertices [6, 15].

Theorem 1 (Crossing number identity [6, 15])
Let D be a geometric drawing of the complete graph Kn

with set of vertices P . Then

Cr(D) = 3

(
n

4

)
−
⌊n/2⌋−1∑

k=0

Ek(P )k(n− 2− k)

=

⌊n/2⌋−2∑

k=0

(n− 2k − 3)E≤k(P )−
3

4

(
n

3

)

+ (1 + (−1)n+1)
1

8

(
n

2

)
.

In contrast to the original problem, there is no con-
jectured value for cr(Kn). Recently, the case when the
minimum is restricted to the family of centrally sym-
metric drawings, denoted by crcs(K2n), was considered
in [5]. There, they proved what is probably the first
identity for the rectilinear crossing number of a large
family of geometric drawings of Kn.

Theorem 2 (Centrally symmetric identity [5])
For any positive integer n, we have

crcs(K2n) = 2

(
n

4

)
+

(
n

2

)2

.

Their proof was based on Theorem 1 together with
the following bound on the number of at most k-edges.

Lemma 3 For any centrally symmetric set P of 2n
points in general position in the plane and for any
k < n− 1,

E≤k(P ) ≥ 4

(
k + 2

2

)
.
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In this paper, we consider configurations of points
with m-fold (rotational) symmetry, that is, sets P for
which there is a 2π

m -rotation R such that R(P ) = P (the
centrally symmetric case corresponds to m = 2). In this
case, the m-rotational orbit of a point x ∈ P is the set
of points [x] := {x,R(x),R2(x), . . . ,Rm−1(x)} ⊂ P .
In Theorem 6, we provide improved lower bounds

on the number of at most-k-edges for this symmetric
case. In turn, using Theorem 1, these bounds pro-
vide improved lower bounds on the crossing number re-
stricted to m-fold symmetric configurations, denoted by
sym-crm(Kn). We finally show that these bounds are
tight when m is even, settling the crossing number of
symmetric configurations with even symmetry as fol-
lows:

Theorem 4 For positive integers m and n such that m
is even and m|n, we have

sym-crm(Kn) =
1

2

(
n

4

)
+

1

2

(
n/2

2

)
+
n2

6

(
m/2− 1

2

)
.

Note that Theorem 4 agrees with Theorem 2 when m =
2. In contrast to the best known bounds for the general
geometric case (lower bound [8], upper bound [7, 11])

0.379972 ≤ lim
n←∞

cr(Kn)(
n
4

) ≤ 0.380449,

in the m-fold symmetric case with m even we have,

lim
n←∞

sym-crm(Kn)(
n
4

)

= lim
n←∞

1
2

(
n
4

)
+ 1

2

(
n/2
2

)
+ n2

6

(
m/2−1

2

)
(
n
4

) =
1

2
.

2 Bounds on k-edges

Lemma 5 Let P be a set of n points in general position
in the plane and 0 ≤ k ≤ ⌈n/2⌉− 2 an integer. Suppose
P is m-fold symmetric and consider a point x in the
convex hull of P . Let P ′ = P − [x], where [x] ⊂ P is
the m-rotational orbit of x. Then

E≤k(P ) ≥E≤k−⌈m/2⌉(P ′)
+ 2m(k + 1)−m ·min(k + 1, ⌈m/2⌉ − 1).

(Note that E≤j(P ) = 0 for negative values of j.)

Proof. Let P ′ be the set obtained from P by removing
them points of [x]. Note that P ′ is anm-fold symmetric
set of n −m points. Consider an edge e of P (any line
passing through two points of P ) and let ℓ be the line
parallel to e passing through p. Note that ℓ divides [x]
in almost half, leaving at most ⌈m/2⌉ points on each
side. Since the smaller side of e is contained on one of
the two sides of ℓ, then e leaves at most ⌈m/2⌉ points of

[x] on its smaller side. This means that if e′ is a j-edge
of P ′, then e′ is a (≤ j + ⌈m/2⌉)-edge of P . Therefore,
for any k ≤ ⌈n/2⌉−2 any (≤ k−⌈m/2⌉)-edge of P ′ is a
≤ k-edge of P . And none of these ≤ k-edges is incident
on points of x.

Because the points of [x] are on the convex hull of
P , each of them participates in exactly two j-edges for
each 0 ≤ j ≤ ⌈n/2⌉ − 2. This gives at most 2m(k + 1)
at-most-k-edges of P incident on points of [x]. However,
some of these edges may be incident to two points of [x]:
as many asm(k+1) when k ≤ ⌈m/2⌉−1 and as many as
m(⌈m/2⌉ − 1) (all pairs of [x], except its halving lines
when m is even) when k ≥ ⌈m/2⌉ − 1. In summary,
there are at least E≤k−⌈m/2⌉(P ′) at-most-k-edges of P
not incident on [x], and at least 2m(k+1)−m ·min(k+
1, ⌈m/2⌉ − 1) at-most-k-edges of P incident on [x]. □

Theorem 6 Let m be a positive integer. For any set P
of n points with m-fold symmetry and for any 0 ≤ k ≤
⌈n/2⌉ − 2, we have that E≤k(P ) ≥




4
(
1− 1

m+1

)((
k+2
2

)
−
(
r+1
2

))
+mr if m is odd,

4
((
k+2
2

)
−
(
r+1
2

))
+mr if m is even.

(1)
where k + 1 = r mod ⌈m/2⌉.

Proof. If 0 ≤ k ≤ ⌈m/2⌉ − 2, then r = k + 1 and
min(k + 1, ⌈m/2⌉ − 1) = k + 1. Then, by Lemma 5,
E≤k(P ) ≥ 0+m(k+1) = mr matching the right-hand-
side of (1).

If k = ⌈m/2⌉ − 1, then r = 0. By Lemma 5,

E≤k(P ) ≥ 0 + 2m(k + 1)−m ·min(k + 1, k) = m(k + 2)

=
2m

k + 1

(
k + 2

2

)
=

2m

⌈m/2⌉

(
k + 2

2

)

=





4
(

m
m+1

) (
k+2
2

)
if m is odd,

4
(
k+2
2

)
if m is even,

matching the right-hand-side of (1).

We prove the result by induction on n. The inequality
holds for n = m because a k-edge of a set of m points is
a (≤ ⌈m/2⌉ − 1)-edge (proved above). Now let n ≥ m
and assume that the inequality holds for any m-fold
symmetric set of n points and any k < ⌈n/2⌉ − 2. Con-
sider any m-fold symmetric set P of n+m points. Let x
be a point on its convex hull and P ′ be the set obtained
from P by removing the m points of [x]. Note that P ′

is an m-fold symmetric set of n points and so it satisfies
the induction hypothesis. We already proved the result
holds for k ≤ ⌈m/2⌉−1. Assume that k ≥ ⌈m/2⌉. Note
that (k − ⌈m/2⌉) + 1 ≡ k + 1 ≡ r (mod ⌈m/2⌉). By
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Lemma 5,

E≤k(P ) ≥ E≤k−⌈m/2⌉(P ′) + 2m(k + 1)

−m ·min(k + 1, ⌈m/2⌉ − 1)

≥ m
(
2k + 3−

⌈m
2

⌉)

+





4
(

m
m+1

)((
k+2−⌈m/2⌉

2

)
−
(
r+1
2

))
+mr if m is odd,

4
((
k+2−⌈m/2⌉

2

)
−
(
r+1
2

))
−mr if m is even.

(2)

Since
(
k + 2− ⌈m/2⌉

2

)
=

(
k + 2

2

)
−1

2

⌈m
2

⌉(
2k + 3−

⌈m
2

⌉)
,

the right-hand-side of (2) equals





4
(

m
m+1

)((
k+2
2

)
−
(
r+1
2

))
+mr

+
(
2k + 3−

⌈
m
2

⌉) (
m− 2 · m

m+1 · m+1
2

)

if m is odd,

4
((
k+2
2

)
−
(
r+1
2

))
+mr +

(
2k + 3−

⌈
m
2

⌉)

if m is even,

=





4
(
1− 1

m+1

)((
k+2
2

)
−
(
r+1
2

))
+mr if m is odd,

4
((
k+2
2

)
−
(
r+1
2

))
+mr if m is even.

□

3 Exact crossing number for even symmetry

In this section, we prove Theorem 4. Throughout this
section, m is an even integer. A construction achiev-
ing the stated crossing number is presented in Section
3.1. To prove that sym-crm(Kn) ≥ 1

2

(
n
4

)
+ 1

2

(
n/2
2

)
+

1
6

(
m/2−1

2

)
n2, we use Theorem 1 followed by Theorem 6.

Let D be a geometric m-fold symmetric drawing of
the complete graph Kn with set of vertices P . For 0 ≤
k ≤ n/2 − 2, define rk so that k + 1 = rk mod (m/2).
Then

cr(P ) =

n/2−2∑

k=0

(n− 2k − 3)E≤k(P )

− 3

4

(
n

3

)
+ (1 + (−1)n+1)

1

8

(
n

2

)

≥
n/2−2∑

k=0

(n− 2k − 3)

(
4

(
k + 2

2

)
− 4

(
rk + 1

2

)
+mrk

)

− 3

4

(
n

3

)
.

We rewrite the previous expression by replacing each k
by its value in terms of the integers 0 ≤ qk < n/m and
0 ≤ rk < m/2, where k + 1 = m

2 qk + rk.

cr(P ) =

n/2−2∑

k=0

(n−mqk−2rk−1)

(
4

(m
2 qk + rk + 1

2

)

−4
(
rk + 1

2

)
+mrk

)
− 3

4

(
n

3

)

=

n
m−1∑

q=0

m
2 −1∑

r=0

(n−mq − 2r − 1)

(
4

(m
2 q + r + 1

2

)

−4
(
r + 1

2

)
+mr

)
− 3

4

(
n

3

)

=
n

48

(
n3 − 6n2 +m2n− 6mn+ 22n− 12

)

=
1

2

(
n

4

)
+

1

2

(
n/2

2

)
+
n2

6

(
m/2− 1

2

)
.

3.1 Construction

For an even integer m, and an arbitrary positive integer
n, we construct a set An with mn points that achieves
the minimum number of ≤ k-edges for every k among
m-fold symmetric sets; and consequently it also has the
minimum number of crossings among all m-fold sym-
metric sets.

Theorem 7 Let m > 0 be even. For every positive
integer n, there is a set An with mn points such that

1. E≤k(An) = 4(
(
k+2
2

)
−
(
r+1
2

)
) +mr, for every 0 ≤

k ≤ mn/2− 2, where k + 1 = r (mod m/2).

2. cr(An) =
1
2

(
mn
4

)
+ 1

2

(
mn/2

2

)
+ 1

6

(
m/2−1

2

)
(mn)2.

Here is the construction. Let d = 2/ sin(π/(mn)). We
define the m-fold symmetric set An as follows

An =

{(
dj cos

(
π(2an− j)

mn

)
, dj sin

(
π(2an− j

mn

))

: 0 ≤ a ≤ m− 1, 0 ≤ j ≤ n− 1} .

For every 0 ≤ a ≤ m− 1 and 0 ≤ j ≤ n− 1 we use the
notation

p(j, a) =

(
dj cos

(
π(2an− j)

mn

)
, dj sin

(
π(2an− j

mn

))
.

Lemma 8 If 0 ≤ j1 ≤ j2 < n−1, 0 ≤ a1 ≤ a2 ≤ m−1,
and (j1, a1) ̸= (j2, a2), then the line through p(j1, a1)
and p(j2, a2) is a halving line of the outermost m-gon
in An; that is, it separates the set {p(a, n− 1) : 0 ≤ a ≤
m− 1} into two parts each with m/2 points.
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d1

d2 d3 d4 d5 d6 d71 d

d2

A3m=4, 

A8m=4, 

Figure 1: The 4-fold symmetric (m = 4) sets A3 and A8

described in the proof of Theorem 7. Since any more
than 3 layers would be virtually impossible to see, the
set A8 is shown in logarithmic-polar scale to appreciate
the rotations from one layer to the next.

Proof. (Sketch.) By rotational symmetry, assume that
a1 = 0 and for simplicity let a2 = a. Furthermore, by
using a dilation by a factor of d−j1 , we can assume that
j1 = 0. Again by simplicity, we let j2 = j, and we note
that now we need to prove that the line through p(0, 0)
and p(j, a) halves the c = n − j1 outer m-gon; that is,
it halves the set {p(c, b) : 0 ≤ b ≤ m − 1}. Note that
0 ≤ j ≤ c−1, 0 ≤ a ≤ m−1, and (j, a) ̸= (0, 0). We will
prove this assertion by showing that the points p(c, b)
and p(c, b + m/2) lie on different sides of the line. To
do this, we show that the product of the determinants

D =

∣∣∣∣∣∣

p(0, 0) 1
p(j, a) 1
p(c, b) 1

∣∣∣∣∣∣
and D′ =

∣∣∣∣∣∣

p(0, 0) 1
p(j, a) 1

p(c, b+m/2) 1

∣∣∣∣∣∣
.

is negative (we omit the computations), and thus p(c, b)
and p(c, b+m/2) lie on different sides of the line through
p(0, 0) and p(j, a). □

Lemma 9 For every 1 ≤ a ≤ m/2 − 1 the edge p(n −
1, 0)p(n− 1, a) is an (a− 1)-edge of An.

Proof. Suppose that 1 ≤ a ≤ m/2− 1. It is enough to
show that the ray p(n − 1, 0)p(n − 1, a) leaves the set
of points {p(n− 1, b) : 1 ≤ b ≤ a− 1} on its right side,
and the rest of points of An on its left side. Because
the set {p(n− 1, b) : 0 ≤ b ≤ n− 1} is a regular m-gon,
then among these points only those with 1 ≤ b ≤ a− 1
are on the right side of p(n− 1, 0)p(n− 1, a). To finish
the proof, we show that the rest of An, namely the set
A′n = {p(j, b) : 0 ≤ j ≤ n − 2, 0 ≤ b ≤ m − 1} lies on
the right side of p(n − 1, 0)p(n − 1, a). If n = 1, this
is vacuously true, otherwise if R denotes the distance
from the origin to the point p(n−1, 0), then the distance
from the origin to the segment p(n − 1, 0)p(n − 1, a) is
R cos(πa/m), and by construction A′n is inside a circle
of radius R/d = R sin(π/(mn))/2 centered at the origin.
Finally,

cos
(πa
m

)
≥ cos

(
π(m/2− 1)

m

)
= sin

( π
m

)

= 2 sin
( π

2m

)
cos
( π

2m

)
≥ 2 sin

( π

mn

)
cos
(π
4

)

> 2 sin
( π

mn

)
· 1
4
=

1

2
sin
( π

mn

)
,

thus A′n lies on the left side of the ray p(n− 1, 0)p(n−
1, a). □

Proof. [Proof of Theorem 7] We proceed to find an
upper bound for the number of ≤ k-edges of An. By
rotational symmetry consider the ≤ k-edges of the form
p(j, 0)p(i, a) with 0 ≤ i ≤ j ≤ n − 1, 0 ≤ a ≤ m − 1,
and (j, 0) ̸= (i, a).

First suppose that k ≤ m/2 − 2. If j = n − 1, then
according to Lemma 9 the edges from p(n − 1, 0) to
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p(i, a) with i = n−1 and 1 ≤ a ≤ k+1 are all ≤ k-edges.
Moreover, if i < n − 1 and a is arbitrary, then the line
p(n−1, 0)p(i, a) separates the sets of points {p(n−1, b) :
1 ≤ b ≤ m/2−1} and {p(n−1, b) : m/2+1 ≤ b ≤ m−1}.
Thus the edge p(n − 1, 0)p(i, a) is a ≥ (m/2 − 1)-edge.
Finally, if j < n − 1 and i < n − 1, then by Lemma 8
the edge p(n − 1, 0)p(i, a) is a ≥ (m/2)-edge. Hence in
this case all of the ≤ k-edges have both vertices in the
outer m-gon where i = j = n− 1, and there are exactly
2(k + 1) such edges of the form p(j, 0)p(i, a). Hence
there are exactly m(k + 1) ≤ k-edges in An. In other
words, if k ≤ m/2− 2, then

E≤k(An) = m(k + 1). (3)

Second, suppose that m/2 − 1 ≤ k ≤ mn/2 − 3. By
Lemma 9 all of the edges with vertices in the outer m-
gon, except the main diagonals, are ≤ (m/2− 1)-edges,
and so they are all ≤ k-edges as well. There are exactly(
m
2

)
− m/2 such edges. In addition, by considering a

radial sweep from each of the convex hull vertices p(n−
1, a) of An, we see that each of them is the endpoint
of exactly two j-edges for every m/2 ≤ j ≤ k, where
the other endpoint is not a vertex of the outer m-gon.
There are 2m(k − (m/2 − 1)) such edges. Finally, by
Lemma 8, every j-edge of A′n is a (j+m/2)-edge of An.
Hence if m/2− 1 ≤ k ≤ mn/2− 3, then

E≤k(An)

= E≤(k−m/2)(A
′
n) +

(
m
2

)
− m

2
+ 2m

(
k −

(m
2
− 1
))

= E≤(k−m/2)(A
′
n) + 2m(k + 1)−m

(m
2
− 1
)
. (4)

From (3) and (4), we conclude that

E≤k(An) = E≤k−m/2(A
′
n) + 2m(k + 1)

−m ·min(k + 1,m/2− 1).

Therefore the set An achieves equality in Lemma 5. Fol-
lowing the proof of Theorem 6 we conclude that An
achieves equality throughout as well. This assertion
proves the first part, and the second follows because
again the set An achieves equality every time Theorem
6 is used in the proof of Theorem 2. □

4 Odd symmetry

4.1 Bound improvement on k-edges

In this section, we use allowable sequences to improve
Theorem 6 when m is odd. There, the lower bound
counts ≤ k-transpositions of two types: those involv-
ing at least one of the m points that are removed dur-
ing the induction and those that are (≤ k − (m +
1)/2)-transpositions in P ′. However, there also might
be (k − (m − 1)/2)-transpositions in P ′ that are k-
transpositions in P , and such ≤ k-transpositions have

not been counted by the lower bound in Theorem 6. We
show that when m is odd and k is large enough, such
transpositions always exist. More precisely,

Lemma 10 If m is odd and m−1
2 · nm ≤ k ≤ ⌈n2 ⌉ − 2,

then there are at least m(k + 1) − m−1
2 n different k-

transpositions of P that are (k− m−1
2 )-transpositions of

P ′.

Proof. We can assume that the convex hull ∂P con-
sists of m points (one rotational orbit) and that the
rest of the points of P are in the center of the star
formed by the halving lines of ∂P . Moreover, we can
assume that the rest of the points are as close as needed
to the center of P so that all transpositions of any el-
ement of ∂P with the elements of P − ∂P occurred
consecutively on the circular sequence of P . Let Π be
a half-period that shows the points of ∂P in the first
(m+1)/2 or last (m− 1)/2 positions of row 1 and such
that the first n − m transpositions of Π are transpo-
sitions of x(m+1)/2 with the points in P − ∂P . (See
Figure 2.) Then there exist rows 1 = s1 ≤ t1 ≤ s2 ≤
t2, . . . ,≤ sm ≤ tm such that each row between si and
ti are with the ith element of ∂P along the cycle (star)
starting with the vertices (m + 1)/2, (m + 3)/2, (m −
3)/2, (m + 7)/2, . . . , 1,m, 2,m − 2, 4,m − 4, . . . , (m −
1)/2 if m mod 4 = 1 or (m + 1)/2, (m + 3)/2, (m −
3)/2, (m+7)/2, . . . ,m, 1,m− 1, 3,m− 3, . . . , (m− 1)/2
if m mod 4 = 3.

Partition the columns of Π into 3 regions: the left
region L formed by the first k+1 elements of each row,
the central region C formed by the next n − 2(k + 1)
elements of each row, and the right region R formed by
the last k + 1 elements of each row. This partition of
Π inherits a partition of row r into the sets L(r), C(r),
and R(r). For 1 ≤ i ≤ (m− 1)/2, let

Ui = L(s2i−1) ∩ (C(t2i − 1) ∪R(t2i − 1)),

Vi = Vi−1 ∩R(t2i), where V0 = R(1),

Wi = Vi ∩ (L(s2i+1 − 1) ∪ C(s2i+1 − 1)), and W0 = ∅.

Because an element of Vi−1 that is not in Vi either
belongs to Wi−1 or must be replaced by one of the n−
2(k + 1) elements of C(t2i−1) or by an element of Ui,
then

|Vi| ≥ |Vi−1| − |Wi−1| − (n− 2(k + 1))− |Ui|.

Since |V0| = k + 1,

|V(m−1)/2| ≥(k + 1)− m− 1

2
· (n− 2(k + 1))

−
(m−3)/2∑

i=1

(|Ui|+ |Wi|)− |U(m−1)/2|.

Finally, note that each element of Ui is involved in a k-
transposition from row j to j+1 for some t2i−1 ≤ j < s2i
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1

2

3

4

5

6

7

8

9

1 2 3 45 6 789

12 34 56 78 9

14 362 58 79

24 16 738 59

26 184 39 57

46 28 519 37

48 296 17 35

68 49 327 15

69 478 25 13

89 67 145 23

Previously counted

Not previously counted

All other points here

U1

k+1 n-2k-2

V1

89 67 14 235

t 1

s 1

...

5

...

6t 2

s 2

...

3
t 3

s 3

...

8t 4

s 4

V2

...

t 5

s 5

1

...

9t 6

s 6

...

t 7

s 7

2

...

7t 8

s 8

...

t 9

s 9

4

V3

V4

W1

U2

U3

U4

W2

W3

W4

k+1

Figure 2: The structure of a 9-fold symmetric circular
sequence.

and by taking the last such transposition (so that it in-
volves exactly one element of Ui), we have a total of at
least |Ui| different k-transpositions in that range. Sim-

ilarly, there are at least |Wi| different k-transpositions
from row j to j + 1 for some t2i ≤ j < s2i+1. (Al-
though this holds for i = (m − 1)/2, we only use it
for 1 ≤ i ≤ (m − 3)/2 in order to avoid double count-
ing transpositions in the next argument.) Finally, any
element of V(m−1)/2 is involved in a k-transposition in-
volving elements in positions n− k − 1 and n− k from
some row j to j + 1 for some tm−1 ≤ j < sm or in
a k-transposition involving elements in positions k + 1
and k + 2 from some row j to j + 1 for some j ≥ tm.
Therefore, the number of desired k-transpositions is at
least

|V(m−1)/2|+
(m−3)/2∑

i=1

(|Ui|+ |Wi|)|+ |U(m−1)/2|

≥ (k+1)−m− 1

2
·(n−2(k+1)) = m(k+1)−m− 1

2
n.

□

Our new lower bound is a direct application of Lemma
10.

Theorem 11 Let m ≥ 3 be odd. For any set P of
n points with m-fold symmetry and for any 0 ≤ k ≤
⌈n/2⌉ − 2,

E≤k(P ) ≥4
(

m

m+ 1

)((
k + 2

2

)
−
(
r + 1

2

))

+mr +m

(
k − m−1

2 · nm + 2

2

)
,

where k + 1 = r mod ⌈m/2⌉.

4.2 First crossing number lower bound improvement

We are now ready to present our first lower bound on the
crossing number for odd symmetry, which follows from
Theorems 1 and 11. In the next section, we present
a further improvement that requires a slightly different
approach. However, the next result is still needed for a
large range of values of k.

Theorem 12 For positive integers m and n such that
m is odd and m|n, we have

sym-crm(Kn) ≥
(

m

2(m+ 1)
+

1

8m3

)(
n

4

)
+Θ(n3).

Proof. Letm ≥ 3 be odd an P be anm-fold symmetric
set of n points in general position in the plane. By
Theorem 2, we have

Cr(P ) =

⌊n/2⌋−2∑

k=0

(n− 2k − 3)E≤k(P ) + Θ(n3)

=

(
n

4

)
· 24

⌊n/2⌋−2∑

k=0

(
1− 2k

n

)
E≤k(P )
n2

· 1
n
+Θ(n3).

272



CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

By Theorem 11, we have

E≤k(P )
n2

≥ 4m

m+ 1
· k

2

2n2

+
m

2n2
·max

(
0,

(
k − (m− 1)n

2m

)2
)

+Θ

(
1

n

)

=
2m

m+ 1

(
k

n

)2

+
m

2

(
max

(
0,
k

n
− m− 1

2m

))2

+Θ

(
1

n

)
.

Therefore,

Cr(P ) ≥
(
n

4

)∫ 1/2

0

24 (1− 2x)

(
2m

m+ 1
x2

+
m

2

(
max

(
0, x− m− 1

2m

))2
)
dx+Θ(n3)

=

(
n

4

)(
4m4 +m+ 1

8m3(m+ 1)

)
+Θ(n3)

=

(
m

2(m+ 1)
+

1

8m3

)(
n

4

)
+Θ(n3).

□

4.3 Second lower bound improvement: central ap-
proach

We conclude by noting that any improvements on the
lower bound for E≤k(P ), automatically imply improve-
ments on sym-crm(Kn) by Theorem 2. For instance,
using an approach similar to that in [4], we are able
to improve the lower bound for E≤k(P ) for k close to
⌈n/2⌉ − 2 as follows:

Theorem 13 Let m ≥ 3 be odd. For any set P
of n points with m-fold symmetry and for any n/2 −
n/(6m) ≤ k ≤ ⌈n/2⌉ − 2,

E≤k(P )
n2

≥ 1

2
−
√
3m(7m− 1)

9m(m+ 1)
·
√
1− 2k

n
+Θ

(
1

n

)
.

Together with Theorem 2, this result improves Theorem
12 as shown below.

Theorem 14 For positive integers m and n such that
m is odd and m|n, we have for sym-crm(Kn) as shown
below.

sym-crm(Kn) ≥(
m

2(m+ 1)
+

1

8m3
+

17m− 11

1080m3(m+ 1)

)(
n

4

)
+Θ(n3).
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Local Fréchet Permutation

Jonathan James Perry* Benjamin Raichel*

Abstract

In this paper we consider computing the Fréchet dis-
tance between two curves where we are allowed to lo-
cally permute the vertices. Specifically, we limit each
vertex to move at most k positions from where it started,
and give fixed parameter tractable algorithms in this
parameter k, whose running times match the standard
Fréchet distance computation running time when k is
a constant. Furthermore we also show that computing
such a local permutation Fréchet distance is NP-hard1

when considering the weak Fréchet distance.

1 Introduction

A polygonal curve in Rd is defined by linearly interpolat-
ing an ordered sequence of points. In this paper we con-
sider the well studied topic of polygonal curve similar-
ity, as measured by the standard Fréchet distance, but
where we are allowed to permute the ordered sequence of
vertices defining each curve. Specifically, we seek to de-
termine if there are permutations such that the Fréchet
distance of the resulting curves is at most δ, where δ > 0
is some given distance parameter. Here we will limit
each permutation to only allow for local reordering of
the points. Namely, we consider k-permutations, where
a point at position i before permutation must end up
at a position j after permutation such that |i− j| ≤ k.
Limiting to the case when k is small, intuitively means
the orderings before and after the permutation are close,
and thus in some sense the resulting curves as well. In
particular, it can model scenarios where the input curve
has some local corruptions or where local faults in the
ordering occurred when collecting the data. Critically,
limiting k allows us to achieve efficient algorithms for
the (strong) Fréchet distance, whereas conversely it ap-
pears to aid our proof of hardness for weak Fréchet.

Prior Work.
Several previous papers ([1, 2, 6, 9, 10]) have consid-
ered a variant of the Fréchet distance sometimes referred
to as the Curve/Point Set Matching problem (CPSM).

*Department of Computer Science, University of Texas
at Dallas, USA {jperry,benjamin.raichel}@utdallas.edu.
Work on this paper was partially supported by NSF CAREER

Award 1750780 and CCF Award 2311179.
1As it is trivially in NP, NP-hardness implies NP-completeness,

though for consistency throughout we use NP-hardness.

Here one is given a curve π (i.e. an ordered sequence of
points) of length n and an unordered point set P of size
m, and asked whether a subset of P can be selected and
ordered such that its Fréchet distance to π is at most
some given threshold δ. The results in these papers vary
based on whether (i) discrete or continuous Fréchet dis-
tance is used, (ii) a proper subset or all points of P
is used (subset vs. all-points), and (iii) points can be
repeated or not (non-unique vs. unique).

We briefly review prior results on CPSM. [9] gave an
O(nm2) time algorithm for the continuous, subset, non-
unique variant. Subsequently, [10] considered the dis-
crete version, showing NP-hardness for both the subset
and all-points unique cases, and giving polynomial time
algorithms for both the subset and all-points non-unique
cases. The papers [1, 2] then filled out the remaining
continuous cases showing that both unique and non-
unique all-points as well as the unique subset variant
are NP-hard. Finally, [6] showed that if both curves are
point sets, then the all-points unique discrete Fréchet
distance problem can be solved in O((m+ n) log(mn))
time, but is NP-hard in the continuous case.

Related to our motivation of having errant data, other
methods have been proposed for fixing curves so as to
minimize Fréchet distance. There are many prior works
in this direction, though they are perhaps further away
from our permutation problem than the CPSM prob-
lem. Here we mention only [5] and [7], as we will utilize
their techniques as discussed below (for other related
works see references in [5, 7]). [5] considered the strong
and weak Fréchet distance where points on the curves
are uncertain, meaning there is some given set of po-
tential locations where the point may be realized. [7]
considered the strong and weak Fréchet distance when
deletions or insertions are allowed on one or both curves.

Our Results.
We introduce and study the k, ℓ-permutation Fréchet
distance, where one is allowed to k-permute the first
curve and ℓ-permute the second curve, with the goal
of making the Fréchet distance of the resulting curves
below some threshold δ. For both the continuous and
discrete variants, we provide fixed parameter tractable
algorithms in terms of k and ℓ. Our running times
match the corresponding quadratic running times for
the standard Fréchet distance algorithms when k and
ℓ are constants. Namely, for curves of lengths n and
m, and for both the discrete and continuous cases, we
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give a running time of O(nmk24k) when one curve is
permuted and running time of O(nmk24kℓ24ℓ) if both
curves are permuted.

Observe that the unrestricted permutation case, i.e.
when k = n and ℓ = m, has already been studied
as this is equivalent to the all-points unique CPSM
problem discussed above. The prior results on unre-
stricted permutations can then be compared to our re-
sults on restricted permutations, as seen in Table 1.
This connection to prior work implies our restriction
to k-permutations is required in order to achieve poly-
nomial time algorithms for many of the cases. Further-
more, for our restricted setting, if we set k = ℓ = 0,
then our problem is equivalent to the decision version
of computing the Fréchet distance, for which [3] proved
that for both the discrete or continuous version there
is no strongly subquadratic algorithm unless the Strong
Exponential Time Hypothesis (SETH) fails. (In fact it
was shown that assuming SETH no constant factor ap-
proximation exists, and the constant was subsequently
improved in [4].) Thus our O(mn) running time (i.e.
O(n2) when n = m) for constant k and ℓ is essentially
tight up to lower order factors assuming SETH. In par-
ticular, while [6] achieve a near linear running time for
the special case when unrestricted permutations are al-
lowed on both curves for discrete Fréchet distance, such
a result is not possible in our restricted permutation
setting assuming SETH.

Unrestricted Prior Results
One Curve Both Curves

Discrete NP-hard [10] O((m + n) log(mn)) [6]

Continuous NP-hard [2] NP-hard [6]

Our Restricted Results : Theorem 5
One Curve Both Curves

Discrete O(nmk24k) O(nmk24kℓ24ℓ)

Continuous O(nmk24k) O(nmk24kℓ24ℓ)

Table 1: Comparison of our restricted k, ℓ-permutation
results with prior unrestricted permutation results. The
one curve results are obtained by dropping ℓ terms.

Additionally, we provide algorithmic results for these
problems when the goal is minimization rather than de-
cision, either when minimizing k when δ is fixed, or min-
imizing δ when k is fixed. Specifically, to find the mini-
mal k, which we call κ, for both continuous and discrete
Fréchet distance, we give a running time of O(nmκ24κ)
when one curve is permuted and O(nmκ416κ) when
both curves are permuted (in which case we require
both curves to be restricted to κ-permutations). When
minimizing δ for discrete Fréchet distance we pro-
vide a running time of O(nmk24k) for one curve and
O(nmk24kℓ24ℓ) for two curves. When minimizing δ for
continuous Fréchet distance, let n = max{|π|, |σ|} and
let τ = max{k, ℓ}. We then provide a running time of
O(n2τ416τ (log n+ τ)) regardless of whether one or both

curves are permuted, where the time bound holds with
probability at least 1 − 1/nc, for any constant c > 0.
These results are summarized in Table 2.

Min-K : Corollary 6
One Curve Both Curves

Disc./Cont. O(nmκ24κ) O(nmκ416κ)

Min-δ : Corollary 9 (Disc.) : Corollary 8 (Cont.)

One Curve Both Curves

Disc. O(nmk24k) O(nmk24kℓ24ℓ)

Cont. O(n2τ416τ (logn + τ)) O(n2τ416τ (logn + τ))

Table 2: Minimization results, where κ is the minimum
k, n = max{|π|, |σ|}, and τ = max{k, ℓ}.

Finally, we consider the four decision problems but
using weak Fréchet distance, which allows one to back-
track while traversing the curves, unlike the standard
strong Fréchet considered in our algorithmic results. For
the weak discrete Fréchet distance we reduce from 3SAT
to show that permuting one curve or both curves is NP-
hard even in R1. This reduction carries over to weak
continuous Fréchet distance when raised to R2. In com-
parison, the prior NP-hardness results in Table 1 are all
done in R2.

Both our algorithmic and hardness results follow a
similar approach to that used in [7] for Fréchet edit
distance. Specifically, our algorithmic results solve the
problem by modeling potential solutions using DAG
complexes, introduce in [8] and further utilized and ex-
panded in [7]. Our hardness results for the weak case
are inspired by the reduction used in [5], which was also
used in [7] to prove weak variants of the Fréchet edit
distance problem are NP-hard.

2 Preliminaries

Throughout, given points p, q ∈ Rd, ||p − q|| denotes
their Euclidean distance. Moreover, given two (closed)
sets P,Q ⊆ Rd, ||P −Q|| = minp∈P,q∈Q ||p− q|| denotes
their distance, where for a single point x ∈ Rd we write
||x−P || = ||{x}−P ||. We use angled brackets to denote
an ordered list ⟨x1, . . . , xn⟩, and use L1 ◦ L2 to denote
the concatenation of ordered lists L1 and L2. We use
[n] to denote the set {1, . . . , n}.

Fréchet Distance.
The following definitions are standard, but in partic-
ular here we state the definitions directly as given in
[7]. A polygonal curve is a sequence of n points π =
⟨π1, . . . , πn⟩ where πi ∈ Rd for all i. Such a sequence
induces a continuous mapping from [1, n] to Rd, which
we also denote by π, such that for any integer 1 ≤ i < n,
the restriction of π to the interval [i, i+1] is defined by
π(i + α) = (1 − α)πi + απi+1 for any α ∈ [0, 1], i.e. a
straight line segment. We will view π as both a discrete
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point sequence and a continuous function interchange-
ably, and when it is clear from the context, we also may
use π to denote the image π([1, n]). We use π[i, j], for
i ≤ j, to denote the restriction of π to the interval [i, j].
Given a curve π = ⟨π1, . . . , πn⟩, we write |π| = n to
denote its size.
A reparameterization for a curve π of length n is a

continuous non-decreasing bijection f : [0, 1] → [1, n]
such that f(0) = 1, f(1) = n. Given reparameteriza-
tions f, g of an n length curve π and an m length curve
σ, respectively, the width between f and g is defined as

widthf,g(π, σ) = max
α∈[0,1]

||π(f(α))− σ(g(α))||.

The (standard, i.e. continuous and strong) Fréchet dis-
tance between π and σ is then

dF(π, σ) = inf
f,g

widthf,g(π, σ).

where f, g range over all possible reparameterizations
of π and σ. Informally, the Fréchet distance is often
described as the shortest leash length needed for a man
on one curve and a dog on the other to walk from their
respective starting to ending points of the curves.
The discrete Fréchet distance is similar to the above

defined Fréchet distance, except that we do not traverse
the edges but rather discontinuously jump to adjacent
vertices. Specifically, define a monotone correspondence
as a sequence of index pairs ⟨(i1, j1), . . . , (ik, jk)⟩ such
that (i1, j1) = (1, 1), (ik, jk) = (n,m), for any 1 ≤ z ≤ k
we have 1 ≤ iz ≤ n and 1 ≤ jz ≤ m, and for any
1 ≤ z < k we have (iz+1, jz+1) ∈ {(iz + 1, jz), (iz, jz +
1), (iz+1, jz+1)}. Let C denote the set of all monotone
correspondences, then the discrete Fréchet distance is
dDF(π, σ) = infc∈C max(i,j)∈c ||πi − σj ||.

Both the Fréchet distance and the discrete Fréchet
distance have a corresponding weak variant, which is
defined analogously except that one is allowed to back-
track on the curves. Specifically, the weak Fréchet dis-
tance, denoted dwF(π, σ), is defined similarly to the stan-
dard Fréchet distance above, except that when defining
the width f and g are no longer required to be non-
decreasing bijections, but are still required to be contin-
uous and have f(0) = 1, g(0) = 1 and f(1) = n, g(1) =
m. Similarly, the weak discrete Fréchet distance, de-
noted dwDF(π, σ), is defined similarly to the discrete
Fréchet distance above, except that we no longer re-
quire the correspondence to be monotone. Specifically,
a (non-monotone) correspondence is a sequence of in-
dex pairs ⟨(i1, j1), . . . , (ik, jk)⟩ such that (i1, j1) = (1, 1),
(ik, jk) = (n,m), for any 1 ≤ z ≤ k we have 1 ≤ iz ≤ n
and 1 ≤ jz ≤ m, and for any 1 ≤ z < k we have
(iz+1, jz+1) ∈ {(iz ± 1, jz), (iz, jz ± 1), (iz ± 1, jz ± 1)}.

Permutation Fréchet Distance.
Viewing a polygonal curve π = ⟨π1, . . . , πn⟩ as a se-
quence of points, a permutation of π is a bijection

f : [n] → [n], which induces a new curve f(π) =
⟨πf(1), . . . , πf(n)⟩. Given a permutation f of π, we refer
to f as a k-permutation if |f(i)−i| ≤ k for all 1 ≤ i ≤ n,
and we let Pk(π) denote the set of all k-permutations
of π.
The k, ℓ-permutation Fréchet distance is then

dk,ℓPF(π, σ) = min
f∈Pk(π),g∈Pℓ(σ)

dF(f(π), g(σ))

Observe that P0(π) consists only of the identity func-
tion. Thus if we wish to consider the problem
where permutations are only allowed on π then we
write dkPF(π, σ) = dk,0PF(π, σ) = minf∈Pk(π) dF(f(π), σ).

Moreover, observe that dF(π, σ) = d0,0PF(π, σ).
We now define several problems based on the above:

� In the min-k permutation Fréchet distance prob-
lem, denoted MinK-PF, for a given δ > 0 we seek
the smallest value k such that dk,kPF(π, σ) ≤ δ.

� In the min-δ permutation Fréchet distance prob-
lem, denoted Minδ-PF, for given k and ℓ we seek
the smallest value δ such that dk,ℓPF(π, σ) ≤ δ.

� For the MinK-PF and Minδ-PF problems if we in-
stead ask if dkPF(π, σ) = dk,0PF(π, σ) ≤ δ, then we
respectively refer to it as the one-sided MinK-PF or
Minδ-PF problem.

All of the above definitions and problems immediately
extended to the discrete, weak, or discrete weak Fréchet
distance by replacing dF(f(π), g(σ)) respectively with
dDF(f(π), g(σ)), d

w
F(f(π), g(σ)), or dwDF(f(π), g(σ)), in

the definition of k, ℓ-permutation Fréchet distance.

DAG Complexes.
We will utilize the work of [8] and [7], the first of which
defines the following generalization of a curve. Con-
sider a directed acyclic graph (DAG) with vertices in
Rd, where a directed edge p → q is realized by the
directed segment pq. We refer to such an embedded
graph as being a DAG complex, denoted C, with em-
bedded vertices V(C) (i.e. points) and embedded edges
E(C) (i.e. line segments). We denote the size of the com-
plex as |C| = |E(C)|+ |V(C)|. Note that a DAG complex
is allowed to have crossing edges and overlapping ver-
tices. Call a polygonal curve π = ⟨π1, . . . , πk⟩ compliant
with C if πi ∈ V (C) for all i and πiπi+1 ∈ E(C) for all
1 ≤ i < k. (Note this implies π traverses each edge
in the direction compliant with its orientation from the
DAG.)
The following theorem was given in [7], who observed

that the original theorem from [8] easily generalizes to
the case where one allows sets of points for the start and
end rather than individual points.
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Theorem 1 Given two DAG complexes C1 and C2, ini-
tial vertices S1 ⊆ V (C1) and S2 ⊆ V (C2), target vertices
T1 ⊆ V (C1) and T2 ⊆ V (C2), and a value δ, then in
O(|C1||C2|) time one can determine the set of all pairs
t1 ∈ T1 and t2 ∈ T2, such that there are curves π1 and
π2 such that

� πi is compliant with Ci for i = 1, 2.
� πi starts at some si ∈ Si and ends at ti, for i = 1, 2.
� dF(π1, π2) ≤ δ.

The standard Fréchet distance decision problem is
typically computed by considering the product com-
plex of two curves (i.e. a grid), and propagating the
the reachable space according to a topological order-
ing of the cells in this product. The above theorem is
thus obtained by observing that when the input con-
sists of DAG complexes (which generalize curves), then
the same approach works as the product complex still
consists of cells with a topological order.

For the discrete Fréchet distance between two curves,
one can again propagate reachability through the prod-
uct, except the product is no longer a continuous space
but rather simply a discrete grid graph. Thus again
we can generalize to the case when the input is a pair
of DAG’s. Specifically, given graphs G1 = (V1, E1) and
G2 = (V2, E2), their product is G1×G2 = (V1× V2, F ),
where (u1, u2)→ (w1, w2) ∈ F if and only if (i) u1 = w1

and u2 → w2 ∈ E2, (ii) u2 = w2 and u1 → w1 ∈ E1,
or (iii) u1 → w1 ∈ E1 and u2 → w2 ∈ E2. Observe,
that since G1 × G2 is also a DAG, there is thus again
a topological ordering and so we immediately have the
following corollary.

Corollary 2 Given DAG’s G1 = (V1, E2) and G2 =
(V2, E2), with vertices in Rd, initial vertices S1 ⊆ V1
and S2 ⊆ V2, target vertices T1 ⊆ V1 and T2 ⊆ V2, and
a value δ, then in O(|G1||G2|) time one can determine
the set of all pairs t1 ∈ T1 and t2 ∈ T2, such that there
are paths π1 in G1 and π2 in G2 such that

� πi starts at some si ∈ Si and ends at ti, for i = 1, 2.
� dDF(π1, π2) ≤ δ.

3 Permutation Fréchet Distance

Given a polygonal curve π = ⟨π1, . . . , πn⟩ and a param-
eter k, our goal is to construct a DAG complex where
the set of compliant paths between specified start and
end vertices is the same as the set of all k-permutations
of π. To this end, consider constructing an arbitrary
k-permutation of π, denoted f(π), one vertex at a time.
Observe that since f is a k-permutation, there are at
most 2k + 1 possible candidates for the vertex πf(i)
for any i, namely the set {πj | |j − i| ≤ k}. View-
ing these candidates as an ordered set ⟨πi−k, . . . , πi+k⟩,
any subset can be represented by a binary vector v =
⟨v1, . . . , v2k+1⟩ ∈ {0, 1}2k+1, where vj = 1 represents

that πi−k+(j−1) is in the subset and vj = 0 repre-
sent that it is not. In particular, when considering
the possibilities for πf(i) we wish to restrict to the
subset of ⟨πi−k, . . . , πi+k⟩ which did not occur already
in ⟨πf(1), . . . , πf(i−1)⟩. Thus rather than remembering
this entire prior sequence, it suffices to pass a single
2k + 1 length binary vector representing the subset of
⟨πi−k, . . . , πi+k⟩ that has occurred already.

The construction of our DAG complex C is thus as
follows. The vertices of C are copies of the vertices from
π. Specifically, for each original vertex πi we create
a copy πj,vi (i.e. πi and πj,vi have the same location)
where j represents that πi is the jth vertex in the per-
mutation f , and v ∈ {0, 1}2k+1 represents the subset
of the (2k + 1) possible vertices for πf(j+1) that have
already occurred, as described above. Thus we have
V (C) = {πj,vi | 1 ≤ i ≤ n, |j − i| ≤ k, v ∈ {0, 1}2k+1},
and observe that |V (C)| = O(nk22k) = O(nk4k).

For the edge set E(C), consider some vertex πj,vi .

We add an edge from πj,vi to πj+1,w
z if and only if

|j + 1 − z| ≤ k, πz did not occur already (i.e. was not
represented by a 1 in v), and w is consistent with v. In
order for w to be consistent with v, w must represent
the subset of the (2k + 1) possible vertices for πf(j+2)

that have already occurred, given that v represented
the subset of the (2k + 1) possible vertices for πf(j+1)

that have already occurred. Thus w = ⟨w1, . . . , w2k+1⟩
being consistent with v = ⟨v1, . . . , v2k+1⟩ means that
w2k+1 = 0 and wi = vi+1 for all i < 2k + 1, with
the exception that the entry in w for πz must be set
to 1. Thus the degree of vertex πj,vi is O(k) and so
|C| = O(|V (C)|+ |E(C)|) = O(k · nk4k) = O(nk24k).

The last thing we must define is the allowed start-
ing vertices S and ending vertices T in the DAG com-
plex. Naturally, S consists of all vertices of the form
π1,v
i where v is the all 0 vector except for the position

representing πi being 1, as such a vertex represents that
πi will be the first vertex in the permutation and it
thus is the only vertex excluded from possibilities for
πf(2). Similarly, T consists of all vertices of the form
πn,vi , where here we can allow v to be any binary vector
(since if the bit setting is invalid, it will not be reachable
from a vertex in S).

As the above described complex C can be constructed
in linear time in its size, we have the following.

Lemma 3 Given a polygonal curve π = ⟨π1, . . . , πn⟩
and a parameter k, in O(nk24k) time one can construct
a DAG complex C of size O(nk24k) with vertex subsets
S and T , such that the set of compliant paths in C that
start at a vertex in S and end at a vertex in T is the
same as the set of all k-permutations of π.

It is easy to see that the above immediately applies
to discrete Fréchet distance, by simply constructing the
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corresponding DAG’s for the curves, rather than the
DAG complexes. Thus we have the following.

Corollary 4 Given a curve π = ⟨π1, . . . , πn⟩ and a pa-
rameter k, in O(nk24k) time one can construct a DAG
G of size O(nk24k) with vertex subsets S and T , such
that the set of paths in G that start at a vertex in S
and end at a vertex in T is the same as the set of all
k-permutations of π.

3.1 Algorithms and Results

Given curves π and σ of lengths n and m, respec-
tively, along with integer parameters k and ℓ, and a
value δ > 0, Lemma 3 can be used to determine if
dk,ℓPF(π, σ) ≤ δ. First, using Lemma 3, for the curve
π and the parameter k we build a complex Cπ along
with sets Sπ and Tπ. Similarly for the curve σ and the
parameter ℓ we build a complex Cσ with sets Sσ and Tσ.
By definition, dk,ℓPF(π, σ) ≤ δ if there exists f ∈ Pk(π)
and g ∈ Pℓ(σ) such that dF(f(π), g(σ)) ≤ δ, which by
Lemma 3 is true if and only if there is a compliant path
in Cπ that starts at a vertex in Sπ and ends at a vertex
in Tπ along with a compliant path in Cσ that starts at
a vertex in Sσ and ends at a vertex in Tσ, such that
their Fréchet distance is at most δ. Thus by applying
Theorem 1 we have the following. Note by instead us-
ing Corollary 4 and Corollary 2 we can also handle the
discrete case.

Theorem 5 Given curves π and σ of lengths n and m,
respectively, along with integers k and ℓ, and a value
δ > 0, in O(nmk24kℓ24ℓ) time one can determine if

dk,ℓPF(π, σ) ≤ δ, for either the discrete or continuous
Fréchet distance. The one sided problem can be solved
in O(nmk24k) by setting if ℓ to 0.

Recall the MinK-PF problem defined in Section 2,
where our goal is to find the minimum value k such that
dk,kPF(π, σ) ≤ δ. Note that k cannot exceed max{n,m}.
Thus using Theorem 5, we search for the smallest k such
that dk,kPF(π, σ) ≤ δ. Observe that the running time in
the theorem is exponential in k, and in particular the
running time for k + 1 is a constant factor larger than
that for k. Thus if we search for the minimum value, by
successively incrementing k by 1, the times of the calls
will behave like an increasing geometric series, and thus
the overall time will be proportional to the last call.

Corollary 6 Let κ be the optimal value for the
MinK-PF problem. Then the MinK-PF problem can be
solved in O(nmκ416κ) time, for either the discrete or
continuous Fréchet distance. The one-side MinK-PF
problem can be solved in O(nmκ24κ) time.

[8] showed how to turn the decision procedure of The-
orem 1 into an optimization procedure, using a simple

sampling based approach which avoids the more com-
plicated parametric search technique typically used to
compute the Fréchet distance. The algorithm is guar-
anteed to be correct, and while its running time is a
random variable (i.e. it is a Las Vegas algorithm), with
polynomially high probably it achieves an efficient run-
ning time.

We remark that technically the following theorem
from [8] was originally stated with only a single start
and end vertex in each complex, whereas we require al-
lowing sets of start and end vertices, although it imme-
diately generalizes to this case. Specifically, [8] searches
over a set of critical values using a decision procedure.
The decision procedure was already generalized in [7] to
sets of start and end vertices, as stated above in Theo-
rem 1. Moreover, the critical values remain exactly the
same when generalizing to starting and ending vertex
sets. (This holds as [8] considered all vertex to vertex
pairs as critical events, not simply just the pair of start-
ing vertices and pair of ending vertices.) Thus we have
the following.

Theorem 7 ([8], Theorem 6.3) Let C1 and C2 be two
DAG complexes, of total complexity n, with start and
end vertex sets S1, T1 ⊆ V(C1), S2, T2 ⊆ V(C2). Then
there is an algorithm which computes two curves π1 and
π2 such that π1 (resp. π2) is compliant with C1 (resp.
C2), starts at a vertex in S1 (resp. S2), and ends at a
vertex of T1 (resp. T2). Moreover, dF(π1, π2) is mini-
mum among all such curves. The running time of the al-
gorithm is O(n2 log n) with probability at least 1−1/nc,
for any constant c > 0.

Corollary 8 Let n = max{|π|, |σ|} and let τ =
max{k, ℓ}. Then both the one-sided and two-sided ver-
sions of the continuous Minδ-PF problem can be solved
in O(n2τ416τ (log n + τ)) time, where the time bound
holds with probability at least 1−1/nc, for any constant
c > 0.

It is well known that for the discrete Fréchet dis-
tance both the decision and optimization problem can
be solved in O(nm) time, since rather than propagat-
ing reachability in the free space we can propagate the
minimum cost to reach the given vertex (which works
as the free space is a discrete DAG). Again, in our case
even though the input is now two DAG’s rather than
simply two curves, the product is still just a DAG. Thus
we also can solve the optimization problem in the same
time as our decision algorithm, yielding the following.

Corollary 9 Given curves π and σ of lengths n and m,
respectively, along with integers k and ℓ, one can solve
the discrete Minδ-PF problem in O(nmk24kℓ24ℓ) time,
which becomes O(nmk24k) time for the one sided case.
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4 Hardness for Weak Permutation Fréchet

We now shift focus to weak Fréchet distance and prove
NP-hardness for both the discrete and continuous cases
dw k,ℓ
PDF(π, σ) ≤ δ in R1 and dw k,ℓ

PF (π, σ) ≤ δ in R2 for
any constants k ≥ 1 and ℓ ≥ 0. Our reductions are
from 3SAT and closely follow those of [5] and [7]. We
consider discrete curves in R1 first before moving to R2.

We set δ to 1 and rely on the resulting Free Space Di-
agram (ex. Figure 1), which is built by listing π-values
as rows, σ-values as columns, and drawing empty cir-
cles where |πi − σj | ≤ δ (free spaces). We use teal
to show paths between free spaces, with movement re-
stricted to adjacent spaces (including diagonals). With
this, dwDF(π, σ) ≤ 1 if and only if there is a way to tra-
verse through the teal from the bottom left corner to
the top right corner.

0

0
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8 3 3 6 7 6 3 9 3 5 8 1 1 9 4 7 2
π1

σ1

πn

σm

Figure 1: Generic Free Space Diagram.

We can now show the abstract Figure 2, where we em-
bed the 3SAT instance with c clauses into σ with clause
gadgets and walls such that σ = ⟨wall⟩ ◦ ⟨clause 1⟩ ◦
⟨wall⟩ ◦ · · · ◦ ⟨wall⟩ ◦ ⟨clause c⟩ ◦ ⟨wall⟩. We construct π in
three sections π = ⟨lower⟩◦⟨variable layer⟩◦⟨upper⟩. The
interaction between the curves will force the length of π
to be traversed for each clause, with 3 options represent-
ing satisfying one literal each. The clauses are placed
in series, alternating going up or down, such that all
clauses must have at least one literal satisfied in order
to traverse to the end of σ.

Clause 1wall wallwall wall Clause 3Clause 2

lo
w
er

up
pe
r

va
ria
bl
e

la
ye
r

next clause
end

start

Figure 2: Abstract figure with sections of π and σ la-
beled. Purple, green, and orange illustrate the 3 ways
to get through a clause.

The variable layer holds pairs of values where each
pair represents a variable. Whether the pair is per-
muted or not determines if the variable is set to True

or False. We call these permutations sanctioned (and
all others unsanctioned) as these are the only ones that
correspond to 3SAT actions. Further, our construction
ensures only sanctioned permutations will be useful.

Precise Reduction.
Having seen the general idea, the following is the precise
construction for π and σ given a 3SAT instance I with
v variables and c clauses, an example of which is shown
in Figure 3. Note that we will insert copies of a special
point ρ and duplicate others, both of which serve only
to discourage unsanctioned permutations.

Let ρ =∞ in R1 for discrete and ρ = (0,∞) in R2 for
continuous.2 Note that when working in R2, all other
points will be of the form (x, 0) for some value x. Ad-
ditionally let S[x] be the concatenation of x instances
of ordered set S (e.g. ⟨5, 1⟩[2] = ⟨5, 1⟩ ◦ ⟨5, 1⟩). For any
ordered set S we define SR as that set in reverse order.
. . . . . . . . . . . . . . . . . . . . construct π . . . . . . . . . . . . . . . . . . . .

� Let ⊙ represent ‘◦ ⟨ρ⟩[2k+1] ◦’.

� Let L = ⟨15⟩ ⊙ ⟨25⟩ ⊙ . . .⊙ ⟨10v + 5⟩.

� Let L̂ be L but with the value 10j + 5 replaced by
⟨10j + 4, 10j + 6⟩ for all 1 ≤ j ≤ v.

� Let π = ⟨0⟩ ⊙ ⟨10⟩ ⊙L⊙ ⟨10(v+ 1)⟩ ⊙ L̂R ⊙ ⟨10⟩ ⊙
L⊙ ⟨10(v + 1)⟩ ⊙ ⟨10(v + 2)⟩.

. . . . . . . . . . . . . . . . . . . . construct σ . . . . . . . . . . . . . . . . . . . .

� Let ⊚ represent ‘◦ ⟨ρ⟩[2ℓ+1] ◦’.

� Let L = ⟨15⟩⊚ ⟨25⟩⊚ . . .⊚ ⟨10v + 5⟩.

� Let L+
j be obtained from L by replacing the value

10j + 5 with ⟨10j + 4⟩[ℓ+1] ◦ ⟨10j + 6⟩[ℓ+1].

� Let L−j be obtained from L by replacing the value

10j + 5 with ⟨10j + 6⟩[ℓ+1] ◦ ⟨10j + 4⟩[ℓ+1].

� Let σi represent clause i of I which contains vari-
ables Xj1 , Xj2 , and Xj3 and therefore σi = ⟨10⟩ ⊚
L±j1 ⊚ ⟨10(v+1)⟩⊚ (L±j2)

R⊚ ⟨10⟩⊚L±j3 ⊚ ⟨10(v+1)⟩,
where L±ji = L+

ji
if Xji appears as a positive literal

and L±ji = L−ji if Xji appears as a negated literal.

� Let σ = ⟨0⟩⊚σ1⊚ ⟨10(v+2)⟩⊚ (σ2)R⊚ ⟨0⟩⊚ . . .⊚
σc ⊚ ⟨10(v + 2)⟩ (if c is even, duplicate one clause
so the total number of clauses is odd).

From this reduction comes the following two theorems
which we spend the remainder of the paper proving.

Theorem 10 Determining if dw k,ℓ
PDF(π, σ) ≤ δ in R1 for

any constants k ≥ 1 and ℓ ≥ 0 is NP-hard.

2∞ can be replaced with a sufficiently large finite value far
away from the other values as explained in [7].
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Figure 3: An example where X2 is set to False and other
variables to True as seen in circled pairs on the left. ρ
values are not shown, and ℓ = 0. Figure faded out after
second literal of second clause.

Theorem 11 Determining if dw k,ℓ
PF (π, σ) ≤ δ in R2 for

any constants k ≥ 1 and ℓ ≥ 0 is NP-hard .

Proof of correctness for Theorem 10.
We now argue correctness. First, we argue that if only
sanctioned permutations are made, the distance is ≤ δ
if and only if I is satisfiable. Second, we argue that
unsanctioned permutations are futile and will not result
in the distance being ≤ δ unless it would have been
possible without them.
So suppose that only sanctioned permutations are al-

lowed. Consider the variable layer, where the jth vari-
able Xj is represented by consecutive rows (i.e. a sanc-
tioned permutation pair of vertices from π) with value
10j + 6 followed by value 10j + 4, which we can either
leave in that order or permute (see Figure 3). We argue
that leaving this pair unpermuted corresponds to set-
ting the variable to True and permuting it corresponds
to setting the variable to False. Specifically, consider the
variable layer restricted to the columns of the ith clause,
represented by σi. If Xj does not appear in this clause,
then because the corresponding value 10j + 5 in σi is
within distance δ = 1 of both 10j + 4 and 10j + 6, the
three paths through the variable layer (again see Fig-
ure 2) will be unobstructed at the rows corresponding
to Xj , regardless of whether we permute this sanctioned
permutation pair or not.
Conversely, if Xj is in the ith clause then rather than

10j + 5 in σi we have the values 10j + 4 and 10j + 6
(possibly with repetition if ℓ > 0). The portion of σi

corresponding to Xj is either ascending or descending,
depending on the parity of i and whether Xj is the first,
second, or third variable in the clause. For simplicity,
assume it is descending (the ascending case is symmet-
ric). In this case, by construction, the pair of values
10j+4 and 10j+6 will appear in decreasing order if Xj

occurs as a positive literal in clause i, and in increas-
ing order if Xj occurs as a negated literal in clause i.
So suppose Xj appears a positive literal, and consider
the sanctioned permutation pair on π corresponding to
Xj . As the values in the variable layer are also de-
scending (before any permutation occurs), in order to
pass through the rows of this sanctioned permutation
pair along the path corresponding to positive literal Xj
in this clause, we must not permute the sanction pair
(i.e. the rows and columns must both agree to descend
in value for this pair). Conversely, if Xj appears as a
negated literal then 10j + 4 and 10j + 6 will appear
in increasing order on σi and so we must permute the
sanctioned permutation pair to match if we want to pass
along the corresponding path. As at least one of three
paths through the variable layer for this clause must
be passable, this corresponds to setting the variables in
such a way that at least one of the literals in the clause
is True, as required for the 3SAT instance I to be sat-
isfiable. Therefore, if only sanctioned permutations are
allowed, dw k,ℓ

PDF(π, σ) ≤ δ if and only if I is satisfiable.
To complete the proof we now argue that even if un-

sanctioned permutations are allowed, they will not lower
the Fréchet distance, and hence are futile. Specifically,
by inserting a sufficiently large number of ρ points be-
tween adjacent pairs of non-ρ points, we insured that
k, ℓ-permutations could not change the ordering of the
those pairs. On π the only time ρ was not inserted was
between points in pairs whose permutation was sanc-
tioned. On σ the only time ρ was not inserted was be-
tween points in pairs that enforce a literal.3 However,
for each such pair ⟨x, y⟩ we duplicated x and y both ℓ+1
times. This means regardless of any ℓ-permutation, the
first copy of x must come before the first of y and the
last copy of x before the last of y. This is sufficient since
when the path of this literal is broken due to incorrect
variable assignment, it is because the free space of both
the first x and the last y become disconnected from the
rest of the path.4 If this disconnect exists before per-
mutation, it will remain as the first x and last y remain.
Finally, observe that a ρ point on one curve must map
to a ρ point on the other curve, but the initial construc-
tion inserted ρ points between all pairs that were neither
sanctioned on π nor representing a literal on σ, and we
inserted enough such that there must remain at least
one ρ between these pairs even after k, l-permutation.
Therefore futility is established.

Proof of correctness for Theorem 11.
As was done in [5] and [7], we can extend the argument
to the continuous Fréchet distance by raising to R2, us-

3Inserting ρ between these would have given π issues traversing
its sanctioned permutation pairs

4Note that permutation does not change the free spaces, just
their order. Thus we refer to incorrect assignment as ‘disconnect-
ing’ the free spaces rather than making them ‘no longer free’.
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ing ρ = (0,∞), and converting x→ (x, 0) for any other
point x in the above reduction. We now argue this lim-
its continuous to have Fréchet distance ≤ δ if and only
if discrete would have as well.

Consider a pair of traversals, one on each curve, such
that their Fréchet distance is finite. Then on both
curves, these traversals must simultaneously start at the
first vertex, and go the next vertex (which is ρ) which
is always possible in both continuous and discrete. The
same is true for traversing between the second to last
vertex (which is ρ) and the last on both curves. We
break the remaining traversals of both curves into sub-
traversals that start at a ρ, traverse some potentially
different number of non-ρ vertex(es), and end at a ρ.
Let Ξπ (resp. Ξσ) be the non-ρ vertices traversed in
an arbitrary one of these sub-traversals on π (resp. σ)
where vertices may appear multiple times due to using
weak Fréchet distance. Recall because the Fréchet dis-
tance is finite, that a ρ on the traversal of one curve
must map to a ρ on the other. This means that a sub-
traversal between ρ vertices on one curve must map to
such a sub-traversal on the other, and one can argue
that whether such sub-traversals are within Fréchet dis-
tance δ is equivalent to whether the corresponding Ξπ
and Ξσ are within Fréchet distance δ. (We can assume
Ξπ and Ξσ are non-empty, since if they were both empty
we did not make any actual progress in traversing either
curve. If Ξπ was empty and Ξσ = ⟨x . . . ⟩ then for the
Fréchet distance to be ≤ δ, the sub-traversal of π must
be approaching a vertex y where ||x − y|| ≤ δ, and so
one can argue y could have been included.)

The above implies it suffices to show that
dDF(Ξπ,Ξσ) ≤ δ ⇐⇒ dF(Ξπ,Ξσ) ≤ δ for all Ξπ and
Ξσ. There are two types of Ξπ: i) individual points, and
ii) those including at least two vertices in a pair repre-
senting a variable assignment. Likewise there are two
types of Ξσ: i) individual points, and ii) those including
at least two vertices in a pair (duplicated if ℓ > 0) which
enforces a literal.

If either Ξπ or Ξσ is a single point, then the discrete
and continuous Fréchet distances are ≤ δ iff. all points
on the other curve are within δ of it. This shows the
equivalence for all the cases except the distance between
type ii of Ξπ and type ii of Ξσ, so consider this case. Ξπ
cannot contain vertices from more than one variable,
and the same is true for Ξσ w.r.t literals. Additionally,
if they do not refer to the same variable/literal, or they
refer to the same variable/literal but the variable is not
set in such a way that the literal is satisfied, then the
the Fréchet distance is > δ since the first vertices are too
far from one another. Now observe that if both Ξπ and
Ξσ refer to the same variable/literal and the variable is
set in such a way to satisfy the literal, then the Fréchet
distance ≤ δ if and only if they start and end with the
same value, regardless of discrete or continuous.
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Abstract

Adaptive sorting exploits the structure of a partially
sorted list—in particular, the sorted segments of a list
called runs—to improve its performance. Persistent ho-
mology, on the other hand, is a topological data anal-
ysis tool that captures a space’s topological features at
different scales. In this paper, we combine these two
seemingly unrelated concepts and introduce a new per-
spective on adaptive sorting. We introduce a new stable
sorting algorithm, referred to as the Persistence Sort (or
PersiSort in short), which utilizes the persistence pairs
among the local extrema of a list. Given a list of n ele-
ments containing r runs with run entropy H, we prove,
for the first time, that any adaptive sorting algorithm
that uses the two-way-merge subroutine (AdaptMerge)
of Carlsson et al. (1990) performs O (nH) = O (n log r)
comparisons to merge precomputed runs based on its
predetermined merge policy, and is therefore worst-case
optimal. Using PersiSort, we then provide a new way
to analyze adaptive sorting with a persistence-based ar-
rangement of runs. Unlike previous work such as Power-
Sort and TimSort, PersiSort does not consider the num-
ber of elements in each run but the values of elements
in the sorting process. We finally discuss the scenar-
ios when PersiSort outperforms several state-of-the-art
adaptive sorting algorithms.

1 Introduction

A sorting algorithm has a basic goal: putting elements
from a list into some total order. Adaptive sorting
is an active area of research that exploits the struc-
ture of a partially sorted list to improve performance.
Specifically, it utilizes unique structures in the input
called the runs, which are segments of the list already in
sorted order. Examples of adaptive sorting algorithms
include Natural MergeSort [7], TimSort [26], Power-
Sort [24], and multiway PowerSort [14]. Among those,
the first three algorithms use the two-way merges of runs
(i.e., AdaptMerge) from Carlsson et al. [7] as subrou-
tines, whereas the multiway PowerSort employs k-way
merges of runs.

Persistent homology is a popular tool from topolog-
ical data analysis (TDA) that captures the topological

∗Aarhus University. jkrschou@gmail.com
†University of Utah. beiwang@sci.utah.edu

features of a space at different scales. In its simplest
form, given a real-valued function f : R→ R, persistent
homology computes the pairings among local extrema
(i.e., local maxima and local minima) of f . These per-
sistence pairs encode the topological features of f at
different scales.

In this paper, we combine two seemingly unrelated
concepts—adaptive sorting and persistence—and intro-
duce a new sorting algorithm, referred to as the Per-
sistence Sort (PersiSort in short, pronounced “Percy
sort”), that utilizes the persistence pairs among local
extrema of a list. Our contributions include:
• We provide, for the first time, a general worst-case
bound for a class of adaptive sorting algorithms.
We prove that any adaptive sorting algorithm that
uses AdaptMerge of Carlsson et al. [7] (i.e., two-way
merges of runs) performs O (nH(ℓ1, . . . , ℓr)) compar-
isons on a list of n elements containing r precomputed
runs each with ℓi elements, and is, therefore, worst-
case comparison optimal. Here, H(ℓ1, . . . , ℓr) =
−∑r

i=1(ℓi/n) log(ℓi/n) is the entropy of the runs [2].
• Using PersiSort, we provide a new way to analyze
adaptive sorting by looking at the arrangement of
runs based on the topological notion of persistence.
Unlike previous work such as TimSort and PowerSort,
PersiSort does not consider the number of elements
but the values of elements in the sorting process.

• We demonstrate that PersiSort outperforms several
state-of-the-art adaptive sorting algorithms on data
distributions where runs have little overlap in their
ranges of values. Our experiments suggest ways to
improve PowerSort by using AdaptMerge as its merge
subroutine.

Finally, we provide an open-source implementation of
PersiSort on Github1.

2 Related Work

Adaptive sorting algorithms. Any sorting algorithm
requires worst-case Ω(n log n) comparisons to sort a list
of n elements. In particular, MergeSort [18] has a
Θ(n log n) complexity for all inputs. An adaptive sort-
ing algorithm seeks to use the presortedness of the input
to make informed decisions about the merges performed.

The first adaptive sorting algorithm uses the number
of inversions Inv(X) in the input list X as a measure of

1https://github.com/Nimakii/PersiSort
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presortedness. Inv(X) is the number of pairs of input el-
ements in the wrong order [13]. Given a listX with n el-
ements, Guibas et al. [16] gave the first adaptive sorting

algorithm with a complexity Ω
(
n log

(
Inv(X)
n

)
+ n

)
,

using a finger-based balanced search tree. Other adap-
tive sorting algorithms include BlockSort [21], Split-
Sort [19], and Adaptive HeapSort [20].

The second type of adaptive sorting algorithm uses
runs (i.e., presorted subsequences, see Sec. 3.2) as a
measure of presortedness. Carlsson et al. [7] intro-
duced AdaptMerge, which uses exponential and binary
searches to merge two sorted lists. Given a list X with
n elements and r runs, Natural MergeSort [7] detects
runs and performs pairwise merges in a balanced way
using AdaptMerge, giving a Θ(n + n log r) complexity.
TimSort [26] puts detected runs on a stack and uses a
set of involved rules to decide what and when to merge.
TimSort was later shown to have worst-case O (n log n)
complexity [1] w.r.t. comparison and merge cost. Pow-
erSort [24, 28] is similar to TimSort in the sense that
it makes a pass of the input from left to right, and for
each new run it detects, it either performs some merges
or delays the merges by keeping the runs on a stack. It
assigns each adjacent pair of runs a “power” score and
applies all delayed merges of higher power. PowerSort
has become the standard library sort for CPython since
2022.

Our novel PersiSort algorithm belongs to the second
type of adaptive sorting algorithms, where we study the
organization of runs in an input list using the notion
of persistence [11, 6]. Unlike other adaptive sorting al-
gorithms that focus on the number of elements in each
run, PersiSort takes advantage of the values of elements
in the sorting process and provides a new perspective
on adaptive sorting. Whereas TimSort and PowerSort
merge adjacent runs, PersiSort merges runs ordered by
persistence pairs.

Persistent homology. Persistent homology is a tool
from TDA that captures topological features of data
across multiple scales. It has seen a wide range of ap-
plications in the study of networks, biological molecules,
natural images, time series, etc.; see [9, 23, 25] for in-
troductory texts and surveys. To the best of our knowl-
edge, this is the first time persistence has been utilized
in the study of sorting algorithms. The persistent ho-
mology of functions from R to R is studied in [15] and
the windows of [4, 8] are reminiscent but slightly differ-
ent from the persistence boxes we introduce in Sec. 3.3.

3 Technical Background

3.1 A Review on Persistent Homology

We review the notion of persistent homology in the most
straightforward 1-dimensional setting; see [9] for some

introductory texts and [10] for a formal treatment.
Let f : M → R be a smooth function defined on a

1-dimensional manifold M ⊆ R. A point x ∈ M is a
critical point of f if and only if f ′(x) = 0; otherwise, it
is a regular point. There are two types of critical points,
local maxima and local minima, which are both extrema
points. The image of a critical point is a critical value
of f . A critical point x is non-degenerate if f ′′(x) ̸= 0.
f is a Morse function if all its critical points are non-
degenerate and have distinct function values. Assume
f is a Morse function, the sublevel set of f is defined as
the pre-image Mt := f−1((−∞, t]) = {x ∈ M | f(x) ≤
t}. To compute the persistent homology, we study the
topological changes of Mt as t increases from −∞ to∞.
This could be considered as the common sweep line idea
from computational geometry.

Formally speaking, let m be the number of critical
values of f . Let a0 < · · · < am be a sequence of regular
values of f such that each interval (ai, ai+1) contains
exactly one critical value of f . A sublevel set filtration of
f is a sequence of sublevel sets connected by inclusions,

Ma0 →Ma1 → · · · →Mam .

In our setting, 0-dimensional persistent homology stud-
ies the topological changes of sublevel sets by applying
0-dimensional homology to this sequence,

H0(Ma0)→ H0(Ma1)→ · · · → H0(Man).

The 0-dimensional homology group of a topological
space X, denoted as H0(X), captures the connected com-
ponents of X. As t increases, the number of connected
components in Mt only changes when t passes a critical
value of f .
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<latexit sha1_base64="Y4iI1FlBnKtYKOQd4s5VdRPGGCQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURU9S8OKxgqmFNpTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjrJFEOfJSJR7ZBqFFyib7gR2E4V0jgU+BiObmf+4xMqzRP5YMYpBjEdSB5xRo2V/CrrXVR75Ypbc+cgq8TLSQVyNHvlr24/YVmM0jBBte54bmqCCVWGM4HTUjfTmFI2ogPsWCppjDqYzI+dkjOr9EmUKFvSkLn6e2JCY63HcWg7Y2qGetmbif95ncxE18GEyzQzKNliUZQJYhIy+5z0uUJmxNgSyhS3txI2pIoyY/Mp2RC85ZdXSate8y5r7n290rjJ4yjCCZzCOXhwBQ24gyb4wIDDM7zCmyOdF+fd+Vi0Fpx85hj+wPn8Aag0jeg=</latexit>c4

<latexit sha1_base64="/2pigfXvIqiftfpeutx/hRgkQZo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUip6k4MVjBVMLbSib7aZdutmE3YlQSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9P2ibJNOM+S2SiOyE1XArFfRQoeSfVnMah5I/h+HbuPz5xbUSiHnCS8iCmQyUiwShaya+yfqPaL1fcmrsAWSdeTiqQo9Uvf/UGCctirpBJakzXc1MMplSjYJLPSr3M8JSyMR3yrqWKxtwE08WxM3JhlQGJEm1LIVmovyemNDZmEoe2M6Y4MqveXPzP62YYXQdTodIMuWLLRVEmCSZk/jkZCM0ZyokllGlhbyVsRDVlaPMp2RC81ZfXSbte8xo1975ead7kcRThDM7hEjy4gibcQQt8YCDgGV7hzVHOi/PufCxbC04+cwp/4Hz+AKm5jek=</latexit>c5

<latexit sha1_base64="rgnuXBZij8uFrBbyaemtFtEZxWY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IU/DhJwYvHCqYW2lA220m7dLMJuxuhlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0wF18Z1v53C2vrG5lZxu7Szu7d/UD48aukkUwx9lohEtUOqUXCJvuFGYDtVSONQ4GM4up35j0+oNE/kgxmnGMR0IHnEGTVW8qusd1ntlStuzZ2DrBIvJxXI0eyVv7r9hGUxSsME1brjuakJJlQZzgROS91MY0rZiA6wY6mkMepgMj92Ss6s0idRomxJQ+bq74kJjbUex6HtjKkZ6mVvJv7ndTITXQcTLtPMoGSLRVEmiEnI7HPS5wqZEWNLKFPc3krYkCrKjM2nZEPwll9eJa16zbuouff1SuMmj6MIJ3AK5+DBFTTgDprgAwMOz/AKb450Xpx352PRWnDymWP4A+fzB6s+jeo=</latexit>c6

<latexit sha1_base64="w81rInnNFVtv2H2uVohqi1N6+7o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxoq2FNpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHbROnmvEWi2WsOwE1XArFWyhQ8k6iOY0CyR+D8c3Mf3zi2ohYPeAk4X5Eh0qEglG00n01rPbLFbfmzkFWiZeTCuRo9stfvUHM0ogrZJIa0/XcBP2MahRM8mmplxqeUDamQ961VNGIGz+bnzolZ1YZkDDWthSSufp7IqORMZMosJ0RxZFZ9mbif143xfDKz4RKUuSKLRaFqSQYk9nfZCA0ZygnllCmhb2VsBHVlKFNp2RD8JZfXiXtes27qLl39UrjOo+jCCdwCufgwSU04Baa0AIGQ3iGV3hzpPPivDsfi9aCk88cwx84nz+CFo1E</latexit>

f

<latexit sha1_base64="bOcDUCK91gccTHsMF45MgkfnifY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmmFNpTNdtou3WzC7kYsob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMCxPBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpOFUOfxSJWDyHVKLhE33Aj8CFRSKNQYDsc38z89iMqzWN5byYJBhEdSj7gjBor+dWnnlvtlStuzZ2DrBIvJxXI0eyVv7r9mKURSsME1brjuYkJMqoMZwKnpW6qMaFsTIfYsVTSCHWQzY+dkjOr9MkgVrakIXP190RGI60nUWg7I2pGetmbif95ndQMroKMyyQ1KNli0SAVxMRk9jnpc4XMiIkllClubyVsRBVlxuZTsiF4yy+vkla95l3U3Lt6pXGdx1GEEziFc/DgEhpwC03wgQGHZ3iFN0c6L86787FoLTj5zDH8gfP5A8Izjfk=</latexit>x0
<latexit sha1_base64="4kTKkIz+mv9ZD/DQmAJs8jcrybI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmmFNpTNdtou3WzC7kYsob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMCxPBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpOFUOfxSJWDyHVKLhE33Aj8CFRSKNQYDsc38z89iMqzWN5byYJBhEdSj7gjBor+dWnnlftlStuzZ2DrBIvJxXI0eyVv7r9mKURSsME1brjuYkJMqoMZwKnpW6qMaFsTIfYsVTSCHWQzY+dkjOr9MkgVrakIXP190RGI60nUWg7I2pGetmbif95ndQMroKMyyQ1KNli0SAVxMRk9jnpc4XMiIkllClubyVsRBVlxuZTsiF4yy+vkla95l3U3Lt6pXGdx1GEEziFc/DgEhpwC03wgQGHZ3iFN0c6L86787FoLTj5zDH8gfP5A8O4jfo=</latexit>x1

<latexit sha1_base64="fLQbtiWHY2COatQTCl2C7zr98n8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmmFNpTNdtou3WzC7kYsob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMCxPBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpOFUOfxSJWDyHVKLhE33Aj8CFRSKNQYDsc38z89iMqzWN5byYJBhEdSj7gjBor+dWnXr3aK1fcmjsHWSVeTiqQo9krf3X7MUsjlIYJqnXHcxMTZFQZzgROS91UY0LZmA6xY6mkEeogmx87JWdW6ZNBrGxJQ+bq74mMRlpPotB2RtSM9LI3E//zOqkZXAUZl0lqULLFokEqiInJ7HPS5wqZERNLKFPc3krYiCrKjM2nZEPwll9eJa16zbuouXf1SuM6j6MIJ3AK5+DBJTTgFprgAwMOz/AKb450Xpx352PRWnDymWP4A+fzB8U9jfs=</latexit>x2
<latexit sha1_base64="7eIhRjSqc2wsfrIMhZx5Ps/7kBw=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CbaCp7JbET1JwYvHCm5baJeSTbNtaJJdkqxYlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0w408Z1v53C2vrG5lZxu7Szu7d/UD48auk4VYT6JOax6oRYU84k9Q0znHYSRbEIOW2H49uZ336kSrNYPphJQgOBh5JFjGBjJb/61L+o9ssVt+bOgVaJl5MK5Gj2y1+9QUxSQaUhHGvd9dzEBBlWhhFOp6VeqmmCyRgPaddSiQXVQTY/dorOrDJAUaxsSYPm6u+JDAutJyK0nQKbkV72ZuJ/Xjc10XWQMZmkhkqyWBSlHJkYzT5HA6YoMXxiCSaK2VsRGWGFibH5lGwI3vLLq6RVr3mXNfe+Xmnc5HEU4QRO4Rw8uIIG3EETfCDA4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gDGwo38</latexit>x3

<latexit sha1_base64="cqokH61wkfUKOe97UdA7oGYifUg=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CbaCp7JbFD1JwYvHCm5baJeSTbNtaJJdkqxYlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0w408Z1v53C2vrG5lZxu7Szu7d/UD48auk4VYT6JOax6oRYU84k9Q0znHYSRbEIOW2H49uZ336kSrNYPphJQgOBh5JFjGBjJb/61L+o9ssVt+bOgVaJl5MK5Gj2y1+9QUxSQaUhHGvd9dzEBBlWhhFOp6VeqmmCyRgPaddSiQXVQTY/dorOrDJAUaxsSYPm6u+JDAutJyK0nQKbkV72ZuJ/Xjc10XWQMZmkhkqyWBSlHJkYzT5HA6YoMXxiCSaK2VsRGWGFibH5lGwI3vLLq6RVr3mXNfe+Xmnc5HEU4QRO4Rw8uIIG3EETfCDA4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gDIR439</latexit>x4
<latexit sha1_base64="RYUHZ2Vab0nBl6z/HX/YIhOCA34=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CbaCp7JbKHqSghePFdy20C4lm2bb0CS7JFmxLP0NXjwo4tUf5M1/Y9ruQVsfDDzem2FmXphwpo3rfjuFjc2t7Z3ibmlv/+DwqHx80tZxqgj1Scxj1Q2xppxJ6htmOO0mimIRctoJJ7dzv/NIlWaxfDDThAYCjySLGMHGSn71adCoDsoVt+YugNaJl5MK5GgNyl/9YUxSQaUhHGvd89zEBBlWhhFOZ6V+qmmCyQSPaM9SiQXVQbY4doYurDJEUaxsSYMW6u+JDAutpyK0nQKbsV715uJ/Xi810XWQMZmkhkqyXBSlHJkYzT9HQ6YoMXxqCSaK2VsRGWOFibH5lGwI3urL66Rdr3mNmntfrzRv8jiKcAbncAkeXEET7qAFPhBg8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDJzI3+</latexit>x5

<latexit sha1_base64="8l8f0ogZO8M+j6mGRhaNSzA46Ag=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CbaCp7Jb8OMkBS8eK7htoV1KNs22oUl2SbJiWfobvHhQxKs/yJv/xrTdg7Y+GHi8N8PMvDDhTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVBHqk5jHqhNiTTmT1DfMcNpJFMUi5LQdjm9nfvuRKs1i+WAmCQ0EHkoWMYKNlfzqU/+y2i9X3Jo7B1olXk4qkKPZL3/1BjFJBZWGcKx113MTE2RYGUY4nZZ6qaYJJmM8pF1LJRZUB9n82Ck6s8oARbGyJQ2aq78nMiy0nojQdgpsRnrZm4n/ed3URNdBxmSSGirJYlGUcmRiNPscDZiixPCJJZgoZm9FZIQVJsbmU7IheMsvr5JWveZd1Nz7eqVxk8dRhBM4hXPw4AoacAdN8IEAg2d4hTdHOi/Ou/OxaC04+cwx/IHz+QPLUY3/</latexit>x6<latexit sha1_base64="Sue5hC5bQ/4xzuRHFUVE8w6BbDY=">AAAB83icbVBNSwMxFHxbv2r9qnr0EmwFT2W3IHqSghcvQgVbC92lZNNsG5pNliQrlKV/w4sHRbz6Z7z5b8y2e9DWgcAw8x5vMmHCmTau++2U1tY3NrfK25Wd3b39g+rhUVfLVBHaIZJL1QuxppwJ2jHMcNpLFMVxyOljOLnJ/ccnqjST4sFMExrEeCRYxAg2VvLrfozNOAyzu1l9UK25DXcOtEq8gtSgQHtQ/fKHkqQxFYZwrHXfcxMTZFgZRjidVfxU0wSTCR7RvqUCx1QH2TzzDJ1ZZYgiqewTBs3V3xsZjrWexqGdzCPqZS8X//P6qYmugoyJJDVUkMWhKOXISJQXgIZMUWL41BJMFLNZERljhYmxNVVsCd7yl1dJt9nwLhrufbPWui7qKMMJnMI5eHAJLbiFNnSAQALP8ApvTuq8OO/Ox2K05BQ7x/AHzucPcfyRRw==</latexit>

M

<latexit sha1_base64="7eIhRjSqc2wsfrIMhZx5Ps/7kBw=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CbaCp7JbET1JwYvHCm5baJeSTbNtaJJdkqxYlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0w408Z1v53C2vrG5lZxu7Szu7d/UD48auk4VYT6JOax6oRYU84k9Q0znHYSRbEIOW2H49uZ336kSrNYPphJQgOBh5JFjGBjJb/61L+o9ssVt+bOgVaJl5MK5Gj2y1+9QUxSQaUhHGvd9dzEBBlWhhFOp6VeqmmCyRgPaddSiQXVQTY/dorOrDJAUaxsSYPm6u+JDAutJyK0nQKbkV72ZuJ/Xjc10XWQMZmkhkqyWBSlHJkYzT5HA6YoMXxiCSaK2VsRGWGFibH5lGwI3vLLq6RVr3mXNfe+Xmnc5HEU4QRO4Rw8uIIG3EETfCDA4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gDGwo38</latexit>x3

<latexit sha1_base64="cqokH61wkfUKOe97UdA7oGYifUg=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CbaCp7JbFD1JwYvHCm5baJeSTbNtaJJdkqxYlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0w408Z1v53C2vrG5lZxu7Szu7d/UD48auk4VYT6JOax6oRYU84k9Q0znHYSRbEIOW2H49uZ336kSrNYPphJQgOBh5JFjGBjJb/61L+o9ssVt+bOgVaJl5MK5Gj2y1+9QUxSQaUhHGvd9dzEBBlWhhFOp6VeqmmCyRgPaddSiQXVQTY/dorOrDJAUaxsSYPm6u+JDAutJyK0nQKbkV72ZuJ/Xjc10XWQMZmkhkqyWBSlHJkYzT5HA6YoMXxiCSaK2VsRGWGFibH5lGwI3vLLq6RVr3mXNfe+Xmnc5HEU4QRO4Rw8uIIG3EETfCDA4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gDIR439</latexit>x4

<latexit sha1_base64="fLQbtiWHY2COatQTCl2C7zr98n8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmmFNpTNdtou3WzC7kYsob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMCxPBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpOFUOfxSJWDyHVKLhE33Aj8CFRSKNQYDsc38z89iMqzWN5byYJBhEdSj7gjBor+dWnXr3aK1fcmjsHWSVeTiqQo9krf3X7MUsjlIYJqnXHcxMTZFQZzgROS91UY0LZmA6xY6mkEeogmx87JWdW6ZNBrGxJQ+bq74mMRlpPotB2RtSM9LI3E//zOqkZXAUZl0lqULLFokEqiInJ7HPS5wqZERNLKFPc3krYiCrKjM2nZEPwll9eJa16zbuouXf1SuM6j6MIJ3AK5+DBJTTgFprgAwMOz/AKb450Xpx352PRWnDymWP4A+fzB8U9jfs=</latexit>x2
<latexit sha1_base64="bOcDUCK91gccTHsMF45MgkfnifY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmmFNpTNdtou3WzC7kYsob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMCxPBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpOFUOfxSJWDyHVKLhE33Aj8CFRSKNQYDsc38z89iMqzWN5byYJBhEdSj7gjBor+dWnnlvtlStuzZ2DrBIvJxXI0eyVv7r9mKURSsME1brjuYkJMqoMZwKnpW6qMaFsTIfYsVTSCHWQzY+dkjOr9MkgVrakIXP190RGI60nUWg7I2pGetmbif95ndQMroKMyyQ1KNli0SAVxMRk9jnpc4XMiIkllClubyVsRBVlxuZTsiF4yy+vkla95l3U3Lt6pXGdx1GEEziFc/DgEhpwC03wgQGHZ3iFN0c6L86787FoLTj5zDH8gfP5A8Izjfk=</latexit>x0

<latexit sha1_base64="4kTKkIz+mv9ZD/DQmAJs8jcrybI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmmFNpTNdtou3WzC7kYsob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMCxPBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpOFUOfxSJWDyHVKLhE33Aj8CFRSKNQYDsc38z89iMqzWN5byYJBhEdSj7gjBor+dWnnlftlStuzZ2DrBIvJxXI0eyVv7r9mKURSsME1brjuYkJMqoMZwKnpW6qMaFsTIfYsVTSCHWQzY+dkjOr9MkgVrakIXP190RGI60nUWg7I2pGetmbif95ndQMroKMyyQ1KNli0SAVxMRk9jnpc4XMiIkllClubyVsRBVlxuZTsiF4yy+vkla95l3U3Lt6pXGdx1GEEziFc/DgEhpwC03wgQGHZ3iFN0c6L86787FoLTj5zDH8gfP5A8O4jfo=</latexit>x1

<latexit sha1_base64="RYUHZ2Vab0nBl6z/HX/YIhOCA34=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CbaCp7JbKHqSghePFdy20C4lm2bb0CS7JFmxLP0NXjwo4tUf5M1/Y9ruQVsfDDzem2FmXphwpo3rfjuFjc2t7Z3ibmlv/+DwqHx80tZxqgj1Scxj1Q2xppxJ6htmOO0mimIRctoJJ7dzv/NIlWaxfDDThAYCjySLGMHGSn71adCoDsoVt+YugNaJl5MK5GgNyl/9YUxSQaUhHGvd89zEBBlWhhFOZ6V+qmmCyQSPaM9SiQXVQbY4doYurDJEUaxsSYMW6u+JDAutpyK0nQKbsV715uJ/Xi810XWQMZmkhkqyXBSlHJkYzT9HQ6YoMXxqCSaK2VsRGWOFibH5lGwI3urL66Rdr3mNmntfrzRv8jiKcAbncAkeXEET7qAFPhBg8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDJzI3+</latexit>x5

<latexit sha1_base64="8l8f0ogZO8M+j6mGRhaNSzA46Ag=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CbaCp7Jb8OMkBS8eK7htoV1KNs22oUl2SbJiWfobvHhQxKs/yJv/xrTdg7Y+GHi8N8PMvDDhTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVBHqk5jHqhNiTTmT1DfMcNpJFMUi5LQdjm9nfvuRKs1i+WAmCQ0EHkoWMYKNlfzqU/+y2i9X3Jo7B1olXk4qkKPZL3/1BjFJBZWGcKx113MTE2RYGUY4nZZ6qaYJJmM8pF1LJRZUB9n82Ck6s8oARbGyJQ2aq78nMiy0nojQdgpsRnrZm4n/ed3URNdBxmSSGirJYlGUcmRiNPscDZiixPCJJZgoZm9FZIQVJsbmU7IheMsvr5JWveZd1Nz7eqVxk8dRhBM4hXPw4AoacAdN8IEAg2d4hTdHOi/Ou/OxaC04+cwx/IHz+QPLUY3/</latexit>x6

Figure 1: Left: the graph of f : M → R, where each
point (xi, f(xi)) is labeled as xi for simplicity. Right:
the 0-dimensional barcode of f based on its sublevel set
filtration. Image modified from [29, Fig. 2].

We give an illustrative example in Fig. 1 adapted from
[29]. Let xi denote the critical points and ci := f(xi) the
critical values of f , ordered as c0 < c1 < · · · < c6 (for
readability, we set ci = i). Let a0 < a1 < · · · < a7 be
a sequence of regular values of f , where ci ∈ (ai, ai+1).
As t varies from a0 to a7, the 0-dimensional persistent
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homology encodes the evolution of connected compo-
nents in Mt. As illustrated in Fig.1 (left), at t = a0,
Mt is empty. At t = c0, a single component appears in
Mt; this is referred to as a birth event. At t = c1, c2,
and c3, a 2nd, 3rd, and 4th component appears in Mt,
respectively. At t = c4, the 4th component containing
x3 merges with the 3rd component containing x2. This
is referred to as a death event: the younger component
containing x3 disappears (dies) while the elder compo-
nent containing x2 remains. Similar death events occur
at t = c5 and c6, respectively. Persistent homology pairs
the birth and death events as a set of intervals, called
barcode, shown in Fig. 1 (right), which contains one in-
finite bar [c0,∞) and three finite bars [c1, c6), [c2, c5),
and [c3, c4). Since f is assumed to be a Morse func-
tion, critical values of f are unique, and each finite bar
in the barcode corresponds to a unique persistence pair
between a local minimum and a local maximum of f ,
that is, [x1, x6), [x2, x5), and [x3, x4).
In practice, a smooth function f : R → R may be

made into a Morse function using simulation of sim-
plicity (SoS) [12]. It assumes arbitrarily small but not
vanishing perturbation to f so that critical points be-
come non-degenerate and have distinct function values
(i.e., breaking ties consistently).

3.2 Adaptive Sorting and Run Decomposition

Given a list of elements X, adaptive sorting takes ad-
vantage of existing runs in the list, which are contin-
uous segments already sorted [1]. However, there are
some discrepancies in the definitions of runs. Mannila
defined the runs as the ascending segments of X [22],
whereas Auger et al. [1] defined a run decomposition
as an iterative procedure that builds runs based on the
local monotonicity; see Fig. 2 for their differences. Fol-
lowing [1], we could either build a run decomposition
from left to right (R+), or from right to left (R−), and
include local extremum we encounter in the current run.
We can also consider assigning local extremum arbitrar-
ily to runs, which we avoid. We work with R+ in this
paper. We further assume that runs are organized in
alternating monotonic directions (for persistence, see
Sec. 3.1). For example, given X = [1, 2, 3, 2, 5, 4, 3, 1],
we have R+ = [[1, 2, 3], [2, 5], [4, 3, 1]] (from left to right)
and R− = [[1, 2], [3, 2], [5, 4, 3, 1]] (from right to left).
R+ is interpreted to be R+ = [[1, 2, 3], [], [2, 5], [4, 3, 1]],
whereas the 1st and the 3rd runs are monotonically in-
creasing and the 2nd empty run and the 4th run are
monotonically decreasing;. However, such an interpre-
tation has no impact on the implementation.
We use the number of comparisons to measure a sort-

ing algorithm’s complexity. Specifically, let n be the
number of elements in an input list X and r the num-
ber of runs. The complexity of a sorting algorithm is
the number of element comparisons the algorithm per-

X = [12, 10, 7, 5, 7, 10, 14, 25, 36, 3, 5, 11, 14, 15, 21, 22,

20, 15, 10, 8, 5, 1]

R = [[12, 10, 7, 5], [7, 10, 14, 25, 36],

[3, 5, 11, 14, 15, 21, 22], [20, 15, 10, 8, 5, 1]]

R′ = [[12], [10], [7], [5, 7, 10, 14, 25, 36],

[3, 5, 11, 14, 15, 21, 22], [20], [15], [10], [8], [5], [1]]

Figure 2: We repeat the example list X from [22] and
provide two different run decompositions R and R′ of
the list X. R takes monotonic continuous segments fol-
lowing [1]. R′ consists of increasing continuous segments
in line with [22].

forms as a function of n and r. We have the following
known result due to [1, 22].

Lemma 1 (Adaptive Sorting Lower Bound) Any
adaptive sorting algorithm on an input of size n with
r runs has a worst-case comparison complexity of
Ω(n+ n log r) [1, 22].

The discrepancy described in Fig. 2 can lead to an
asymptotic difference in the statement of the lower
bound in Lem. 1 as follows. A strictly decreasing se-
quence of length n would by [22] be decomposed into
r = n singleton increasing sequences, while [1] would
find the single decreasing sequence for r = 1 runs. For
this reason, we use the definition of [1].
An adaptive sorting algorithm may be described by

a two-step process. First, the algorithm detects all the
runs from an input sequence. Second, it merges the
runs in some order determined by a merge policy. There
are several adaptive sorting algorithms, such as Natural
MergeSort [7], TimSort [26], and PowerSort [24]; see
App. A for a detailed review on their merge policies.

3.3 Persistence Pairing Among the Extrema of Runs

The persistence pairing among local extrema of a Morse
function can be utilized to study relations among the
extremal elements of runs in a list, which is at the
core of PersiSort. Let X denote a list of n elements,
X = [x0, . . . , xn−1], where xi := X[i] (for 0 ≤ i ≤ n−1).
For simplicity, assume xi ∈ R and each xi is unique us-
ing the simulation of simplicity (SoS) [12]. X gives rise
to a piecewise-linear (PL) function f : M→ R, where lo-
cal extrema of f are precisely the extremal elements (ex-
trema) of runs. In other words, the graph of f linearly
interpolates among points (i, xi) (for 0 ≤ i ≤ n − 1).
Applying sublevel set persistent homology to f gives
rise to a persistence pairing among extrema of runs.

Given a list X, a local maximum xi at index i satisfies
xi−1 < xi and xi > xi+1. A local minimum xi satisfies
xi−1 > xi and xi < xi+1. Depending on their neigh-
bors, x0 and xn−1 are boundary extrema (maximum or
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Figure 3: Left: three finite persistence pairs among the
extrema: [e4, e3), [e2, e5), and [e6, e1). Middle: a per-
sistence pair [e4, e3) with its corresponding persistence
box in orange. Right: the nesting of three persistence
boxes involving their corresponding persistence pairs.

minimum). Computing persistence pairs of f then gives
rise to persistence pairs among the extrema of runs. As
shown in Fig. 3 (left), given a list X that contains six
extrema (i.e., e0, e2, e4, e6 are local minima, e1, e3, e5 are
local maxima), we obtain three finite persistence pairs:
[e4, e3), [e2, e5), [e6, e1); their corresponding bars in the
barcode are in orange, green, and purple, respectively.

A persistence pair naturally gives rise to a new con-
cept, a persistence box. It is a rectangular box around a
persistence pair that is stretched horizontally to include
the nearest projections of the local extrema of the pair
onto the neighboring runs. See Fig. 3 for an example.
Persistence boxes interact with one another, reflecting
the relations among runs in a list. A pair of persistence
boxes may be disjoint or nested, or they may intersect.
In particular, a pair of persistence boxes intersect if their
intersection is nonempty and not nested. We describe in
Lem. 2 that computing the persistence pairs of X takes
linear time.

Lemma 2 Given a list X of n elements with r runs,
the persistence pairs can be computed in n+O (r) com-
parisons. If the list of extrema of X is given, then the
persistence pairs can be obtained in O (r) comparisons.

Proof. Given an element xi ∈ X, determining whether
it is a local extremum relies on its two neighboring ele-
ments xi−1 and xi+1. Therefore, the local extrema can
be computed in a single scan using n− 1 comparisons.

Assume X contains r runs and E stores the indices of
r + 1 extrema in X. The algorithm to compute persis-
tence pairs proceeds iteratively. During each iteration,
it detects pairings among neighboring extrema (referred
to as neighboring persistence pairs) in E and removes
them from the list of extrema E. The algorithm ter-
minates when E is empty or contains one unpaired ex-
tremum.

For simplicity, let ej := E[j] denote an element in the
current list of extrema. It has two neighboring extrema
ej−1 and ej+1. Its pairing candidate is one of its neigh-
boring extrema that is closest in terms of its value. De-

termining the pairing candidate of ej requires a single
comparison between ej−1 and ej+1. Two neighboring
extrema are paired if they are each other’s pairing can-
didate. The pairing candidate of a boundary extremum
is always its neighboring extremum, thus requiring no
comparison (e.g., the pairing candidate of e0 is always
e1 and the pairing candidate of er is always er−1).

Every extremum ej is removed once from E during
some iteration. When ej is removed, it triggers its
neighbor (not paired with ej) to update its pairing can-
didate. This takes O (1) operation. Therefore, process-
ing r+1 extrema requires O (r) comparisons. The com-
parison complexity is therefore n+O (r) . □

Observation 1 Intuitively persistence pairings are
computed via a sweep line going from −∞ to ∞, but
sweep line algorithms require sorting the event points,
i.e. extremal values, implying that the comparison com-
plexity of a standard sweep line algorithm would be
Ω(r log r), excluding the n − 1 comparisons to find the
extremal values. As such, our approach from Lem. 2 is
a log r multiplicative factor improvement.

We give an illustrative example in Fig. 4. Here, at the
beginning of the 1st iteration shown in Fig. 4 (top left),
E contains 10 extrema of X, E = {e1, . . . , e10}. The
boundary minimum e0 has a pairing candidate e1, de-
noted as e0 → e1. The local maximum e1 has a pairing
candidate e2 since e2 is closer to e1 than e0, therefore
e1 → e2. Similarly, we have e2 → e1, e3 → e4, e4 → e5,
e5 → e4, e6 → e5, e7 → e8, e8 → e9, e9 → e8, and
e10 → e9. Since we have e1 ↔ e2, e4 ↔ e5, e8 ↔ e9
we obtain three neighboring persistence pairs [e2, e1),
[e4, e5), and [e8, e9), shown in orange, red, and purple,
respectively, see Fig. 4 (top left). Removing the ex-
trema involved in these pairs gives rise to an updated
list of extrema at the beginning of the 2nd iteration,
E = {e0, e3, e6, e7, e10}. The pairing candidates of their
neighboring extrema are also updated. See Fig. 4 (top
middle).

For instance, as shown in Fig. 4 (top middle), when
extrema from the pair [e4, e5) are removed from E, we
update the pairing candidates of their neighbors e3 and
e6 to obtain e3 → e6 and e6 → e3. During the 2nd
iteration, we obtain a new neighboring persistence pair
[e6, e3) since e3 ↔ e6. During the 3rd and final iteration,
we obtain a final neighboring pair [e10, e7), shown in teal
in Fig. 4 (top right) . Each persistence pair is enclosed
by a colored persistence box, shown in Fig. 4 (bottom).

However, corner cases involving the boundary ex-
trema require some care. Based on the algorithm de-
scribed in Lem. 2, a boundary extremum may be in-
volved in a pair that is not a proper persistence pair.
As illustrated in Fig. 5, e9 is a boundary maximum,
but the pair [e8, e9) is not a proper persistence pair: e8
gives rise to a new component, which is not killed at
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<latexit sha1_base64="/WbgK5gYUuDrXTnosv5ZZDC3bwc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHSSKYY+S0SiOiHVKLhE33AjsJMqpHEosB2O7+Z++wmV5ol8NJMUg5gOJY84o8ZKfhX7XrVfrrg1dwGyTrycVCBHs1/+6g0SlsUoDRNU667npiaYUmU4Ezgr9TKNKWVjOsSupZLGqIPp4tgZubDKgESJsiUNWai/J6Y01noSh7YzpmakV725+J/XzUx0E0y5TDODki0XRZkgJiHzz8mAK2RGTCyhTHF7K2EjqigzNp+SDcFbfXmdtOo176rmPtQrjds8jiKcwTlcggfX0IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuEPnM8fprON5w==</latexit>e1

<latexit sha1_base64="gboFiFNCxg16XjrQqI9MB5C63G8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QQn+DFw+KePUHefPfuP04aOuDgcd7M8zMC1PBtXHdb6ewsbm1vVPcLe3tHxwelY9PWjrJFEOfJSJRnZBqFFyib7gR2EkV0jgU2A7HdzO//YRK80Q+mkmKQUyHkkecUWMlv4r9erVfrrg1dw6yTrwlqcASzX75qzdIWBajNExQrbuem5ogp8pwJnBa6mUaU8rGdIhdSyWNUQf5/NgpubDKgESJsiUNmau/J3Iaaz2JQ9sZUzPSq95M/M/rZia6CXIu08ygZItFUSaIScjsczLgCpkRE0soU9zeStiIKsqMzadkQ/BWX14nrXrNu6q5D/VK43YZRxHO4BwuwYNraMA9NMEHBhye4RXeHOm8OO/Ox6K14CxnTuEPnM8fqDiN6A==</latexit>e2

<latexit sha1_base64="J04CsByqOT7m5FmUBxg8OcXCb/8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5JURE9S8OKxgqmFNpTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjrJFEOfJSJR7ZBqFFyib7gR2E4V0jgU+BiObmf+4xMqzRP5YMYpBjEdSB5xRo2V/Cr2Lqq9csWtuXOQVeLlpAI5mr3yV7efsCxGaZigWnc8NzXBhCrDmcBpqZtpTCkb0QF2LJU0Rh1M5sdOyZlV+iRKlC1pyFz9PTGhsdbjOLSdMTVDvezNxP+8Tmai62DCZZoZlGyxKMoEMQmZfU76XCEzYmwJZYrbWwkbUkWZsfmUbAje8surpFWveZc1975eadzkcRThBE7hHDy4ggbcQRN8YMDhGV7hzZHOi/PufCxaC04+cwx/4Hz+AKm9jek=</latexit>e3

<latexit sha1_base64="VJA07R4zF/eWVrWXyNhSmkiyt9E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURU9S8OKxgqmFNpTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjrJFEOfJSJR7ZBqFFyib7gR2E4V0jgU+BiObmf+4xMqzRP5YMYpBjEdSB5xRo2V/Cr2Lqq9csWtuXOQVeLlpAI5mr3yV7efsCxGaZigWnc8NzXBhCrDmcBpqZtpTCkb0QF2LJU0Rh1M5sdOyZlV+iRKlC1pyFz9PTGhsdbjOLSdMTVDvezNxP+8Tmai62DCZZoZlGyxKMoEMQmZfU76XCEzYmwJZYrbWwkbUkWZsfmUbAje8surpFWveZc1975eadzkcRThBE7hHDy4ggbcQRN8YMDhGV7hzZHOi/PufCxaC04+cwx/4Hz+AKtCjeo=</latexit>e4

<latexit sha1_base64="h3X5y+8uKmmXgks6ENeAILExhw4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUip6k4MVjBVMLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHWSKYY+S0SiOiHVKLhE33AjsJMqpHEo8DEc3879xydUmifywUxSDGI6lDzijBor+VXsN6r9csWtuQuQdeLlpAI5Wv3yV2+QsCxGaZigWnc9NzXBlCrDmcBZqZdpTCkb0yF2LZU0Rh1MF8fOyIVVBiRKlC1pyEL9PTGlsdaTOLSdMTUjverNxf+8bmai62DKZZoZlGy5KMoEMQmZf04GXCEzYmIJZYrbWwkbUUWZsfmUbAje6svrpF2veY2ae1+vNG/yOIpwBudwCR5cQRPuoAU+MODwDK/w5kjnxXl3PpatBSefOYU/cD5/AKzHjes=</latexit>e5

<latexit sha1_base64="D+CMl6vxemr8/CeDXPJ8u2MsCE0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IU/DhJwYvHCqYW2lA220m7dLMJuxuhlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0wF18Z1v53C2vrG5lZxu7Szu7d/UD48aukkUwx9lohEtUOqUXCJvuFGYDtVSONQ4GM4up35j0+oNE/kgxmnGMR0IHnEGTVW8qvYu6z2yhW35s5BVomXkwrkaPbKX91+wrIYpWGCat3x3NQEE6oMZwKnpW6mMaVsRAfYsVTSGHUwmR87JWdW6ZMoUbakIXP198SExlqP49B2xtQM9bI3E//zOpmJroMJl2lmULLFoigTxCRk9jnpc4XMiLEllClubyVsSBVlxuZTsiF4yy+vkla95l3U3Pt6pXGTx1GEEziFc/DgChpwB03wgQGHZ3iFN0c6L86787FoLTj5zDH8gfP5A65Mjew=</latexit>e6

<latexit sha1_base64="94TNiPiEtSQsSEpXgAwsz5n9/Y0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHSSKYY+S0SiOiHVKLhE33AjsJMqpHEosB2O7+Z++wmV5ol8NJMUg5gOJY84o8ZKfhX7brVfrrg1dwGyTrycVCBHs1/+6g0SlsUoDRNU667npiaYUmU4Ezgr9TKNKWVjOsSupZLGqIPp4tgZubDKgESJsiUNWai/J6Y01noSh7YzpmakV725+J/XzUx0E0y5TDODki0XRZkgJiHzz8mAK2RGTCyhTHF7K2EjqigzNp+SDcFbfXmdtOo176rmPtQrjds8jiKcwTlcggfX0IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuEPnM8fpS6N5g==</latexit>e0

<latexit sha1_base64="wT9ijdiCGbUGpU6XHVgfQ/5jxFE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUpJ6k4MVjBVMLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHWSKYY+S0SiOiHVKLhE33AjsJMqpHEo8DEc3879xydUmifywUxSDGI6lDzijBor+VXsN6r9csWtuQuQdeLlpAI5Wv3yV2+QsCxGaZigWnc9NzXBlCrDmcBZqZdpTCkb0yF2LZU0Rh1MF8fOyIVVBiRKlC1pyEL9PTGlsdaTOLSdMTUjverNxf+8bmai62DKZZoZlGy5KMoEMQmZf04GXCEzYmIJZYrbWwkbUUWZsfmUbAje6svrpF2veVc1975ead7kcRThDM7hEjxoQBPuoAU+MODwDK/w5kjnxXl3PpatBSefOYU/cD5/AK/Rje0=</latexit>e7

<latexit sha1_base64="TYH4Leg7m+IIvyr6q/3UeZ8GiWc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUxJ6k4MVjBVMLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHWSKYY+S0SiOiHVKLhE33AjsJMqpHEo8DEc3879xydUmifywUxSDGI6lDzijBor+VXsN6r9csWtuQuQdeLlpAI5Wv3yV2+QsCxGaZigWnc9NzXBlCrDmcBZqZdpTCkb0yF2LZU0Rh1MF8fOyIVVBiRKlC1pyEL9PTGlsdaTOLSdMTUjverNxf+8bmaiRjDlMs0MSrZcFGWCmITMPycDrpAZMbGEMsXtrYSNqKLM2HxKNgRv9eV10q7XvKuae1+vNG/yOIpwBudwCR5cQxPuoAU+MODwDK/w5kjnxXl3PpatBSefOYU/cD5/ALFWje4=</latexit>e8

<latexit sha1_base64="OIrV1TywNxJujxUTvJ70LuADGEc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURL1IwYvHCqYW2lA220m7dLMJuxuhlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0wF18Z1v53C2vrG5lZxu7Szu7d/UD48aukkUwx9lohEtUOqUXCJvuFGYDtVSONQ4GM4up35j0+oNE/kgxmnGMR0IHnEGTVW8qvYu672yhW35s5BVomXkwrkaPbKX91+wrIYpWGCat3x3NQEE6oMZwKnpW6mMaVsRAfYsVTSGHUwmR87JWdW6ZMoUbakIXP198SExlqP49B2xtQM9bI3E//zOpmJroIJl2lmULLFoigTxCRk9jnpc4XMiLEllClubyVsSBVlxuZTsiF4yy+vkla95l3U3Pt6pXGTx1GEEziFc/DgEhpwB03wgQGHZ3iFN0c6L86787FoLTj5zDH8gfP5A7Lbje8=</latexit>e9

<latexit sha1_base64="LWAg3aaa0/KqVN+zwARCKf8OD8Y=">AAAB73icbVBNS8NAEJ34WetX1aOXxVbwVJKC6EkKXjxWsB/QhrLZTtqlm03c3Qgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GtzO//YRK81g+mEmCfkSHkoecUWOlTgX7medOK/1S2a26c5BV4uWkDDka/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5vVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjtZ1wmqUHJFovCVBATk9nzZMAVMiMmllCmuL2VsBFVlBkbUdGG4C2/vEpatap3WXXva+X6TR5HAU7hDC7Agyuowx00oAkMBDzDK7w5j86L8+58LFrXnHzmBP7A+fwB3B6PLQ==</latexit>e10

<latexit sha1_base64="J04CsByqOT7m5FmUBxg8OcXCb/8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5JURE9S8OKxgqmFNpTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjrJFEOfJSJR7ZBqFFyib7gR2E4V0jgU+BiObmf+4xMqzRP5YMYpBjEdSB5xRo2V/Cr2Lqq9csWtuXOQVeLlpAI5mr3yV7efsCxGaZigWnc8NzXBhCrDmcBpqZtpTCkb0QF2LJU0Rh1M5sdOyZlV+iRKlC1pyFz9PTGhsdbjOLSdMTVDvezNxP+8Tmai62DCZZoZlGyxKMoEMQmZfU76XCEzYmwJZYrbWwkbUkWZsfmUbAje8surpFWveZc1975eadzkcRThBE7hHDy4ggbcQRN8YMDhGV7hzZHOi/PufCxaC04+cwx/4Hz+AKm9jek=</latexit>e3

<latexit sha1_base64="D+CMl6vxemr8/CeDXPJ8u2MsCE0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IU/DhJwYvHCqYW2lA220m7dLMJuxuhlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0wF18Z1v53C2vrG5lZxu7Szu7d/UD48aukkUwx9lohEtUOqUXCJvuFGYDtVSONQ4GM4up35j0+oNE/kgxmnGMR0IHnEGTVW8qvYu6z2yhW35s5BVomXkwrkaPbKX91+wrIYpWGCat3x3NQEE6oMZwKnpW6mMaVsRAfYsVTSGHUwmR87JWdW6ZMoUbakIXP198SExlqP49B2xtQM9bI3E//zOpmJroMJl2lmULLFoigTxCRk9jnpc4XMiLEllClubyVsSBVlxuZTsiF4yy+vkla95l3U3Pt6pXGTx1GEEziFc/DgChpwB03wgQGHZ3iFN0c6L86787FoLTj5zDH8gfP5A65Mjew=</latexit>e6

<latexit sha1_base64="94TNiPiEtSQsSEpXgAwsz5n9/Y0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHSSKYY+S0SiOiHVKLhE33AjsJMqpHEosB2O7+Z++wmV5ol8NJMUg5gOJY84o8ZKfhX7brVfrrg1dwGyTrycVCBHs1/+6g0SlsUoDRNU667npiaYUmU4Ezgr9TKNKWVjOsSupZLGqIPp4tgZubDKgESJsiUNWai/J6Y01noSh7YzpmakV725+J/XzUx0E0y5TDODki0XRZkgJiHzz8mAK2RGTCyhTHF7K2EjqigzNp+SDcFbfXmdtOo176rmPtQrjds8jiKcwTlcggfX0IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuEPnM8fpS6N5g==</latexit>e0

<latexit sha1_base64="wT9ijdiCGbUGpU6XHVgfQ/5jxFE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUpJ6k4MVjBVMLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHWSKYY+S0SiOiHVKLhE33AjsJMqpHEo8DEc3879xydUmifywUxSDGI6lDzijBor+VXsN6r9csWtuQuQdeLlpAI5Wv3yV2+QsCxGaZigWnc9NzXBlCrDmcBZqZdpTCkb0yF2LZU0Rh1MF8fOyIVVBiRKlC1pyEL9PTGlsdaTOLSdMTUjverNxf+8bmai62DKZZoZlGy5KMoEMQmZf04GXCEzYmIJZYrbWwkbUUWZsfmUbAje6svrpF2veVc1975ead7kcRThDM7hEjxoQBPuoAU+MODwDK/w5kjnxXl3PpatBSefOYU/cD5/AK/Rje0=</latexit>e7

<latexit sha1_base64="LWAg3aaa0/KqVN+zwARCKf8OD8Y=">AAAB73icbVBNS8NAEJ34WetX1aOXxVbwVJKC6EkKXjxWsB/QhrLZTtqlm03c3Qgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GtzO//YRK81g+mEmCfkSHkoecUWOlTgX7medOK/1S2a26c5BV4uWkDDka/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5vVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjtZ1wmqUHJFovCVBATk9nzZMAVMiMmllCmuL2VsBFVlBkbUdGG4C2/vEpatap3WXXva+X6TR5HAU7hDC7Agyuowx00oAkMBDzDK7w5j86L8+58LFrXnHzmBP7A+fwB3B6PLQ==</latexit>e10
<latexit sha1_base64="94TNiPiEtSQsSEpXgAwsz5n9/Y0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHSSKYY+S0SiOiHVKLhE33AjsJMqpHEosB2O7+Z++wmV5ol8NJMUg5gOJY84o8ZKfhX7brVfrrg1dwGyTrycVCBHs1/+6g0SlsUoDRNU667npiaYUmU4Ezgr9TKNKWVjOsSupZLGqIPp4tgZubDKgESJsiUNWai/J6Y01noSh7YzpmakV725+J/XzUx0E0y5TDODki0XRZkgJiHzz8mAK2RGTCyhTHF7K2EjqigzNp+SDcFbfXmdtOo176rmPtQrjds8jiKcwTlcggfX0IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuEPnM8fpS6N5g==</latexit>e0

<latexit sha1_base64="wT9ijdiCGbUGpU6XHVgfQ/5jxFE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUpJ6k4MVjBVMLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHWSKYY+S0SiOiHVKLhE33AjsJMqpHEo8DEc3879xydUmifywUxSDGI6lDzijBor+VXsN6r9csWtuQuQdeLlpAI5Wv3yV2+QsCxGaZigWnc9NzXBlCrDmcBZqZdpTCkb0yF2LZU0Rh1MF8fOyIVVBiRKlC1pyEL9PTGlsdaTOLSdMTUjverNxf+8bmai62DKZZoZlGy5KMoEMQmZf04GXCEzYmIJZYrbWwkbUUWZsfmUbAje6svrpF2veVc1975ead7kcRThDM7hEjxoQBPuoAU+MODwDK/w5kjnxXl3PpatBSefOYU/cD5/AK/Rje0=</latexit>e7

<latexit sha1_base64="LWAg3aaa0/KqVN+zwARCKf8OD8Y=">AAAB73icbVBNS8NAEJ34WetX1aOXxVbwVJKC6EkKXjxWsB/QhrLZTtqlm03c3Qgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GtzO//YRK81g+mEmCfkSHkoecUWOlTgX7medOK/1S2a26c5BV4uWkDDka/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5vVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjtZ1wmqUHJFovCVBATk9nzZMAVMiMmllCmuL2VsBFVlBkbUdGG4C2/vEpatap3WXXva+X6TR5HAU7hDC7Agyuowx00oAkMBDzDK7w5j86L8+58LFrXnHzmBP7A+fwB3B6PLQ==</latexit>e10

<latexit sha1_base64="/WbgK5gYUuDrXTnosv5ZZDC3bwc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHSSKYY+S0SiOiHVKLhE33AjsJMqpHEosB2O7+Z++wmV5ol8NJMUg5gOJY84o8ZKfhX7XrVfrrg1dwGyTrycVCBHs1/+6g0SlsUoDRNU667npiaYUmU4Ezgr9TKNKWVjOsSupZLGqIPp4tgZubDKgESJsiUNWai/J6Y01noSh7YzpmakV725+J/XzUx0E0y5TDODki0XRZkgJiHzz8mAK2RGTCyhTHF7K2EjqigzNp+SDcFbfXmdtOo176rmPtQrjds8jiKcwTlcggfX0IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuEPnM8fprON5w==</latexit>e1

<latexit sha1_base64="gboFiFNCxg16XjrQqI9MB5C63G8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QQn+DFw+KePUHefPfuP04aOuDgcd7M8zMC1PBtXHdb6ewsbm1vVPcLe3tHxwelY9PWjrJFEOfJSJRnZBqFFyib7gR2EkV0jgU2A7HdzO//YRK80Q+mkmKQUyHkkecUWMlv4r9erVfrrg1dw6yTrwlqcASzX75qzdIWBajNExQrbuem5ogp8pwJnBa6mUaU8rGdIhdSyWNUQf5/NgpubDKgESJsiUNmau/J3Iaaz2JQ9sZUzPSq95M/M/rZia6CXIu08ygZItFUSaIScjsczLgCpkRE0soU9zeStiIKsqMzadkQ/BWX14nrXrNu6q5D/VK43YZRxHO4BwuwYNraMA9NMEHBhye4RXeHOm8OO/Ox6K14CxnTuEPnM8fqDiN6A==</latexit>e2

<latexit sha1_base64="J04CsByqOT7m5FmUBxg8OcXCb/8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5JURE9S8OKxgqmFNpTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjrJFEOfJSJR7ZBqFFyib7gR2E4V0jgU+BiObmf+4xMqzRP5YMYpBjEdSB5xRo2V/Cr2Lqq9csWtuXOQVeLlpAI5mr3yV7efsCxGaZigWnc8NzXBhCrDmcBpqZtpTCkb0QF2LJU0Rh1M5sdOyZlV+iRKlC1pyFz9PTGhsdbjOLSdMTVDvezNxP+8Tmai62DCZZoZlGyxKMoEMQmZfU76XCEzYmwJZYrbWwkbUkWZsfmUbAje8surpFWveZc1975eadzkcRThBE7hHDy4ggbcQRN8YMDhGV7hzZHOi/PufCxaC04+cwx/4Hz+AKm9jek=</latexit>e3
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Figure 4: An illustration of computing persistence pairs. Top: a pink arrow from each ei points to its pairing
candidate during each iteration. Bottom: Persistence boxes surrounding persistence pairs were detected during each
iteration. From left to right: the 1st iteration returns pairs shown in orange, red, and purple, respectively; the 2nd
iteration returns a pair in green; and the 3rd and final iteration returns a pair in teal.
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Figure 5: Adding a dummy run (dotted line) for a
boundary extremum.

e9. Such a pair can be made into a proper persistence
pair conceptually by adding a dummy run adjacent to
the boundary extremum that extends beyond the global
minimum. A boundary minimum can be handled sim-
ilarly by adding an adjacent dummy run that extends
beyond the global maximum.

In the case of duplicates, SoS is not actually imple-
mented in PersiSort due to its non-negligible overhead,
instead we employ simple rules to handle the pairings in
a way that remains consistent with persistence. Specif-
ically, in the case of equally valued pairing candidates,
the maximum would first consider the candidate with
the smaller index, and the minimum would first con-
sider the candidate with the larger index.

3.4 AdaptMerge and FingerMerge

The key idea behind PersiSort is performing a pair of
three-way merges—referred to as FingerMerge—around
persistence pairs. Carlsson, Levcopoulos, and Peters-
son [7] introduced a merging procedure that uses ex-
ponential and binary search [3] to achieve the optimal
number of comparisons when merging two sorted lists.

This is referred to as AdaptMerge in [7], it is also known
as galloping, which is employed by TimSort [1, 26].
FingerMerge employs AdaptMerge twice to perform a
three-way merging of three sorted lists. We review the
idea behind AdaptMerge for completeness. We slightly
modify in Fig. 6 an example from [7, Fig. 1]. The in-
put to a merging algorithm consists of two sorted lists, A
and B. The output is a sorted list C. Each entry in C is
a consecutive subsequence of A or B, e.g., C[0] = A[0, 4]
and C[1] = B[0, 0]. We obtain the merged sequence by
reporting the elements in these subsequences in the or-
der in which they appear in B.

A =[1, 2, 3, 4, 5, 7, 8, 11]

B =[6, 9, 10, 12, 13, 14]

C =[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

=[A[0, 4], B[0, 0], A[5, 6], B[1, 2], A[7, 7], B[3, 5]]

Figure 6: An example of the input and output of a merg-
ing algorithm adapted from [7, Fig. 1]. We write A[i1, i2]
to represent the elements of A at indices i1 through i2.

We now describe AdaptMerge applied to two sorted
list A and B; w.l.o.g., we assume that a0 := A[0] <
b0 := B[0]. Consider the example in Fig. 6. To compute
C, we find the positions in which A and B have to be
split, where portions of the other sequence should be
inserted. In other words, we compute the elements in A
and B that would receive new successors in the resulting
sequence. For example, number 5 from A receives a new
successor 6 from B in the resulting sequence C; number
10 from B receives a new successor 11 from A in C,
and so on. The intuition behind AdaptMerge is that
if there are large consecutive portions in A and B in
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which all elements would keep their original successor
after merging [7], then these elements do not need to be
examined entirely during merging. AdapteMerge “uses
exponential and binary search to pass such portions as
fast as possible in our search for the next element that
would receive a new successor” [7].
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Figure 7: An illustration of AdaptMerge algorithm. The
deep red curve illustrates the exponential search (by
indices), whereas the teal curve illustrates the binary
search. Elements from both sorted lists are laid out in
increasing values, resembling a run.

Following [7], let {ai0 , ai1 , . . . , aip} be a set of el-
ements in A that will receive new successors. For
example, this set equals {5, 8, 11} in A. Similarly,
{bj0 , bj1 , . . . , bjq} is a set of elements in B that will re-
ceive new successors; this would be {6, 10} in B. If A
and B are two sorted sequences of length n and m, re-
spectively, we define Rank(bj , A) = max{ℓ | 0 ≤ ℓ ≤
n, bj > aℓ}, for 0 ≤ j ≤ m − 1. This means the maxi-
mum element in A is smaller than (thus closest to) bj .
Rank(bj , A) tells us where the split of A and the actual
merge from B has to start.

As illustrated in Fig. 7, for the example from Fig. 6,
AdaptMerge starts by computing i0 = Rank(b0, A) = 4
by an exponential and binary search forward in A based
on element indices. Deep red curves illustrate the expo-
nential search, whereas teal curves illustrate the binary
search. The red dotted arrow illustrates the comput-
ing process i0, and A[i0] is highlighted as a red point.
Then C[0] = A[0, i0] = A[0, 4]. Second, we compute
j0 = Rank(ai0+1, B) = 0 by an exponential and bi-
nary search forward in B. And we set C[1] = B[0, j0] =
B[0, 0] (see the green dotted arrow and the green point).
Third, we compute i1 = Rank(bj0+1, A) = 6 by an ex-
ponential and binary search forward in X starting from
A[i0 + 1], and set C[2] = A[i0 + 1, i1] = A[5, 6] (see the
orange dotted arrow and the orange point). We continue
to perform exponential and binary searches, alternating
between A and B. We start the search from where the
last element is found to receive a new successor. When
one of the sequences is finished, the next empty entry

in C is set to the remaining portion of the nonempty se-
quence (e.g., B[3, 5] is copied over). For completeness,
the pseudocode of AdaptMerge is included in App. B.
The following complexity of AdaptMerge is obtained
by studying the worst case lower bound on the num-
ber of comparisons performed by a merging algorithm
in Lem. 3 and Thm. 4 of [7].

Lemma 3 ([7]) Applying AdaptMerge to two sorted
lists of lengths n1 ≤ n2 has a worst-case comparison

complexity O
(
n1 log

(
n1+n2

n1

))
.

Observation 2 In particular, AdaptMerge of two
sorted lists where all elements of one list have smaller
values than all elements of the other performs O (log n1)
comparisons (assuming n1 ≤ n2).

We define three-way FingerMerge(A,B,C) to be Adapt-
Merge(AdaptMerge(A,B),C); see App. B for pseu-
docode for both merge algorithms.

Recall that we study the complexity of a sorting algo-
rithm using the comparison cost, also used by the Natu-
ral MergeSort and its subroutine AdaptMerge [7]. Pow-
erSort [24] and multiway PowerSort [14], on the other
hand, are optimized with regards to the merge cost. To
merge two runs of lengths n1 and n2, AdaptMerge has
a merge cost of O (n1 + n2) and a comparison cost of

O
(
n1 log

(
n1+n2

n1

))
for n1 ≤ n2. These two costs are

equivalent in the worst case. We explore the Merge Tree
that encodes the merging order in Sec. 4.

4 New Result: Optimal Bound for Adaptive Sorting

Based on our discussion of AdaptMerge in Sec. 3.4, we
prove, for the first time, that any adaptive sorting al-
gorithm that uses AdaptMerge (i.e., two-way merges of
runs) as a subroutine is worst-case optimal. In partic-
ular, given a list of n elements containing r (precom-
puted) runs, such an algorithm has a worst-case com-
parison complexity of O (n log r).

Sorted

R1

⊕
R2

R1

12 10 7 5

R2

7 10 14 25

36

R3

⊕
R4

R3

3 5 11 14 15 21

22

R4

20 15 10 8

5 1

Figure 8: An exemplar Merge Tree of the list in Fig. 2.
AdaptMerge(R1, R2) is represented by R1

⊕
R2.

To analyze the comparison complexity of a merge-
based sorting algorithm, we can view the intermediate
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steps as a tree, referred to as a Merge Tree of a sorting
algorithm2. In a Merge Tree, leaves represent (sublists
of) single elements, internal nodes represent intermedi-
ate sorted sublists, and the root represents the entire
sorted list. Given an input list X of n elements, the
classic MergeSort first divides X into n (sorted) sub-
lists of one element and then repeatedly merges sub-
lists to produce sorted ones until only one sublist re-
mains. Therefore, the classic MergeSort produces an
almost perfectly balanced Merge Tree. On the other
hand, any iterative merge-based sorting algorithm that
inserts elements into a sorted list one at a time can be
represented by a maximally unbalanced Merge Tree.
We extend the notion of a Merge Tree to adaptive

sorting by introducing the Adaptive Merge Tree, which
is a Merge Tree whose leaves represent nonempty sorted
lists (runs). In Fig. 8, we represent an Adaptive Merge
Tree (in red) as a subtree of a Merge Tree (in red and
black) for the example in Fig. 2. Not every Merge Tree
contains an Adaptive Merge Tree as a subtree. Here,
R1, R2, R3 andR4 (in red) are the four runs from the run
decomposition R in Fig. 2. Each subtree rooted at Ri
(in black) is a Merge Tree that shows how (an instance
of) a MergeSort would have constructed Ri from the
input. Given an input list of n element with r runs, the
run decomposition requires n − 1 comparisons. Using
an Adaptive Merge Tree, we produce an upper bound
in Thm. 4. Assume that we have an input list of n
elements containing r precomputed runs, where an ith
run contains ℓi elements.

Theorem 4 Any adaptive sorting algorithm
that uses AdaptMerge as a subroutine performs
O (nH(ℓ1, . . . , ℓr)) = O (n log r) comparisons to
merge precomputed runs based on its predeter-
mined merge policy. In the case when runs are
not precomputed, the comparison complexity is
n+O (nH(ℓ1, . . . , ℓr)) = n+O (n log r).

Proof. We assume X to be a list of n elements contain-
ing r runs, and each run contains ℓi ≥ 2 elements. We
assume the runs have been precomputed and the merge
policy has been predetermined, therefore we start with
an established Adaptive Merge Tree T . Using Adapt-
Merge as a subroutine, we report on the number of com-
parisons needed to merge the sublists from the leaves to
the root of T .

Let f : T → Z be a function that assigns to each
node v ∈ T the number of comparisons performed to
reach its corresponding sublist from its children. For
any leaf v, set f(v) = 0. The comparison complexity
of the algorithm is the number of comparisons needed
to arrive at the root o of T , that is, f(o). We prove
that f(o) ≤ cn(H(ℓ1, . . . , ℓr)) by induction on the size

2This is an entirely different concept from the merge tree of a
scalar field commonly used in TDA; see [29] for a survey.

of the tree. Here, the constant c > 0 comes from the O
notation of Lem. 3.

If we have a single run ℓ1, H(ℓ1) = 0, which is trivial.
We thus start with an base case (BS) with two runs of
size ℓ1 and ℓ2, where ℓ1 + ℓ2 = n. This corresponds to
an Adaptive Merge Tree T that contains a root o with
two leaves that correspond to runs of lengths ℓ1 and
ℓ2 respectively (w.l.o.g., assuming ℓ1 ≤ ℓ2). A single
AdaptMerge is applied to the two runs and according
to Lem. 3, the comparison cost is

f(o) ≤ cℓ1 log
(
ℓ1 + ℓ2
ℓ1

)

< cℓ1 log

(
ℓ1 + ℓ2
ℓ1

)
+ cℓ2 log

(
ℓ1 + ℓ2
ℓ2

)

= −cℓ1 log
(

ℓ1
ℓ1 + ℓ2

)
− cℓ2 log

(
ℓ2

ℓ1 + ℓ2

)

= cn (H(ℓ1, ℓ2))

For the induction hypothesis (IH), we assume the
bound holds for trees with r − 1 runs or less.

For the induction step, we need to show the bound
holds for trees with r runs. Let T be a given Adaptive
Merge Tree and o be its root. Let oL be the root of the
left subtree over nL elements whose leaves (runs) are
indexed by an index set IL. Similarly, let oR be the root
of the right subtree over nR list elements whose leaves
(runs) are indexed by an index set IR. By construction,
nL+nR = n, |IL|+ |IR| = r,

∑
i∈IL

ℓi = nL and
∑
j∈IR

ℓj =

nR. Assume w.l.o.g. that nL ≤ nR.
The comparison cost needed to reach the root o is

obtained from the comparison cost required to reach
its children oL and oR plus the cost of merging their
corresponding sublists, according to Lem. 3. Since
|IL| ≤ r − 1 and |IR| ≤ r − 1, the IH holds for both
the left and right subtree.

To complete the induction we first look at the entropy
function H(h1, . . . , hk), denoted as H({hi}i∈I) for sim-
plicity (for all i in the index set I). For hi > 0 and

m =
∑k
i=1 hi, we have,

mH(h1, . . . , hk) =

k∑

i=1

hi log

(
m

hi

)

= log(m)

k∑

i=1

hi −
k∑

i=1

hi log(hi)

=m log(m)−
k∑

i=1

hi log(hi) (1)

Returning to our induction and apply Eqn. 1 to the left
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and right subtrees,

f(o) ≤ f(oL) + f(oR) + cnL log

(
nL + nR
nL

)

≤ cnLH({ℓi}i∈IL) + cnRH({ℓj}j∈IR)

+ cnL log

(
nL + nR
nL

)

= cnL log(nL)− c
∑

i∈IL
ℓi log(ℓi)

+ cnR log(nR)− c
∑

j∈IR
ℓj log(ℓj)

+ cnL log

(
n

nL

)

= cnR log(nR) + cnL log(n)− c
r∑

i=1

ℓi log(ℓi)

< cnR log(n) + cnL log(n)− c
r∑

i=1

ℓi log(ℓi)

= cn log(n)− c
r∑

i=1

ℓi log(ℓi)

= cnH(ℓ1, . . . , ℓr),

concluding the induction.

Finally, the right-hand side of the upper bound
O (n log(r)) follows from the fact that H(ℓ1, . . . , ℓr)
is maximized when ℓi = n/r, in which case
nH(n/r, . . . , n/r) =

∑r
i=1 n/r log r = n log r. □

5 New Result: Persistence Sort

We now introduce the novel PersiSort algorithm. The
key idea is performing a pair of three-way merges—
referred to as FingerMerge—around persistence pairs,
that is, merging the three consecutive runs that inter-
sect a persistence box (or two successive runs involv-
ing boundary extrema). On a high level, the algorithm
identifies persistence pairs with multiple iterations (de-
scribed in the proof of Lem. 2). It applies FingerMerge
to runs that intersect each persistence pair.

Given an input list X with n elements in r runs,
we first identify the set of extrema E from X. We
then compute the initial set of (neighboring) persistence
pairs. We repeat the following procedure until the list
is sorted, i.e., when there are at most two extrema in E.

1. For each persistence pair:
– Perform FingerMerge on the two or three runs

that intersect the pair.
∗ If the pair contains boundary extrema,
perform a two-way merge;

∗ Otherwise, perform a three-way merge;
– Remove the pair of extrema from the set of

extrema E.

2. Recompute the persistence pairs by updating the
pairing candidates (i.e., neighboring extrema that
are closest in terms of values).

Using Fig. 9 as an illustrative example (cf., Fig. 4),
we first identify the set of extrema E = {e0, . . . , e10}
and denote the ten runs as R1, . . . , R10. We compute
the initial set of neighboring persistence pairs, whose
persistence boxes are visualized as colored boxes in (a).
During the 1st iteration, we perform a three-way merge
(FingerMerge) of runs intersecting the box for each box.
For example, we would merge R1, R2, R3 that intersect
the orange box defined by the pair [e2, e1). We would
then merge R4, R5, R6 that intersect the red box defined
by the pair [e4, e5), followed by merging R8, R9, R10 that
intersect the purple box defined by the pair [e8, e9). We
would remove the corresponding extrema from E, re-
sulting in E = {e0, e3, e6, e7, e10}. We then recompute
the persistence pairs among E, producing a single pair
[e6, e3) whose green persistence box is visualized in (b).
During the 2nd iteration, we merge the three runs in-
tersecting the green box (b), remove the corresponding
extrema, and update E = {e0, e7, e10}. During the final
iteration, we merge the remaining two runs that inter-
sect the teal box (c), producing a sorted list visualized
in (d).

To analyze the comparison complexity of PersiSort,
we introduce the notion of dynamic box depth of an ele-
ment x ∈ X, which is the number of persistence boxes it
belongs to across iterations, denoted as d(x). As shown
in Fig. 9 (cf., Fig. 4), an element xi ∈ X belongs to
the orange box during the 1st iteration, and the teal
box in the 3rd iteration, therefore it has a box depth
d(xi) = 2. xj ∈ X belongs to the orange box in the
1st iteration, the green box in the 2nd iteration, and
the teal box in the 3rd iteration, therefore, it has a box
depths d(xj) = 3. xk ∈ X belongs to the orange box in
the 1st iteration, then it dynamically “moves” into the
green box during the 2nd iteration (to somewhere close
to xj , not visualized here), and stays within the teal box
during the 3rd iteration, therefore d(xk) = 3. There-
fore, the dynamic box depth d(x) captures the number
of FingerMerge operations an element x will participate
in. We then need the following Lem. 5 and Lem. 6.

Lemma 5 FingerMerge implicitly computes the persis-
tence boxes.

Proof. We use Fig. 10 to illustrate the relation between
FingerMerge and persistence boxes. First, w.l.o.g., as-
sume [ep+1, ep) is a persistence pair that does not in-
volve a boundary extremum. The pair intersects three
runs Rp, Rp+1, and Rp+2 (with number of elements
ℓp, ℓp+1, ℓp+2, respectively). Computing the persistence
box of such a pair is equivalent to finding the predeces-
sor of ep+1 in Rp and the successor of ep in Rp+2.

Using FingerMerge, we apply AdaptMerge to the runs
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<latexit sha1_base64="LWAg3aaa0/KqVN+zwARCKf8OD8Y=">AAAB73icbVBNS8NAEJ34WetX1aOXxVbwVJKC6EkKXjxWsB/QhrLZTtqlm03c3Qgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GtzO//YRK81g+mEmCfkSHkoecUWOlTgX7medOK/1S2a26c5BV4uWkDDka/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5vVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjtZ1wmqUHJFovCVBATk9nzZMAVMiMmllCmuL2VsBFVlBkbUdGG4C2/vEpatap3WXXva+X6TR5HAU7hDC7Agyuowx00oAkMBDzDK7w5j86L8+58LFrXnHzmBP7A+fwB3B6PLQ==</latexit>e10

<latexit sha1_base64="wT9ijdiCGbUGpU6XHVgfQ/5jxFE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUpJ6k4MVjBVMLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHWSKYY+S0SiOiHVKLhE33AjsJMqpHEo8DEc3879xydUmifywUxSDGI6lDzijBor+VXsN6r9csWtuQuQdeLlpAI5Wv3yV2+QsCxGaZigWnc9NzXBlCrDmcBZqZdpTCkb0yF2LZU0Rh1MF8fOyIVVBiRKlC1pyEL9PTGlsdaTOLSdMTUjverNxf+8bmai62DKZZoZlGy5KMoEMQmZf04GXCEzYmIJZYrbWwkbUUWZsfmUbAje6svrpF2veVc1975ead7kcRThDM7hEjxoQBPuoAU+MODwDK/w5kjnxXl3PpatBSefOYU/cD5/AK/Rje0=</latexit>e7

<latexit sha1_base64="LWAg3aaa0/KqVN+zwARCKf8OD8Y=">AAAB73icbVBNS8NAEJ34WetX1aOXxVbwVJKC6EkKXjxWsB/QhrLZTtqlm03c3Qgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GtzO//YRK81g+mEmCfkSHkoecUWOlTgX7medOK/1S2a26c5BV4uWkDDka/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5vVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjtZ1wmqUHJFovCVBATk9nzZMAVMiMmllCmuL2VsBFVlBkbUdGG4C2/vEpatap3WXXva+X6TR5HAU7hDC7Agyuowx00oAkMBDzDK7w5j86L8+58LFrXnHzmBP7A+fwB3B6PLQ==</latexit>e10
<latexit sha1_base64="94TNiPiEtSQsSEpXgAwsz5n9/Y0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHSSKYY+S0SiOiHVKLhE33AjsJMqpHEosB2O7+Z++wmV5ol8NJMUg5gOJY84o8ZKfhX7brVfrrg1dwGyTrycVCBHs1/+6g0SlsUoDRNU667npiaYUmU4Ezgr9TKNKWVjOsSupZLGqIPp4tgZubDKgESJsiUNWai/J6Y01noSh7YzpmakV725+J/XzUx0E0y5TDODki0XRZkgJiHzz8mAK2RGTCyhTHF7K2EjqigzNp+SDcFbfXmdtOo176rmPtQrjds8jiKcwTlcggfX0IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuEPnM8fpS6N5g==</latexit>e0

<latexit sha1_base64="94TNiPiEtSQsSEpXgAwsz5n9/Y0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHSSKYY+S0SiOiHVKLhE33AjsJMqpHEosB2O7+Z++wmV5ol8NJMUg5gOJY84o8ZKfhX7brVfrrg1dwGyTrycVCBHs1/+6g0SlsUoDRNU667npiaYUmU4Ezgr9TKNKWVjOsSupZLGqIPp4tgZubDKgESJsiUNWai/J6Y01noSh7YzpmakV725+J/XzUx0E0y5TDODki0XRZkgJiHzz8mAK2RGTCyhTHF7K2EjqigzNp+SDcFbfXmdtOo176rmPtQrjds8jiKcwTlcggfX0IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuEPnM8fpS6N5g==</latexit>e0

(a) (b) (c) (d)
<latexit sha1_base64="FunpsK9eLtD4kB07g9dDLtVO0TY=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BFvBU9ktiJ6k4MVjBbcttEvJptk2NptdkqxYlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0gE18ZxvlFhbX1jc6u4XdrZ3ds/KB8etXScKso8GotYdQKimeCSeYYbwTqJYiQKBGsH45uZ335kSvNY3ptJwvyIDCUPOSXGSl71qf9Q7ZcrTs2ZA68SNycVyNHsl796g5imEZOGCqJ113US42dEGU4Fm5Z6qWYJoWMyZF1LJYmY9rP5sVN8ZpUBDmNlSxo8V39PZCTSehIFtjMiZqSXvZn4n9dNTXjlZ1wmqWGSLhaFqcAmxrPP8YArRo2YWEKo4vZWTEdEEWpsPiUbgrv88ipp1WvuRc25q1ca13kcRTiBUzgHFy6hAbfQBA8ocHiGV3hDEr2gd/SxaC2gfOYY/gB9/gAaZI4z</latexit>xj

<latexit sha1_base64="fYHH1O7hfnf3BywWqS6mRE7ki80=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmmFNpTNdtou3WzC7kYsob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMCxPBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpOFUOfxSJWDyHVKLhE33Aj8CFRSKNQYDsc38z89iMqzWN5byYJBhEdSj7gjBor+dWnHq/2yhW35s5BVomXkwrkaPbKX91+zNIIpWGCat3x3MQEGVWGM4HTUjfVmFA2pkPsWCpphDrI5sdOyZlV+mQQK1vSkLn6eyKjkdaTKLSdETUjvezNxP+8TmoGV0HGZZIalGyxaJAKYmIy+5z0uUJmxMQSyhS3txI2oooyY/Mp2RC85ZdXSate8y5q7l290rjO4yjCCZzCOXhwCQ24hSb4wIDDM7zCmyOdF+fd+Vi0Fpx85hj+wPn8ARjfjjI=</latexit>xi
<latexit sha1_base64="fYHH1O7hfnf3BywWqS6mRE7ki80=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmmFNpTNdtou3WzC7kYsob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMCxPBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpOFUOfxSJWDyHVKLhE33Aj8CFRSKNQYDsc38z89iMqzWN5byYJBhEdSj7gjBor+dWnHq/2yhW35s5BVomXkwrkaPbKX91+zNIIpWGCat3x3MQEGVWGM4HTUjfVmFA2pkPsWCpphDrI5sdOyZlV+mQQK1vSkLn6eyKjkdaTKLSdETUjvezNxP+8TmoGV0HGZZIalGyxaJAKYmIy+5z0uUJmxMQSyhS3txI2oooyY/Mp2RC85ZdXSate8y5q7l290rjO4yjCCZzCOXhwCQ24hSb4wIDDM7zCmyOdF+fd+Vi0Fpx85hj+wPn8ARjfjjI=</latexit>xi

<latexit sha1_base64="fYHH1O7hfnf3BywWqS6mRE7ki80=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmmFNpTNdtou3WzC7kYsob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMCxPBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpOFUOfxSJWDyHVKLhE33Aj8CFRSKNQYDsc38z89iMqzWN5byYJBhEdSj7gjBor+dWnHq/2yhW35s5BVomXkwrkaPbKX91+zNIIpWGCat3x3MQEGVWGM4HTUjfVmFA2pkPsWCpphDrI5sdOyZlV+mQQK1vSkLn6eyKjkdaTKLSdETUjvezNxP+8TmoGV0HGZZIalGyxaJAKYmIy+5z0uUJmxMQSyhS3txI2oooyY/Mp2RC85ZdXSate8y5q7l290rjO4yjCCZzCOXhwCQ24hSb4wIDDM7zCmyOdF+fd+Vi0Fpx85hj+wPn8ARjfjjI=</latexit>xi
<latexit sha1_base64="fYHH1O7hfnf3BywWqS6mRE7ki80=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmmFNpTNdtou3WzC7kYsob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMCxPBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpOFUOfxSJWDyHVKLhE33Aj8CFRSKNQYDsc38z89iMqzWN5byYJBhEdSj7gjBor+dWnHq/2yhW35s5BVomXkwrkaPbKX91+zNIIpWGCat3x3MQEGVWGM4HTUjfVmFA2pkPsWCpphDrI5sdOyZlV+mQQK1vSkLn6eyKjkdaTKLSdETUjvezNxP+8TmoGV0HGZZIalGyxaJAKYmIy+5z0uUJmxMQSyhS3txI2oooyY/Mp2RC85ZdXSate8y5q7l290rjO4yjCCZzCOXhwCQ24hSb4wIDDM7zCmyOdF+fd+Vi0Fpx85hj+wPn8ARjfjjI=</latexit>xi

<latexit sha1_base64="FunpsK9eLtD4kB07g9dDLtVO0TY=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BFvBU9ktiJ6k4MVjBbcttEvJptk2NptdkqxYlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0gE18ZxvlFhbX1jc6u4XdrZ3ds/KB8etXScKso8GotYdQKimeCSeYYbwTqJYiQKBGsH45uZ335kSvNY3ptJwvyIDCUPOSXGSl71qf9Q7ZcrTs2ZA68SNycVyNHsl796g5imEZOGCqJ113US42dEGU4Fm5Z6qWYJoWMyZF1LJYmY9rP5sVN8ZpUBDmNlSxo8V39PZCTSehIFtjMiZqSXvZn4n9dNTXjlZ1wmqWGSLhaFqcAmxrPP8YArRo2YWEKo4vZWTEdEEWpsPiUbgrv88ipp1WvuRc25q1ca13kcRTiBUzgHFy6hAbfQBA8ocHiGV3hDEr2gd/SxaC2gfOYY/gB9/gAaZI4z</latexit>xj
<latexit sha1_base64="FunpsK9eLtD4kB07g9dDLtVO0TY=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BFvBU9ktiJ6k4MVjBbcttEvJptk2NptdkqxYlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0gE18ZxvlFhbX1jc6u4XdrZ3ds/KB8etXScKso8GotYdQKimeCSeYYbwTqJYiQKBGsH45uZ335kSvNY3ptJwvyIDCUPOSXGSl71qf9Q7ZcrTs2ZA68SNycVyNHsl796g5imEZOGCqJ113US42dEGU4Fm5Z6qWYJoWMyZF1LJYmY9rP5sVN8ZpUBDmNlSxo8V39PZCTSehIFtjMiZqSXvZn4n9dNTXjlZ1wmqWGSLhaFqcAmxrPP8YArRo2YWEKo4vZWTEdEEWpsPiUbgrv88ipp1WvuRc25q1ca13kcRTiBUzgHFy6hAbfQBA8ocHiGV3hDEr2gd/SxaC2gfOYY/gB9/gAaZI4z</latexit>xj

<latexit sha1_base64="FunpsK9eLtD4kB07g9dDLtVO0TY=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BFvBU9ktiJ6k4MVjBbcttEvJptk2NptdkqxYlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0gE18ZxvlFhbX1jc6u4XdrZ3ds/KB8etXScKso8GotYdQKimeCSeYYbwTqJYiQKBGsH45uZ335kSvNY3ptJwvyIDCUPOSXGSl71qf9Q7ZcrTs2ZA68SNycVyNHsl796g5imEZOGCqJ113US42dEGU4Fm5Z6qWYJoWMyZF1LJYmY9rP5sVN8ZpUBDmNlSxo8V39PZCTSehIFtjMiZqSXvZn4n9dNTXjlZ1wmqWGSLhaFqcAmxrPP8YArRo2YWEKo4vZWTEdEEWpsPiUbgrv88ipp1WvuRc25q1ca13kcRTiBUzgHFy6hAbfQBA8ocHiGV3hDEr2gd/SxaC2gfOYY/gB9/gAaZI4z</latexit>xj

<latexit sha1_base64="KsnyhGMDVGO6WIe5Pk/Nmo7YxVQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmmFNpTNdtMu3WzC7kQspb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1MpDLrut1NYW9/Y3Cpul3Z29/YPyodHLZNkmnGfJTLRDyE1XArFfRQo+UOqOY1Dydvh6Gbmtx+5NiJR9zhOeRDTgRKRYBSt5FefeqNqr1xxa+4cZJV4OalAjmav/NXtJyyLuUImqTEdz00xmFCNgkk+LXUzw1PKRnTAO5YqGnMTTObHTsmZVfokSrQthWSu/p6Y0NiYcRzazpji0Cx7M/E/r5NhdBVMhEoz5IotFkWZJJiQ2eekLzRnKMeWUKaFvZWwIdWUoc2nZEPwll9eJa16zbuouXf1SuM6j6MIJ3AK5+DBJTTgFprgAwMBz/AKb45yXpx352PRWnDymWP4A+fzBxvpjjQ=</latexit>xk

Figure 9: A step-by-step illustration of the PersiSort algorithm.

Rp and Rp+1. This process involves finding the maxi-
mum element x in Rp that is smaller than ep+1 using
exponential and binary search (c.f., Fig. 7). x is the lo-
cation where Rp needs to be split and the actual merge
from Rp+1 has to start. Identifying element x is illus-
trated by a red dotted arrow from ep+1, and x is shown
as a red point. A key observation is that such a process
implicitly identifies the lower left corner of the persis-
tence box.
Assume x is located at index ix in Rp, then the ex-

ponential and binary search discovers x in O (log ix) =
O (log ℓp) comparisons. After merging Rp with Rp+1

into R′, FingerMerge merges R′ with Rp+2. In fact, it
merges R′ starting from index ix + 1 in R′ (i.e., the in-
dex of ep+1 in R′), since all elements in Rp+2 are larger
than ep+1. When R′ is exhausted of elements, we have
found the successor of ep in Rp+2. This is equivalent to
finding the upper right corner of the persistence box, as
desired. □

<latexit sha1_base64="M4/VdjHPOTlnqRrmwEY57UNDvDM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiJ4k4MVjRPOAZAmzk95kyOzsMjMrhpBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7stP5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8i4p7Vy3VrrM48nACp3AOHlxCDW6hDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDnXCNVg==</latexit>x

<latexit sha1_base64="sGie4t28MXf0XLl+BE93aBhQMxY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHSSKYY+S0SiOiHVKLhE33AjsJMqpHEosB2O7+Z++wmV5ol8NJMUg5gOJY84o8ZKfhX7abVfrrg1dwGyTrycVCBHs1/+6g0SlsUoDRNU667npiaYUmU4Ezgr9TKNKWVjOsSupZLGqIPp4tgZubDKgESJsiUNWai/J6Y01noSh7YzpmakV725+J/XzUx0E0y5TDODki0XRZkgJiHzz8mAK2RGTCyhTHF7K2EjqigzNp+SDcFbfXmdtOo176rmPtQrjds8jiKcwTlcggfX0IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuEPnM8fBn2OJg==</latexit>ep

<latexit sha1_base64="RYV4KKzFx4kcmmsKXq1TAO/a+AA=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFhNBEMJuQPQkAS8eI5iHJEuYnXSSITOzy8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13Vxhzpo3nfTu5tfWNza38dmFnd2//oHh41NRRoig2aMQj1Q6JRs4kNgwzHNuxQiJCjq1wfDvzW0+oNIvkg5nEGAgylGzAKDFWeixjL40v/Gm5Vyx5FW8Od5X4GSlBhnqv+NXtRzQRKA3lROuO78UmSIkyjHKcFrqJxpjQMRlix1JJBOognR88dc+s0ncHkbIljTtXf0+kRGg9EaHtFMSM9LI3E//zOokZXAcpk3FiUNLFokHCXRO5s+/dPlNIDZ9YQqhi9laXjogi1NiMCjYEf/nlVdKsVvzLindfLdVusjjycAKncA4+XEEN7qAODaAg4Ble4c1Rzovz7nwsWnNONnMMf+B8/gCmXo+i</latexit>ep+1

<latexit sha1_base64="Mn6Ns5ClboJ634GaF8AUKzEn5g0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxiqmFNpTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjrJFEOfJSJR7ZBqFFyib7gR2E4V0jgU+BiObmb+4xMqzRP5YMYpBjEdSB5xRo2V/Op9L632yhW35s5BVomXkwrkaPbKX91+wrIYpWGCat3x3NQEE6oMZwKnpW6mMaVsRAfYsVTSGHUwmR87JWdW6ZMoUbakIXP198SExlqP49B2xtQM9bI3E//zOpmJroIJl2lmULLFoigTxCRk9jnpc4XMiLEllClubyVsSBVlxuZTsiF4yy+vkla95l3U3Lt6pXGdx1GEEziFc/DgEhpwC03wgQGHZ3iFN0c6L86787FoLTj5zDH8gfP5A+lpjhM=</latexit>

Rp
<latexit sha1_base64="vwnuwbYXx2UvxhIHm9CN7uPoyr4=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdQtGTFLx4rGI/pF1KNs22oUl2SbJCWforvHhQxKs/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZya+sbm1v57cLO7t7+QfHwqKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML6Z+e0nqjSL5IOZxNQXeChZyAg2Vnos3/fT+MKblvvFkltx50CrxMtICTI0+sWv3iAiiaDSEI617npubPwUK8MIp9NCL9E0xmSMh7RrqcSCaj+dHzxFZ1YZoDBStqRBc/X3RIqF1hMR2E6BzUgvezPxP6+bmPDKT5mME0MlWSwKE45MhGbfowFTlBg+sQQTxeytiIywwsTYjAo2BG/55VXSqla8WsW9q5bq11kceTiBUzgHDy6hDrfQgCYQEPAMr/DmKOfFeXc+Fq05J5s5hj9wPn8AiQ2Pjw==</latexit>

Rp+1

<latexit sha1_base64="wt+CSOfWrnrVtCbQh6yJzFbxgIY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdQtGTFLx4rGI/pF1KNs22oUl2SbJCWforvHhQxKs/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZya+sbm1v57cLO7t7+QfHwqKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML6Z+e0nqjSL5IOZxNQXeChZyAg2Vnos3/fT+KI6LfeLJbfizoFWiZeREmRo9ItfvUFEEkGlIRxr3fXc2PgpVoYRTqeFXqJpjMkYD2nXUokF1X46P3iKzqwyQGGkbEmD5urviRQLrScisJ0Cm5Fe9mbif143MeGVnzIZJ4ZKslgUJhyZCM2+RwOmKDF8YgkmitlbERlhhYmxGRVsCN7yy6ukVa14tYp7Vy3Vr7M48nACp3AOHlxCHW6hAU0gIOAZXuHNUc6L8+58LFpzTjZzDH/gfP4AipOPkA==</latexit>

Rp+2

Figure 10: An illustration of the FingerMerge algo-
rithm. The deep red curve illustrates the exponential
search, whereas the teal curve illustrates the binary
search.

With the above Lemma, we are ready to present an
analysis of PersiSort that uses our new computational
model. As illustrated in Fig. 9, dynamic box depth is
insufficient for analyzing PersiSort since the algorithm
requires extra work to detect the boundaries of persis-
tence boxes using FingerMerge. For example, detect-
ing the boundary of the orange box along the run Rp

requires log(ℓp), which is an overestimation based on
the exponential and binary search along Rp. We know
from the Adaptive Merge Tree structure that there are
r runs represented by leaves, denoted as R1, . . . Rr; and
r − 1 intermediate sorted sublists represented by inter-
nal nodes, denoted as Rr+1, . . . , R2r−1. Let ℓi = |Ri|
for 1 ≤ i ≤ 2r − 1.

Lemma 6 Using PersiSort on a list of n elements with
r runs, the number of comparisons performed is

n+O
(
r +

∑

x∈X
d(x) +

2r−1∑

i=1

log ℓi

)
.

Proof. First, recall in Lem. 2 that all persistence pairs
can be computed in n+O (r) comparisons, where n− 1
comparisons are needed to first locate the runs.

Second, the dynamic box depth d(x) of an element
x ∈ X captures the number of FingerMerge operations
an element x may participate in. However, x may not
be compared during the FingerMerge process. The term∑
x∈X d(x) is thus an overestimation of the contribution

of elements to the comparison complexity.
Finally, PersiSort by design performs a FingerMerge

on runs intersecting a persistence box during an itera-
tion. We know from Lem. 5 that an element outside a
persistence box will contribute logarithmically (in the
number of elements outside the box) to the compari-
son complexity. We can upper bound the number of
elements outside of the persistence boxes by the total
number of elements across the original and intermediate
runs, that is,

∑2r−1
i=1 log ℓi. This concludes the compar-

ison complexity analysis of PersiSort. □

Together with Thm. 4, Lem. 6 now provides an alter-
native comparison complexity analysis of PersiSort.

A desirable property of a sorting algorithms is to be
stable. Stability is defined as follows: if elements x = y,
and x precedes y in the initial ordering, then this or-
dering is preserved after sorting. AdaptMerge is stable,
making FingerMerge and subsequently PersiSort stable
as well. Although PersiSort does not merge runs se-
quentially like PowerSort and TimSort, it always merge
adjacent runs, which is sufficient for a simple inductive
proof.

291



36th Canadian Conference on Computational Geometry, 2024

6 Adaptive Sorting Implementations

We discuss implementation details on several popular
sorting algorithms: the sorting algorithm implemented
in Python (referred to as Python Sort), TimSort, and
PowerSort. We implement PersiSort and TimSort in-
house. Following [1, 28], we use the number of com-
parisons performed to quantify the complexity of these
sorting algorithms. We count the number of element
comparisons via a custom class for our in-house imple-
mentations.

TimSort. We use an in-house Python implementation
of TimSort based on the description of [1]. The orig-
inal TimSort uses galloping, a version of AdaptMerge,
discussed in Sec. 3.4.

TimSort is a sequential adaptive sorting algorithm
that maintains a stack of runs and applies AdaptMerge
to selected pairs of runs. Specifically, it merges the top
run and the 2nd run from the top or the 2nd and 3rd
runs from the top under a merge policy. It ensures that
the sizes of the runs on the stack form an exponentially
increasing sequence.

Python Sort. We compare against the sorting algorithm
used in Python version 3.11.23 at the time of writing.
This version of Python implements the PowerSort of
Munro and Wild [24].

PowerSort [24] is essentially based on TimSort but
with a different merge policy, see App. A. In Python
version 3.11.2, PowerSort is the standard library sort,
which makes it easy for us to get a comparison. On
the other hand, the implementation in Python is highly
optimized for time, unlike our in-house PersiSort and
TimSort implementations. To differentiate the Python
sorting algorithm from the PowerSort described below,
this algorithm is referred to as Python v3.11.2 in our
experiments.

PowerSort. Sebastian Wild provided an educational
implementation of PowerSort [27] that we used as Pow-
erSort in our experiments. This version is not as highly
optimized as the Python standard library version, but
we can control which merge subroutine is used. In the
original code provided by Wild, a classic O (n1 + n2)
merge routine is used (for merging a pair of lists of
lengths n1 and n2 respectively). For our experiments,
we replace it with AdaptMerge to more fairly compare
the merge policies of PersiSort and PowerSort.

7 Data Distributions

To empirically compare the adaptive sorting algorithms
described in Sec. 6, we introduce six data distributions
(also referred to as run configurations) that illustrate
different behaviors of the algorithms under scrutiny.

3https://www.wild-inter.net/posts/

powersort-in-python-3.11, accessed on December 2, 2023

The six data distributions include Staircase, Isolated
Points, Super Nesting, Uniformly Random, Ultra Nest-
ing, and TimSort Nemesis, presented left to right in
Fig. 11. A list sampled from a data distribution is vi-
sualized as a PL function: the x-axis represents the in-
dices of list elements, and the y-axis represents their
values; elements are visualized as blue points connected
by edges following the input order, where runs are eas-
ily visible as monotonic segments of the PL curve. We
also include one additional data distribution, Overlap-
ping Staircase, that is a variant of Staircase. The lists
sampled from these distributions differ by the amount
of overlap between runs in their range of values and,
subsequently, the dynamic box depths of elements in
the lists. We describe the intuition behind these data
distributions and the performance of PersiSort on them;
see Tab. 12 for an overview.

We sample 100 lists from each data distribution and
report the median number of comparisons. For lists
sampled from the Staircase, Isolated Points, and Super
Nesting distributions, we first vary the number of ele-
ments and then the number of runs; see Fig. 13. For
lists sampled from Uniformly Random, Ultra Nesting,
and TimSort Nemesis, we only vary the number of el-
ements as we cannot control the number of runs; see
Fig. 14.

When we vary the number of elements, we hard code
50 runs and let the number of elements range from 150
to 2950 in increments of 100 for a total of 29 data points.
Similarly, when we vary the number of runs, we hard
code 3000 elements and let the number of runs range
from 10 to 750 in steps of 25 for 30 total data points.

Observation 3 (Disjoint Values) AdaptMerge on
two sorted lists A,B of lengths n1 ≤ n2 has a worst-case

comparison complexity of n1 log
(
n1+n2

n1

)
by Lem. 3.

However, if the values in the runs are disjoint, w.l.o.g.,
assuming A[n1− 1] ≤ B[0], then AdaptMerge would use
worst case O (log n1) comparisons and simply prepends
A to B.

We use Obs. 3 to create data distributions where the
benefits of AdaptMerge over regular merge subroutines
are maximized.

Staircase. The Staircase distribution is designed such
that an element x in the list has a constant dynamic
box depth d(x). This is achieved by creating monotoni-
cally increasing runs of length three, and monotonically
decreasing runs of length n/(r/2)− 3 in an alternating
fashion, while ensuring that all elements of run i have
smaller values than those of run i + 1. This ensures
that d(x) = 1 for all elements. When running PersiSort
on the staircase distribution, an accumulator run is cre-
ated, and the initial runs are merged into it one at a
time. This behavior is equivalent to a maximally un-
balanced Adaptive Merge Tree. By Obs. 3 and Lem. 6,
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Figure 11: Six types of data distributions. From left to right: Staircase, Isolated Points, Super Nesting, Uniformly
Random, Ultra Nesting, and TimSort Nemesis.

Distribution Disjoint Values Box depth PersiSort
Staircase Yes 1 O (n+ r log(rn))

Isolated Points Initially O (r) O (n+ n log r)
Super Nesting No O (r) O (n+ r log n)
Ultra Nesting ‡ No O (n) O (n log n)

Overlapping Staircase ‡ Variable O (r) O (n+ n log r)
Uniformly Random ‡ No O (n) O (n log n)
TimSort Nemesis ‡ No O (n) O (n log n)

Figure 12: Overview of our data distributions and the
comparison complexity using PersiSort. n is the num-
ber of elements in a list with r runs. “Disjoint Values”
means that runs contain values that are disjoint. We
did not perform experiments by varying r with distri-
butions marked with a ‡.

the comparison complexity of the merges can roughly
be described as

O
(

2r−1∑

i=1

log (i · n/r)
)

= O (r log n+ r log r)

for a total comparison complexity of O (n+ r log(rn)).

Isolated Points. We introduce the Isolated Points dis-
tribution to investigate the impact of the disjoint runs
on the performance. By partitioning a list of unique
integers into r continuous subsets of random sizes and
then uniformly shuffling them, we obtain elements in
a list of stochastic dynamic box depth. The purpose
of this is to show that, in general, the performance of
PersiSort is consistent with initially disjoint runs. It fol-
lows from basic probability theory that uniformly ran-
dom data has runs of expected constant length, which
means that r = Θ(n) and PersiSort has a comparison
complexity of O (n+ nH) = O (n+ n log r).

Super Nesting and Ultra Nesting. Super Nesting is
designed for most elements to have high dynamic box
depth while maintaining non-intersecting runs. A way
to envision the distribution is to have an “X” shape
and remove elements such that there are r pieces of
equal lengths, and the projection onto either axis is in-
jective. The lowest level persistence pair throughout the

execution of PersiSort is between the endpoints of the
innermost run/piece of the ”X” shape. At each level,
PersiSort performs O (log n) comparisons to append the
neighboring pieces for a total comparison complexity of
O (n+ r log n). Ultra Nesting is the most extreme ver-
sion of Super Nesting, where each run has length two.

Overlapping Staircase. We are interested in explor-
ing how increasing the dynamic box depth d(x) affects
the performance of PersiSort. To do so, we generalize
the Staircase distribution to the Overlapping Staircase
distribution, where adjacent runs have increasing over-
lap in their ranges of values with a controlled parame-
ter. The overlap parameter s controls the length of the
short runs, and by “pulling down” the runs, we have the
same s values in three adjacent runs. This means that
the benefit of FingerMerge is neutralized. As s tends to
n/r, the data become a maximally entangled “zigzag”,
for instance, s = n/r = 3 produces data that look like
1, 2, 3, 2, 1, 0, 1, 2, 3, . . . . Here, PersiSort will produce an
accumulator and merge adjacent length three lists into
it. In this specific case that contains very few unique
values, it would be much more effective to count the oc-
currences of each value using Counting Sort or Bucket
Sort.

TimSort Nemesis. It is conjectured by [5, 24] that the
worst-case input for TimSort is the following recursive
sequence:

R(n) =





⟨n⟩ if n ≤ 3;

R(n/2) :: R(n/2− 1) :: ⟨1⟩ if 2|n;
R
(
n−1
2

)
:: R

(
n−1
2 − 1

)
:: ⟨2⟩ otherwise,

where :: denotes list concatenation, 2|n means n ≡ 0
mod 2 and ⟨k⟩ is the list [0, 1, 2, . . . , k − 1].
PersiSort faces the same difficulties with this distri-

bution as with maximally overlapping staircases, the
dynamic box depth of an element in the list is O (n),
which by Lem. 6 gives an O (n log n) upper bound.

Uniformly Random. Following the footsteps of [5, 24],
we sample real numbers from the interval [0, 1] uni-
formly randomly. This distribution has very short runs,
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Staircase Staircase Isolated Points Isolated Points Super Nesting Super Nesting

Figure 13: Number of comparisons with Staircase, Isolated Points, and Super Nesting distributions.

in expectation, where the benefit of using an adaptive
sorting algorithm is negligible.

8 Experimental Results

We compare the number of comparisons of PersiSort
empirically against several adaptive sorting algorithms,
including TimSort [1], Python Sort (the PowerSort im-
plementation used in Python version 3.11.2, which does
not use AdaptMerge), and PowerSort [24, 27]. Notably,
our PowerSort implementation uses AdaptMerge as a
subroutine, while Python Sort does not. We use the
data distributions described in Sec. 7.

Uniformly Random Ultra Nesting TimSort Nemesis

Figure 14: Number of comparisons with Uniformly Ran-
dom, Ultra Nesting, and TimSort Nemesis distributions.

Highlighted results. As shown in Fig. 13, PersiSort out-
performs state-of-the-art adaptive sorting algorithms—
PowerSort, TimSort, and Python Sort—on the Staircase
data distributions, where runs have no overlap in their
ranges of values. This seems reasonable since the merge
policy of PersiSort considers the extrema values of the
runs. In contrast, TimSort and PowerSort consider the
number of elements in the runs when deciding which
runs to merge. Meanwhile, PersiSort performs compara-
bly with PowerSort and TimSort on Isolated Points and
(partially) on Super Nesting distributions (see Fig. 13).
However, it is also clear from Fig. 14 that PersiSort will
not replace PowerSort as the standard Python library
sorting algorithm. Nevertheless, PersiSort provides a
new perspective on adapting sorting based on TDA.

Additional results. We experiment further by increas-
ing the overlap between runs, creating a data distribu-

Figure 15: Number of comparisons with the Overlap-
ping Staircase distribution. From left to right: a list
sampled from the distribution with a small amount of
overlap (before the elbow point); a list sampled from
the distribution with a large amount of overlap (after
the elbow point); the number of comparisons with in-
creasing number of runs on the x-axis; a zoomed-in view
of the red box from the comparison plot.

tion from the Overlapping Staircase, see Fig. 15. We
create a list of 20, 000 elements in 300 runs and let the
overlap between runs vary from 1 through 60 on the x-
axis. As the amount of overlap increases, the advantage
of PersiSort degrades. We observe an elbow point at
r = 40 because the dynamic box depth increases dras-
tically from 3 (r = 40) to 11 (r = 60), increasing the
comparison complexity dramatically.

9 Discussion

PersiSort is well-suited for parallelism, which is left for
future work. Introducing parallelism will, however, have
no impact on the number of comparisons performed.
In cases where the data points have high dynamic box
depths, the theoretical performance of AdaptMerge is
comparable to that of simpler merge algorithms, which
suggests that a highly optimized implementation of
AdaptMerge can have practical merit.

We observe in many cases that Python Sort (CPython
standard library implementation of PowerSort v 3.11.2)
performs equal or worse than our in-house implementa-
tion of PowerSort. Our experimental results thus hint
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at the possibility of using AdaptMerge as a merge sub-
routine for Python Sort.
Finally, it is vital for PersiSort that its merge subrou-

tine is AdaptMerge. If a simple linear merge subroutine
is used, the comparison complexity becomes O

(
n2
)
,

which is also the worst-case number of element moves
performed by PersiSort. It would be interesting to inves-
tigate the comparison complexity of PersiSort if Adapt-
Merge is replaced by other types of merge subroutines
(e.g., [17]).
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A Merge Policies of Adaptive Sorting Algorithms

An adaptive sorting algorithm was described by Wild [28]
as a two-step procedure. First, the algorithm detects all the
runs. Second, it merges the runs in some order determined
by a merge policy. The order in which the runs are merged
defines a binary tree, referred to as a Merge Tree, where
leaves represent runs, internal nodes represent intermediate
sorted sublists, and the root represents the entire sorted list.

For comparative analysis, we review merge policies of a
number of adaptive sorting algorithms. We assume the input
is a list with n elements in r runs.

Natural MergeSort [7] has a simple merge policy indepen-
dent of the runs’ values and sizes. Simply put, it builds a
(balanced) Merge Tree by merging adjacent runs in the tree.
We omit Natural MergeSort from our experiments because
it behaves similarly to TimSort.

TimSort [1, 26] determines its merge policy by maintaining
a stack of runs. Runs are added to the stack based on the
order in which they are discovered. Merging runs from the
stack is based on the four rules described below. When the
last run is added to the stack, the algorithm collapses the
stack by merging runs from top to bottom. The main idea
behind these merge triggering rules is that they “balance the
run lengths as closely as possible, while keeping a low bound
on the number of runs we have to remember” [26].

At any time, let h denote the height of the stack R. Let
Rk (1 ≤ k ≤ h) be the k-th run from the top of the stack,
and let ℓk := |Rk| be the number of elements in Rk. Tim-
Sort’s merge policy is as follows (based on Algorithm 3 of
[1]). Initially, we perform a run decomposition of an input
list and set the stack to be empty. At each step of the itera-
tion (until all runs are handled), we remove a run from the
run decomposition and push it to the stack. We follow the
following four rules to trigger merges:

• If h ≥ 3 and ℓ1 > ℓ3 then merge runs R2 and R3;
• else if h ≥ 2 and ℓ1 > ℓ2 then merge runs R1 and R2;
• else if h ≥ 3 and ℓ1 + ℓ2 ≥ ℓ3 then merge runs R1 and R2.
• else if h ≥ 4 and ℓ2 + ℓ3 ≥ ℓ4 then merge runs R1 and R2.

The analysis of TimSort was proved to be difficult. Auger
et al. [1] showed that the runs on the stack are of exponen-
tially increasing size, and TimSort performs O (n + n log r)
comparisons.

PowerSort was introduced by Munro and Wild [24] and is
currently used in Python version 3.11.2. It follows the se-
quential left-to-right nature of TimSort with some changes
in the merge policy. Let R1 and R2 be two adjacent runs
of lengths ℓ1 and ℓ2 respectively. They start at list indices
i1 and i2 respectively, that is, R1 = X[i1, i1 + ℓ1 − 1] and
R2 = X[i2, i2 + ℓ2 − 1]. The power of the boundary between

R1 and R2 is defined as

p(R1, R2) = max{ℓ ∈ N :⌊2ℓ · (i1 + ℓ1/2)/n⌋
= ⌊2ℓ · (i2 + ℓ2/2)/n⌋}

Similarly to TimSort, PowerSort scans the runs. Assuming
there is a run stack R0, R1, . . . , and we have discovered a
new run R. The algorithm compares the power between R
and runs in the stack. If p(R0, R) < p(R0, R1), then R0 is
popped from the stack and merged with R, resulting in R′.
Moving forward, if p(R0, R) < p(R1, R2) then R1 is popped
and merged into R′′ and so on. Like TimSort, when there
are no more runs to process, the stack is collapsed into a
single sorted list by merging runs from top to bottom. The
comparison complexity of PowerSort [24] is O (n + n log r).

B Pseudocode

We provide pseudocode for AdaptMerge, FingerMerge, and
PersiSort. The pseudocode of AdaptMerge is included in
Fig. 16. By convention, A[3, 2] is an empty list, and A[3, 3]
is a single element list. Under these conventions, exponential
search for, say, 5 in the list B = [7, 8, 9] returns index −1
such that no elements of B are added to the output C. In
the next iteration, the algorithm searches for the predecessor
of 7 in, say, A = [5, 6, 10], which will find the predecessor 6
at index 1 and extend C by A[0, 1] = [5, 6]. Furthermore,
if the exponential part of the exponential search overshoots
the end of a list, then it should “round down” to the end of
the list and continue to the binary search phase.

1 AdaptMerge (A , B ) :
2 C = empty l i s t o f l ength na + nb
3 i0 = j0 = 0
4 whi l e not ( i0 == na − 1 or j0 == nb − 1 ) :
5 i1 = Exponent ia lSearch (B[j0], A[i0, na − 1])
6 C. extend (A[i0, i1] )
7 i0 = i1
8 j1 = Exponent ia lSearch (A[i0], B[j0, nb − 1])
9 C. extend (B[j0, j1] )
10 j0 = j1
11 C. extend (A[i0, na] )
12 C. extend (B[j0, nb] )
13 re turn C

Figure 16: Pseudocode for the AdaptMerge algorithm
of Carlsson et al. [7].

The three-way FingerMerge calls AdaptMerge twice, as
shown in Fig. 17. The algorithm also needs to ensure that
the monotonicity of A, B, C, and AB is the same, which
can easily be solved with start and end pointers to the lists.
This, however, makes FingerMerge ill-suited for algorithms
where reverses are costly.

1 FingerMerge (A , B , C ) :
2 AB = AdaptMerge (A,B )
3 re turn AdaptMerge (AB ,C )

Figure 17: Pseudocode for the FingerMerge algorithm.

The pseudocode of PersiSort is shown in Fig. 18. Given
an input list X with n elements in r runs, we denote the
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sequence of runs as R0, R1, . . . , Rr−1. We first identify the
set of extrema E from X (line 2). We then compute the
initial set of (neighboring) persistence pairs (line 3). We
repeat the following procedure until the list is sorted, i.e.,
when there are at most two extrema in E (line 4).

1. For each persistence pair (line 5):
– Perform FingerMerge on the two or three runs

intersecting the pair (lines 6-11).
∗ If the pair contains boundary extrema, per-

form a two-way merge (lines 6-9);
∗ Otherwise, perform a 3-way merge (line 11);

– Remove the pair of extrema from the set of ex-
trema E (line 12).

2. Recompute the persistence pairs by updating the pair-
ing candidates (line 13).

1 Pe r s i s t en c eSo r t (X )
2 E = DetectExtrema (X )
3 Pe r s i s t e n c ePa i r s = ComputePairs (E )
4 whi l e |E| > 2 :
5 f o r pa i r in Pe r s i s t e n c ePa i r s :
6 i f e0 in pa i r :
7 AdaptMerge (R0 ,R1 )
8 e l i f er−1 in pa i r :
9 AdaptMerge (R−2 ,R−1 )

10 e l s e :
11 FingerMerge (Rpair−1 ,Rpair ,Rpair+1 )
12 E. remove ( pa i r )
13 Pe r s i s t e n c ePa i r s = RecomputePairs (E ,X )

Figure 18: The pseudocode for the PersiSort algorithm.
R−1 means the last run, and R−2 is the second to last
run. Rpair is the run in the current configuration that
contains the persistence pair, and Rpair±1 indicate the
runs before and after the current run, respectively.
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Abstract

Let P be a set of n = 2m+1 points in the plane in gen-
eral position. We define the graph GMP whose vertex
set is the set of all plane matchings on P with exactly
m edges. Two vertices in GMP are connected if the two
corresponding matchings have m− 1 edges in common.
In this work we show that GMP is connected.

1 Introduction

Reconfiguration is the process of changing a struc-
ture into another—either through continuous motion
or through discrete changes. Concentrating on plane
graphs and discrete reconfiguration steps of bounded
complexity, like exchanging one edge of the graph for an-
other edge such that the new graph is in the same graph
class, a single reconfiguration step is often called an edge
flip. The flip graph is then defined as the graph hav-
ing a vertex for each configuration and an edge for each
flip. Flip graphs have several applications, for example
morphing [6] and enumeration [8]. Three questions are
central: studying the connectivity of the flip graph, its
diameter, and the complexity of finding the shortest flip
sequence between two given configurations. The topic
of flip graphs has been well studied for different graph
classes like triangulations [3, 15, 16, 17, 18, 20, 21], plane
spanning trees [11, 12], plane spanning paths [2, 5], and
many more. For a nice survey see [10].

For matchings usually other types of flips were consid-
ered since a perfect matching cannot be transformed to
another perfect matching with a single edge flip. A nat-
ural flip in perfect matchings is to replace two matching
edges with two other edges, such that the new graph
is again a perfect matching. These flips were studied
mostly for convex point sets [9, 19]. While the accord-
ing flip graph is connected on convex point sets it is
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Malmö University, anna.brotzner@mau.se

§danielperz@gmx.at
¶Department of Computer Science, ETH Zürich,
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Figure 1: Flipping a matching edge: the previously un-
matched point p is matched to q.

open whether this flip graph is connected for any set of
points in general position. Other types of flips in perfect
matchings can be found in [1, 4, 7].

In this work we study a setting where single edge flips
are possible for matchings. Let P be a set of n = 2m+1
points in the plane in general position (that is, no 3
points are collinear). An almost perfect matching on
P is a set M of m line segments whose endpoints are
pairwise disjoint and in P. The matching M is called
plane if no two segments cross.

Let MP denote the set of all plane almost perfect
matchings on P. We define the flip graphGMP with ver-
tex setMP through the following flip operation. Con-
sider a matching M1 and let p be the unmatched point.
Let q ̸= p be a point in P such that the segment pq does
not cross any segment in M1. The flip now consists of
removing the segment incident to q from the matching
and adding pq instead, see Figure 1. Note that this
gives another plane almost perfect matchingM2. In the
graph GMP , the vertices corresponding to M1 and M2

are adjacent.
In this paper, we prove the following theorem.

Theorem 1 For any set P of n = 2m + 1 points in
general position in the plane the flip graph GMP is con-
nected.

In Section 2 we give an overview of the used tech-
niques and the proof of Theorem 1. Then, in Section 3
we prove the lemmata used for the proof of Theorem 1.

2 Overview and Proof of Theorem 1

In this section, we give an overview of our used tech-
niques and the proof of Theorem 1.
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Let G = (V,E) be a graph G and letM be a matching
in G. We call a path P in G an alternating path if the
edges of P lie alternately in M and in E \M . A plane
path that alternately consists of matching and non-
matching edges and connects to the unmatched point
gives rise to a sequence of flips, see Figure 2 for an ex-
ample.

To find such a path, we consider so-called segment
endpoint visibility graphs: graphs that encode the visi-
bility between the endpoints of a set of segments. More
precisely, given a set S of (non-intersecting) segments
in the plane, its segment endpoint visibility graph is
the graph that contains a vertex for every segment end-
point, and an edge between two vertices if the corre-
sponding segment endpoints either (1) are connected by
a segment in S, or (2) “see” each other, meaning that
the open segment between them does not intersect any
segment from S. Hoffmann and Tóth [13] proved that
segment endpoint visibility graphs always admit a sim-
ple Hamiltonian polygon—this is a plane Hamiltonian
cycle—, and moreover presented an algorithm to find
such a polygon. This result is crucial for us, as a plane
perfect matching can be considered as a set of segments
in the plane. Hence, for every plane matching M there
exists a plane subgraph of the segment endpoint visi-
bility graph of M that is the (not necessarily disjoint)
union of a Hamiltonian cycle and M.
Even disregarding planarity, we show

Lemma 2 Let G be an undirected graph that is the
union of a Hamiltonian cycle C and a perfect match-
ing M. Let e = ab be a matching edge and let c be any
vertex different from a. Then there exists an alternating
path P that starts with the vertex a and the edge e and
ends with the vertex c.

The proof of this lemma, and the one of Lemma 3
stated below, are postponed to Section 3.

We denote the symmetric difference of two graphs
A,B with A△B. Given the setup of Lemma 2, we can
compute another matching M2 = M △ P , in which a
is unmatched. This modification corresponds to a se-
quence of flips in a point set of odd size, see Figure 2.
This flip sequence starts with the matching M = M1

and point c being unmatched, and ends with the match-
ing M2 and point a being unmatched.

To prove that the flip graph GMP is connected, we
show that there always exists a sequence of flips that
transforms a given plane almost perfect matching into
another plane almost perfect matching, where we may
choose any fixed point to be the unmatched point.

Lemma 3 Let M1 be a plane almost perfect matching
and let t be an arbitrary point of P. Then there exists
a sequence of flips to a matching M2 in which the un-
matched point is t.

a
c

a
c

a
c

a
c

Figure 2: A plane alternating path in the visibility
graph gives rise to a sequence of flips.

We use Lemma 3 to show that we can flip every
matchingM to a canonical matching MC , which we de-
fine in the following way. Let P = {p1, p2, . . . , p2m+1},
where the points are labeled from left to right.
The canonical matching MC consists of the edges
p1p2, p3p4, . . . , p2m−1p2m with p2m+1 remaining un-
matched. It follows from the ordering of the points that
this matching is plane.

Proof. [Proof of Theorem 1] Let M be any plane al-
most perfect matching on P. Let i ≥ 1 be the small-
est index for which the edge p2i−1p2i is not in M. We
show that there is a sequence of flips on the point set
{p2i−1, p2i, . . . , p2m, p2m+1} after which p2i−1p2i is in
the resulting matching. In the following, for simplic-
ity of notation, we set i = 1.

Using Lemma 3, we first flip to a matching M2 in
which the point p1 is unmatched. As the segment p1p2 is
not crossed by any other segment, we perform one more
flip which puts p1p2 into the resulting matching. Now
we inductively continue the argument on the point set
P ′ = {p3, . . . , p2m+1} and eventually reach the canon-
ical matching MC . Since thus any matching can be
transformed to MC and because the direction of a se-
quence of flips can be reverted, the statement of Theo-
rem 1 follows. □

3 Proofs of the Lemmata

In this section, we prove Lemma 2 and Lemma 3. We
begin this section with presenting a procedure to find
an alternating path in an abstract graph. Note that we
do not require the path to be Hamiltonian.

Lemma 2 also follows from Lemma 6 in [14]. For the
sake of exposition, we give an alternative proof of the
same fact, which is arguably simpler.
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Lemma 2 Let G be an undirected graph that is the
union of a Hamiltonian cycle C and a perfect match-
ing M. Let e = ab be a matching edge and let c be any
vertex different from a. Then there exists an alternating
path P that starts with the vertex a and the edge e and
ends with the vertex c.

Proof. In a first step, we reduce to the situation where
no matching edge except possibly e lies on the cycle C,
that is, C ∩M ⊆ {e}. To this end, assume that there is
a matching edge u1u2 lying on the path {u0, u1, u2, u3}
of the cycle C. We define the graph G′ with vertex
set V (G′) = V (G) \ {u1, u2} by keeping all edges of G
induced by V (G′) and adding the edge u0u3. It follows
from the construction that G′ is again the union of a
Hamiltonian cycle and a perfect matching and that G′

contains an alternating path starting at a and ending at
c if and only if G contains an alternating path starting
at a and ending at c. As we can iterate this process, in
the following we may assume that C ∩M ⊆ {e}.
We now describe an algorithm that explicitly con-

structs a required alternating path. The algorithm con-
structs a sequence of graphs G2, G3, . . . , GK , starting
with G2 = {e}, with the following properties:

(1) the graph Gk has k vertices v1, . . . , vk;

(2) Gk has two vertices of degree 1, namely v1 and vk;

(3) all other vertices of Gk have degree 2 and are inci-
dent to one edge in M and one edge in C \M ;

(4) v1 = a, v2 = b and vK = c.

From these properties it follows that the last graph
GK is the disjoint union of cycles and the required al-
ternating path P. Let us again point out that we do
not require the alternating path to be Hamiltonian. It
remains to describe the algorithm and prove that the
constructed sequence of graphs satisfies the above prop-
erties. We start by setting G2 = {e}, which trivially
satisfies all the properties. In order to construct Gk+1

fromGk we distinguish two cases, depending on whether
in Gk the (unique) edge ẽ incident to vk is in M or not.

Case 1: ẽ ∈ C \M. Let m = (vk, w) be the match-
ing edge incident to vk. We define Gk+1 by adding m
to Gk. By Property (3) for Gk, all vertices in Gk ex-
cept vk are incident to an edge in M , and as M is a
perfect matching, this implies that w is not a vertex
of Gk. Thus, Gk+1 has one more vertex, proving Prop-
erty (1) for Gk+1. The only vertices whose degrees have
changed are w = vk+1, which now has degree 1, and vk
which is now also incident to an edge in M. This proves
Properties (2) and (3).
Case 2: ẽ ∈ M. For an illustration of this case,

see Figure 3. Consider the unique path Q in C from
vk to c which does not pass through a and let w be
the first vertex on this path that is not a vertex of Gk.

a a

b b

c c

e e
vk

w vk+1

Figure 3: ConstructingGk+1 (right) fromGk (left). The
pathsGk andGk+1 are depicted with lines, while unused
edges of G are dashed. The matching edges are red, the
cycle edges are black.

Let furthermore Q′ be the subpath of Q starting at vk
and ending at w. Set vk+1 = w. For any edge e′ in
Q′, add e′ to Gk+1 if and only if it is not in Gk and re-
move it otherwise. Properties (1) and (2) follow directly
by definition. For Property (3), note that the only ver-
tices whose neighborhoods have changed are the vertices
on Q′. As Q′ is a path on C and we assumed that C
contains no matching edge other than e, it follows that
no matching edge was removed. All vertices are thus
still incident to exactly one matching edge. Further, as
C is a cycle, every vertex in Q′ is incident to exactly two
edges in C \M . It follows from the construction that
exactly one of these edges is removed while the other
one is added, proving Property (3).

Finally, we stop the procedure as soon as we add the
vertex c, which has to happen for some GK , K ≤ n,
where n is the number of vertices of G. This proves the
last part of Property (4) and thus finishes the proof. □

We can now make use of such an alternating path to
prove Lemma 3.

Lemma 3 Let M1 be a plane almost perfect matching
and let t be an arbitrary point of P. Then there exists
a sequence of flips to a matching M2 in which the un-
matched point is t.

Proof. Let p be the unmatched point in M1. If p = t
then we are trivially done, so assume for the remainder
that p ̸= t. We duplicate p such that the two points p, p′

have the same neighborhood in the segment endpoint
visibility graph. Moreover, we add the edge pp′ to M1.
By Theorem 1 in [13], there is a plane Hamiltonian cycle
C that spans all segment endpoints of M1. Moreover,
M1 ∪C is plane. Let u be the vertex that is matched to
t in M1. By Lemma 2, there is an alternating path P
from t to p in C∪M1 that starts with the edge tu. Since
the underlying graph is plane, P is also plane. If p and
p′ are in P, then the edge pp′ is also in P because pp′ is
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a matching edge. Hence, we can contract p and p′ to a
single point p such that P is still an alternating path.
Now, we construct a matching M2 by transforming

M1 via a sequence of flips along P to get M2 =M1△P.
M2 is an almost perfect matching in which p is matched,
and t is the unmatched point. □

The crux in the proof of Lemma 3 lies in safely dupli-
cating the unmatched point p. Both points shall see the
same segment endpoints, while visibility between the
segment endpoints must not be blocked. This can be
achieved by constructing the cell arrangement induced
by the lines through all pairs of segment endpoints, and
then placing the duplicated point p′ in the cell in which p
is located. Since the new segment pp′ does not intersect
any line of the line arrangement, it does not intersect
any edge of the segment endpoint visibility graph ei-
ther. Moreover, any segment endpoint that sees p sees
the entire cell in which p is located, and in particular it
also sees p′.

4 Remarks on the Diameter of the Flip Graph

From the proof of Theorem 1 it follows directly that
no more than O(n2) flips are needed to transform any
plane almost perfect matching on P into any other plane
almost perfect matching on P. In other words, the di-
ameter of the flip graph GMP is in O(n2).

On the other hand, flipping from one plane almost
perfect matching M1 to another plane almost perfect
matchingM2 may take linearly many steps. To see this,
consider two disjoint matchings M1 and M2. Each flip
adds at most one edge of the target matching M2, so it
takes at least m flips to transform M1 into M2.
Moreover, it may take linearly many flips to reach a

matching where the unmatched point lies on the bound-
ary of the convex hull, as can be seen in the example
in Figure 4. We need to flip edges on each layer of the
given matching M1. However, observe that this is only
one sequence of flips during the procedure of transform-
ing M1 to the canonical matching MC , and after re-
moving the first edge, the unmatched point will already
be closer to the boundary of the convex hull. This in-
dicates that there might exist a procedure that takes
fewer than O(n2) flips to transform any given matching
to the canonical matching MC .

5 Conclusion

We considered the flip graph GMP of plane matchings
for point sets of odd size, and showed that GMP is con-
nected. In the course of the proof, we also showed that
the union of a Hamiltonian cycle and a perfect matching
always contains an alternating path from an arbitrary
matching edge to any arbitrary point.

Figure 4: It takes Ω(n) flips to transform the given
matching to any matching where the unmatched point
is on the boundary of the convex hull.

While we showed that the flip graph is connected, it
would be interesting to determine more precise bounds
for the diameter of GMP .
Finally, the question of connectedness remains open

for the flip graph of plane perfect matchings on point
sets of even size, where in each flip exactly two edges
are replaced.
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Finding maximum matchings in RDV graphs efficiently

Therese Biedl∗ Prashant Gokhale †

Abstract

In this paper, we study the maximum matching problem
in RDV graphs, i.e., graphs that are vertex-intersection
graphs of downward paths in a rooted tree. We show
that this problem can be reduced to a problem of testing
(repeatedly) whether a vertical segment intersects one
of a dynamically changing set of horizontal segments,
which in turn reduces to an orthogonal ray shooting
query. Using a suitable data structure, we can therefore
find a maximum matching in O(n log n) time (presum-
ing a linear-sized representation of the graph is given),
i.e., without even looking at all edges.

1 Introduction

The Matching problem is one of the oldest problems
in the history of graph theory and graph algorithms:
Given a graph G = (V,E), find a matching (a set of
pairwise non-adjacent edges) that is maximum (has the
largest possible number of edges). See for example ex-
tensive reviews of the older history of matchings and its
applications in [2, 22]. The fastest known algorithm for
general graphs runs in O(

√
nm) time ([25], see also [32]).

There have been some recent break-throughs for algo-
rithms for maximum flow, culminating in an algorithm
with almost-linear run-time O(m1+o(1)) [6]; this imme-
diately implies an almost-linear algorithm for Match-
ing in bipartite graphs. See also [7] for a purely combi-
natorial almost-linear algorithm for the same problem.

Greedy-algorithm and interval graphs. Naturally one
wonders whether truly linear-time algorithms (i.e., with
O(m + n) run-time) exist, at least if the graphs have
special properties. One natural approach for this is to
use the greedy-algorithm for Matching shown in Algo-
rithm 1, which clearly takes linear time. With a suitable
vertex order this will always find the maximum match-
ing (enumerate the vertices so that matched ones appear
consecutively at the beginning); the challenge is hence
to find a vertex order (without knowing the maximum
matching) for which the greedy-algorithm is guaranteed
to work.

∗David R. Cheriton School of Computer Science, University of
Waterloo, biedl@uwaterloo.ca

†David R. Cheriton School of Computer Science, University of
Waterloo, prashant.gokhale@uwaterloo.ca

Algorithm 1: Greedy-algorithm for matching

Input: A graph G with a vertex order v1, . . . , vn
1 Initialize the matching M = ∅
2 for i = 1, . . . , n do
3 if vi is not yet matched and has unmatched

neighbours then
4 among all unmatched neighbours of vi, let

vj be the one that minimizes j
// j > i, for otherwise vj would

have been matched earlier

5 add (vi, vj) to matching M

6 return M

One graph class where this can be done is the inter-
val graphs, i.e., the intersection graphs of horizontal seg-
ments in the plane. It was shown by Moitra and Johnson
[26] that the greedy-algorithm always finds a maximum
matching in an interval graph as long as we sort the ver-
tices by left endpoint of their intervals. This gives an
O(m+n) algorithm for interval graphs since an interval
representation can be found in O(m+n) time [3]. Liang
and Rhee [18] improve this further (presuming an inter-
val representation is given) by rephrasing the greedy-
algorithm as follows (see also Algorithm 2). Rather than
adding an edge to the matching when the left endpoint
(i.e., the one with the smaller index) is encountered, we
add it when the right endpoint is encountered. We also
explicitly maintain a data structure F that stores the
free vertices, by which we mean vertices that were pro-
cessed already but are as-of-yet unmatched. Liang and
Rhee [18] implement F with a balanced binary search
tree (storing left endpoints of intervals); then all opera-
tions required on F can be performed in O(log n) time.
This therefore leads to an O(n log n) time algorithm for
solving Matching in interval graphs; in particular this
is sub-linear run-time if the graph has ω(n log n) edges.
This runtime can be easily improved to O(n log log n) by
using a van Emde Boas tree [31], as observed by Liang
and Rhee [30].

Our results. In this paper, we take inspiration from
[18] and develop sub-linear algorithms for Matching
in RDV graphs, i.e., graphs that can be represented
as vertex-intersection graphs of downward paths in a
rooted tree T . (This is called an RDV representation;
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Algorithm 2: Delayed-Greedy-algorithm

Input: A graph G with a vertex order v1, . . . , vn
1 Initialize the matching M = ∅
2 Initialize the set of free vertices F = ∅
3 for j = 1, . . . , n do
4 if vj has neighbours in F then
5 among such neighbours, let vi be the one

that minimizes i
6 add (vi, vj) to matching M
7 delete vi from F

8 else
9 add vj to F

10 return M

formal definitions will be given below.) RDV graphs
were introduced by Gavril [13]; many properties have
been discovered and for many problems efficient algo-
rithms have been found for RDV graphs [1, 20, 21, 29],
quite frequently in contrast to only slightly bigger graph
classes where the problem turns out to be hard. It is
easy to see that all interval graphs are RDV graphs, so
our results re-prove the results for interval graphs from
[18].

RDV graphs can be recognized in polynomial time,
and along the way an RDV representation is produced
[13]. (The run-time has been improved, and even a
linear-time algorithm has been claimed but without
published details; see [4, Section 2.1.4] for more on the
history.)

We show in this paper that if we are given an n-vertex
graph G with an RDV representation on a tree T , then
we can find a maximum matching in O(|T | + n log n)
time. There always exists an RDV representation of G
with |T | ∈ O(n), so if we are given a suitable one then
the run-time becomes O(n log n), hence sub-linear.

Our idea is to use the delayed-greedy-algorithm (Al-
gorithm 2), and to pick a suitable data structure for the
set F of free vertices. The key ingredient here is that
‘does vj have a neighbour in F ’ can be re-phrased, us-
ing the RDV representation, as the question whether a
vertical segment intersects an element of a dynamically
changing set of horizontal line segments, and if so, to
return the one with maximal y-coordinate among them.
This question in turn can be phrased as an orthogonal
ray-shooting query, for which suitable data structures
are known to exist. The current best implementation of
them uses linear space and O(log n) time per operation
[14]; this gives our result since we need O(n) operations.
We use the ray-shooting data structure as a black box,
so if the run-time were improved (e.g. one could dream
of O(log log n) run-time if coordinates are integers in
O(n), as they are in our application) then the run-time
of our matching-algorithm would likewise improve. Fi-

nally, we also study some possible improvements and
extensions.

Other related results: There are a number of other
results concerning fast algorithms to solve Matching
in intersection graphs of some geometric objects. The
results for interval graphs were extended to circular arc
graphs (intersection graphs of arcs of a circle) [18]. In
an entirely different approach, Matching can also be
solved very efficiently in permutation graphs (intersec-
tion graphs of line segments connecting two parallel
lines) [30]; see also [9] for an (unpublished) matching-
algorithm for permutation graphs that is slower but
beautifully uses range queries to find the matching. We
should note that RDV graphs are unrelated to circu-
lar arc graphs and permutation graphs (i.e., neither a
subclass nor a superclass); Figure 1 gives a specific ex-
ample. As such, these results do not directly impact
ours or vice versa.

Permutation graphs are a special case of co-
comparability graphs, i.e., graphs for which the comple-
ment has an acyclic transitive orientation; these can also
be viewed as intersections of curves between two parallel
lines [15]. For these, maximum matchings can be found
in linear time [24].

Finally, the greedy-algorithm actually works beyond
interval graphs; in particular Dahlhaus and Karpinski
[8] showed that it finds the maximum matching for
strongly chordal graphs. These are the graphs that are
chordal (every cycle C of length at least 4 has a chord,
i.e., an edge between two non-consecutive vertices of
C), and where additionally every even-length cycle C
has a chord (v, w) such that an odd number of edges of
C lie between v and w. The question whether chordal
graphs have a linear-time algorithm for Matching re-
mains open. But likely the answer is no, because as
argued in [8], a linear-time algorithm for testing the ex-
istence of a perfect matching (i.e., a matching of size
n/2) in a chordal graph would imply a linear-time algo-
rithm for the same problem in any bipartite graph that
is dense (has Θ(n2) edges).

Graph Class Runtime Reference
Interval graphs O(n log n) [18]
Interval graphs O(n log log n) Section ??

Circular arc graphs O(n log n) [18]
Permutation graphs O(n log log n) [30]

Strongly chordal graphs O(n+m) [8]
Co-comparability graphs O(n+m) [24]

RDV graphs O(n log n) Section 3

Table 1: Existing and new results for Matching in
some classes of graphs, presuming a suitable intersection
representation is given and sufficiently small.

Table 1 gives an overview of existing and new results
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for Matching in some classes of intersection graphs of
objects. Our paper is structured as follows. After re-
viewing some background in Section 2, we give our main
result for RDV graphs in Section 3. We briefly discuss
interval graphs, as well as other possible extensions and
open problems in Section 4.

2 Background

In this paper we study vertex-intersection graphs of sub-
trees of trees. We first define this formally, and then
restrict the attention to a specific subclass.

Definition 1 Let G be a graph. A representation of
G as a vertex-intersection graph of subtrees of a tree
consists of a host-tree T and, for each vertex v of G, a
subtree T (v) of T such that (v, w) is an edge of G if and
only if T (v) and T (w) share at least one node of T .

Such an intersection representation is sometimes also
called a clique-tree, and slightly abusing notation, we
use the word clique-tree also for the host tree T where
convenient. As convention, we use the term ‘node’ for
the vertices of the clique-tree, to distinguish them from
the vertices of the graph represented by it. It is well-
known that a graph has a clique-tree if and only if it is
chordal [12]. We now review some properties of clique-
trees that have been rooted.

Definition 2 Let G be a graph with a rooted clique-tree
T . For any vertex v, let t(v) be the topmost (closest to
the root) vertex in the subtree T (v) of v. A bottom-up
enumeration of G is a vertex order obtained by sorting
vertices by decreasing distance of t(v) to the root, break-
ing ties arbitrarily.

Note that this bottom-up enumeration can be com-
puted in O(|T | + n) time, presuming every vertex v
stores a reference to t(v).

It will be convenient to assign points in R2 to the
nodes of clique-tree T as follows. First, fix an arbitrary
order of children at each node, and then enumerate the
leaves of T as L1, . . . , Lℓ from left to right. For every
node i in T , let ℓ(i) be the leftmost (i.e., lowest-indexed)
leaf that is a descendant of i, and set x(i) to be the index
of ℓ(i). We also need the notation r(i) for the rightmost
leaf that is a descendant of i. Also, define y(i) to be
the distance of node i from the root of the clique-tree.
Figure 1 shows each node i drawn at point (x(i), y(i))
(where y-coordinates increase top-to-bottom). We can
compute x(·) with a post-order traversal and y(·) with
a BFS-traversal of host-tree T in O(|T |) time.

RDV graphs and friends: Numerous subclasses of
chordal graphs can be defined by studying graphs that
have a clique-trees with particular properties. Most

v3v4

v5

v6

v1

v7v2

L1 L2

L3 L4 L5 L6 L7 L8

0

1

2

3

1 2 3 4 5 6 7 8

Figure 1: An RDV graph together with one possible
RDV representation (for illustrative purposes the clique-
tree is much bigger than needed). Nodes are drawn
at their coordinates, and vertices are enumerated in
bottom-up order. The graph is neither a circular arc
graph nor a permutation graph.

prominent here is the idea to require that T (v) is a
path. This gives the path graphs (also known as VPT
graphs). One can further restrict the paths to be di-
rected (after imposing some edge-directions onto the
clique-tree); these are the directed path graphs. One
can restrict this even further by requiring that the di-
rections of the clique-tree are obtained by rooting the
clique-tree, and this is the graph class that we study.

Definition 3 A rooted directed path graph (or RDV
graph [27]) is a graph that has an RDV representation,
i.e., a clique-tree that has been rooted and for every ver-
tex v the subtree T (v) is a downward path, i.e., a path
that begins at some node and then always goes down-
wards.

See Figure 1 for an example of an RDV representa-
tion.1

3 Matching in RDV graphs

Assume for the rest of this section that we are given an
RDV representation of a graph G. In what follows, we
will often use ‘P (v)’ in place of ‘T (v)’ for the subtree
of a vertex v, to help us remind ourselves that these
are downward paths rather than arbitrary trees. Recall
that t(v) denotes the top (closest to the root) node of
P (v); because we have a downward path (rather than
an arbitrary tree) representing v we can now also define
b(v) to be the bottom node of P (v).

1‘RDV’ comes from ‘rooted directed vertex-intersection’.
Gavril called these ‘directed path graphs’ [13], but this later got
used for the more general graphs where the directions need not
be obtained via rooting.
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For run-time purposes we presume that ‘the RDV rep-
resentation is given’ means that we have a rooted tree
T and (for each vertex v of G) two references b(v) and
t(v) to the nodes of T that define the downward path.

Farber [10] showed that RDV graphs are strongly
chordal, and Dahlhaus and Karpinski [8] showed that
the greedy algorithm works correctly on strongly
chordal graphs if we consider vertices in a so-called
strong elimination order (which is usually assumed to be
given with a strongly chordal graph). This suggests that
the greedy-algorithm works for RDV graphs, but there
is one missing piece: How do we get a strong elimina-
tion order from an RDV representation efficiently? This
is very easy (use the bottom-up enumeration), and the
proof that it works is not hard, but requires some more
definitions and is therefore delayed to the appendix.

Theorem 1 Let G be a graph with a given RDV rep-
resentation. Then the greedy matching algorithm, ap-
plied to a bottom-up enumeration, returns a maximum
matching.

Exactly as in [18], to achieve a sub-linear run-time
we will not use the greedy-algorithm directly but in-
stead use the equivalent delayed-greedy-algorithm (Al-
gorithm 2). The main bottleneck for the run-time is
then to implement a data structure for the set F of free
vertices. Such a data structure should store indexed ver-
tices and must support the following three operations:

A. insert a new vertex

B. delete a vertex

C. query for the smallest neighbour, i.e., given a ver-
tex vj not in F , either determine that vj has no
neighbours in F , or return the neighbour vi of vj
in F that minimizes index i.

The first two operations are straightforward, but the
third one is non-trivial if we want to use o(degree(vj))
time. To this end, we reduce adjacency queries in an
RDV graph to the question of whether a horizontal seg-
ment intersects a vertical segment. We need some defi-
nitions first.

Definition 4 Let G be a graph with an RDV represen-
tation. For each vertex v, define the following (see Fig-
ure 2 for examples):

• The horizontal segment s(v) of v is the segment
between the point of t(v) and (x(r(t(v))), y(t(v))),
i.e., it extends rightward until it is above the right-
most descendant of t(v).

• The vertical segment q(v) of v is the segment be-
tween the point of b(v) and (x(b(v)), y(t(v)), i.e., it
extends upward until it is to the right of t(v).

Recall that t(v) has the same x-coordinate as its left-
most descendant, so the x-range of segment s(v) is ex-
actly the range of x-coordinates among descendants of
t(v). We also note that the name ‘q’ for the vertical seg-
ment was chosen since this will be used to implement
the query operation.
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3
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v7

v2

v5

v6

Figure 2: Mapping the vertices of the example in Fig-
ure 1 to horizontal and vertical segments (not all are
shown).

Theorem 2 Let G be a graph with an RDV represen-
tation and let v1, . . . , vn be the bottom-up enumeration
of vertices. Then for any i < j, edge (vi, vj) exists if
and only if the vertical segment q(vj) intersects the hor-
izontal segment s(vi).

Proof. Since q(vj) is a vertical segment and s(vi) is a
horizontal segment, they intersect if and only if both
the x-coordinates and y-coordinates line up correctly,
i.e., x(t(vi))=x(ℓ(t(vi))) ≤ x(b(vj)) ≤ x(r(t(vi))) and
y(t(vj)) ≤ y(t(vi)) ≤ y(b(vj)).
Assume first that edge (vi, vj) exists, which means

that P (vi) and P (vj) have a node u in common. Among
all such nodes u, pick the one that is closest to the
root; this implies u ∈ {t(vi), t(vj)}. By i < j we actu-
ally know u = t(vi), because if u ̸= t(vi) then u=t(vj)
would be a strict descendant of t(vi) and have larger
y-coordinate, contradicting the bottom-up elimination
ordering. Since u ∈ P (vj), node b(vj) is a descen-
dant of u (which in turn is a descendant of t(vj)),
so y(t(vj)) ≤ y(u)=y(t(vi)) ≤ y(b(vj)) and the y-
coordinates line up. The x-coordinates line up since
b(vj) is a descendant of t(vi)=u and the horizontal seg-
ment s(vi) covers all such descendants.

Assume now that the segments intersect. By
y(t(vj)) ≤ y(t(vi)) ≤ y(b(vj)) then path P (vj) contains
a node (call it u) with y(u) = y(t(vi)). If u equals t(vi)
then P (vi) and P (vj) have node t(vi) in common and
(vi, vj) is an edge as desired. If u ̸= t(vi), then these two
nodes (with the same y-coordinate) have a disjoint set of
descendants, so the intervals Iu = [x(ℓ(u)), x(r(u))] and
Ii = [x(ℓ(t(vi))), x(r(t(vi)))] are disjoint. Since b(vj) is
a descendant of u ∈ Pj , we have x(b(vj)) ∈ Iu, but since
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the x-coordinates line up we have x(b(vj)) ∈ Ii. This is
impossible. □

In light of this insight, we now can reformulate our
requirements on a data structure for F as follows. We
want to store horizontal segments (associated with ver-
tices of a graph) and must be able to support the fol-
lowing three operations:

A’. insert a new horizontal segment,

B’. delete a horizontal segment,

C’. query whether a vertical segment q(vj) intersects
a segment in F , and if so, among all intersected
segments return the segment s(vi) that maximizes
the y-coordinate.

We can reformulate C’ as a ray-shooting query as fol-
lows. Replace the vertical segment q(vj) by a vertical
ray q⃗(vj) obtained by directing q(vj) upward. (So the
ray originates at the point of b(v) and goes vertically
towards smaller y-coordinates.)

Observation 1 To perform operation C ′, it suffices to
do the following:

C”. query whether a ray q⃗(vj) intersects a segment in
F , and if so, among all intersected segments return
the first segment s(vi) that is hit by the ray.

Proof. At the time of the query, the set F of free ver-
tices contains only segments of vertices vi with i < j.
Therefore all segments intersected by ray q⃗(vj) have y-
coordinate at least y(t(vj)), and also intersect the seg-
ment q(vj). So we will only report correct segments.
Since the ray is vertically upward (while y-coordinates
increase in downward direction), the first segment that
is hit is the one that maximizes the y-coordinate. □

Operation C” is the well-known orthogonal ray-
shooting problem, and operations A’ and B’ means that
we want a dynamic variant. Many data structures have
been developed for this (some for more general versions),
see for example [23], [17] for older results with slower
processing time. For the orthogonal ray shooting prob-
lem specifically, the best run-time bounds achieved are
by Giyora and Kaplan [14], who showed how to im-
plement all three operations in O(log n) time, using
O(n) space (assuming the data structure stores up to
n items). Later on this was generalized to drop the re-
quirement of orthogonality [28] without affecting space
or runtime. Some of these data structures assume that
the line segments are disjoint. The horizontal segments
we have defined earlier are not necessarily disjoint, but
we can make them disjoint (without affecting the out-
come) by adding n−i

n to the y-coordinate of s(vi).
With this, we can put everything together into our

main theorem.

Theorem 3 Given an n-vertex graph G with an RDV
representation T , the maximum matching of G can be
found in O(|T |+ n log n) time.

Proof. Parse T to compute the x-coordinates and y-
coordinates of all nodes in T , then bucket-sort the ver-
tices by decreasing y(t(v)) to obtain the bottom-up or-
der v1, . . . , vn in O(|T |+n) time. By Theorem 1 apply-
ing the greedy-algorithm with this vertex-ordering will
give a maximum matching. Using the delayed greedy-
algorithm, the run-time of the algorithm is reduced to
performing operations A-C O(n) times. By storing the
free set F as horizontal segments, this by Theorem 2 is
the same as performing operations A’, B’ and C” O(n)
times. Using a suitable data structure for orthogonal
ray shooting [14], this takes O(log n) time per opera-
tion and hence O(n log n) time in total. □

One can easily argue that any RDV graph has an
RDV representation T with |T | ∈ O(n), for otherwise
two adjacent nodes of T are used by the same set of sub-
trees and could be combined into one. So the run-time
becomes O(n log n) if a suitably small RDV representa-
tion is given.

Recall that for interval graphs, an improvement of the
run-time for matching from O(n log n) to O(n log log n)
is possible by exploiting that all intervals can be de-
scribed via integers in O(n) and storing F using van
Emde Boas trees [30]. This naturally raises an open
question: Could the run-time of Theorem 3 also be im-
proved to O(n log log n) time, presuming |T | ∈ O(n)?
The bottleneck for this would be to improve the run-
time for the orthogonal ray-shooting data structure if
all coordinates are (small) integers. This question was
explicitly asked by Giyora and Kaplan [14], and appears
to be still open. Could we at least achieve run-time
O(n(log log n)k) for some constant k for RDV graphs?

4 Clique trees where subtrees have few leaves

An RDV graph is a chordal graph with a rooted clique-
tree where every subtree T (v) has exactly one leaf. A
natural generalization of this graph class are the chordal
graphs with a rooted clique-tree where every subtree
T (v) has at most ∆ leaves. (A very similar concept
was introduced by Chaplick and Stacho under the name
of vertex leafage [5]; the only difference is that they
considered unrooted clique trees and so count the root
of T (v) as leaf if it has degree 1.)

Theorem 4 Let G be a graph with a rooted clique-tree
T where all subtrees have at most ∆ leaves. Then the
greedy-algorithm applied to the bottom-up enumeration
can be implemented in O(|T |+∆n log n) time.

Proof. For each vertex v, split T (v) into k ≤ ∆ paths
P1(v), . . . , Pk(v), each connecting the root t(v) of T (v)
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to a leaf, such that their union covers all of T (v). Define
segment s(v) as before (it only depends on t(v)), and
define k query-segments q1(v), . . . , qk(v) for the paths.
One easily verifies that for i < j vertex vj is a neigh-
bour of vi if and only if at least one of q1(vj), . . . , qk(vj)
intersects s(vi). So to perform operation C, we do a ray-
shooting query for each of q⃗1(vj), . . . , q⃗k(vj) and choose
among the returned segments (if any) the one that has
maximum y-coordinate. With this operation C can be
implemented in O(∆ log n) time. All other aspects of
the greedy-algorithm are exactly as in Section 3. □

Unfortunately, this does not improve the time to find
maximum matchings for such graphs, because there is
no guarantee that the greedy-algorithm finds a maxi-
mum matching when applied with a bottom-up enumer-
ation. To see a specific example, consider the directed
path graphs (recall that these are obtained by requiring
T (v) to be a directed path after directing the clique-tree,
but the edge-directions need not come from rooting the
clique-tree). This is a strict superclass of RDV graphs,
for example the graph in Figure 3, which is also known
as 4-trampoline, is a directed path graph but not an
RDV graph since it is not even strongly chordal [11]. For
any choice of root, every path T (v) becomes a subtree
with at most two leaves, and so the greedy-algorithm
can be implemented in O(n log n) time (presuming the
clique-tree was small). Unfortunately, this does not nec-
essarily give a maximum matching, see Figure 3.
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v2

Figure 3: A directed path graph that is not strongly
chordal. With the depicted bottom-up enumeration,
the greedy-algorithm would choose matching (v5, v2),
(v6, v1), (v8, v3) and leave v4, v7 unmatched even though
the graph has a matching of size 4.

This raises another natural open problem: Can we
find a maximum matching in a directed path graph
(with a given small clique-tree) in O(n log n) time? How
about the path graphs, an even broader class?
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[23] K. Mehlhorn and S. Näher. Dynamic fractional cascad-
ing. Algorithmica, 5(1–4):215–241, 2023.

[24] G. Mertzios, A. Nichterlein, and R. Niedermeier. A
linear-time algorithm for maximum-cardinality match-
ing on cocomparability graphs. SIAM J. Discret. Math.,
32(4):2820–2835, 2018.

[25] S. Micali and V. Vazirani. An O(
√

|V ||E|) algorithm
for finding maximum matching in general graphs. In
21st Annual Symposium on Foundations of Computer
Science (sfcs 1980), pages 17–27, 1980.

[26] A. Moitra and R. Johnson. A parallel algorithm for
maximum matching on interval graphs. In Proceedings
of the International Conference on Parallel Processing,
ICPP ’89, pages 114–120. Penn State University Press,
1989.

[27] C. Monma and V. Wei. Intersection graphs of paths in
a tree. J. Comb. Theory, Ser. B, 41(2):141–181, 1986.

[28] Y. Nekrich. Dynamic planar point location in optimal
time. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2021, page
1003–1014, New York, NY, USA, 2021. Association for
Computing Machinery.

[29] C. Papadopoulos and S. Tzimas. Computing a mini-
mum subset feedback vertex set on chordal graphs pa-
rameterized by leafage. Algorithmica, 86(3):874–906,
2024.

[30] C. Rhee and Y. Liang. Finding a maximum matching in
a permutation graph. Acta Informatica, 32(8):779–792,
1995.

[31] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and
implementation of an efficient priority queue. Mathe-
matical systems theory, 10:99–127, 1976.

[32] V. V. Vazirani. A proof of the MV matching algorithm.
CoRR, abs/2012.03582, 2020.

Appendix

5 Proof of Theorem 1

To prove the theorem, we first need some definitions. Write
N [v] for the closed neighbourhood of a vertex, i.e. the set
consisting of v and all its neighbours. Call a vertex v simple
[11] if N [v] is a clique that can be ordered as w1, . . . , wk such
that N [w1] ⊆ N [w2] ⊆ · · · ⊆ N [wk]. The crucial ingredient
is the following observation:

Lemma 5 Let G be a graph with an RDV representation.
Then a vertex v1 that maximizes y(t(v1)) is simple.

Proof. Since v1 maximizes y(t(v1)), node t(v1) must belong
to P (w) for any neighbour w of v. This shows immediately
that N [v1] is a clique since all subtrees of neighbours share
t(v1).

Now remove all nodes from the RDV representation that
have y-coordinate strictly bigger than y(t(v1)); by choice of
v1 this does not remove any adjacencies. If we now sort the
neighbours of v as w1, . . . , wk by decreasing y-coordinate of
their top endpoints, then (since all subtrees are downward
paths that end at t(v1)) we have P (w1) ⊆ · · · ⊆ P (wk) and
so v1 is simple. □

We can view a bottom-up elimination order v1, . . . , vn as
using a vertex v that maximizes y(t(v)) as v1, removing it
from the graph, and repeating until the graph is empty. By
the above, then each vi is a simple vertex with respect to
the graph induced by {vi, . . . , vn}. Farber [11, Theorem 3.3]
showed that a vertex order with this property is a strong
elimination order, and as mentioned earlier, using a strong
elimination order guarantees that the greedy-algorithm for
matching succeeds [8].

6 The graph of Figure 1

We claimed earlier that the graph G in Figure 1 is neither a
circular arc graph nor a permutation graph, and we briefly
argue this here. We repeat the graph here for convenience.

v3v4

v5

v6

v1

v7v2

Figure 4: The graph G of Figure 1 and a circular arc
representation of G \ {v2}.

Most of our argument considers only the graph G \ {v2}.
This is well-known not to be a comparability graph [16, Fig-
ure 5.1], and since permutation graphs are subgraphs of com-
parability graphs and closed under vertex-deletion, G is not
a permutation graph.

Next observe that vertices {v1, v3, v7} form what is known
as an asteroidal triple: any two of them can be connected
via a path that avoids the neighbourhood of the third. No
such structure can exist in an interval graph. In fact, G \
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{v2} is known to be an obstruction for Helly circular-arc
graphs [19], i.e., it does not have a circular arc representation
where for every clique C the arcs of vertices in C all share
a common point. Since {v4, v5, v6} is the only non-trivial
clique, therefore in any circular arc representation of G\{v2}
the three arcs of v4, v5, v6 do not share a common point. To
still have pairwise intersections, these three arcs together
cover the entirety of the circle. But then we cannot add an
arc for v2 anywhere since it has no edge to any of these three
vertices. Therefore G is not a circular arc graph.
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Polyhedral roll-connected colorings of partial tilings

Robert D. Barish* Tetsuo Shibuya�

Abstract

We consider the problem of coloring the faces of an edge-
to-edge partial tiling T of the xy-plane in such a man-
ner that a face-colored polyhedron P “rolling” over this
tiling – where, using less precision for the moment, each
time a face of the polyhedron is superimposed on a con-
gruent tile in T , both the face and the tile must have
the same coloring – can reach any tile from any other
tile. Here, for P corresponding to any Platonic solid,
we show that the existence of such a coloring with at
most w ≥ 1 distinct colors can be decided in O (T )
time. On the other hand, when we require at least two
internally disjoint manners of rolling from any starting
location to any ending location, and when P is the cube
and w = 3, we show that deciding the existence of and
counting such colorings becomes NP-hard and #P-hard,
respectively.

1 Introduction

In rolling polyhedra puzzles and mazes, which appear to
trace their origins to the mathematician Roland Sprague
[24] (see also Harris [19]), the challenge is traditionally
to roll a polyhedron such as a Platonic cube (i.e., a cube
with the symmetries of a Platonic solid) over a sequence
of its edges and towards some objective. This objective
may, for example, be that it arrives at a particular des-
tination with some specified end state orientation, or
that it traces a Hamiltonian tour of some subset of cells
on a board, in each case with potential complications
in the form of obstacles or positions which can only be
visited when the polyhedron has a certain orientation.
While a full review of the history of these puzzles and
mazes is outside the scope of the current work (see, e.g.,
Buchin et al. [8] for a very thorough overview), we re-
mark that such geometric games have become a staple
of recreational mathematics, and have been highlighted
in multiple instances of Martin Gardner’s “Mathemati-
cal Games” column between 1963 and 1975 [13, 16, 17]
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(with solutions to problems presented each subsequent
month [12, 14, 15]). We also refer the reader to the work
of Baes et al. [2] for an in-depth analysis and history
of rollings of various polyhedra on more general tessel-
lations.

Perhaps due to the combination of these games hav-
ing a simple intuitive description, as well as at times
unexpected depth and difficulty, there exists a substan-
tial literature to date on the computational complexity
of solving rolling polyhedra puzzles and mazes (see, e.g.,
[2, 7, 8, 20, 28]). We also briefly remark that reacha-
bility and coverage problems for rolling polyhedra have
been studied in a mechanical engineering context as a
nice example of a system under discrete nonholonomic
(i.e., path dependent) constraints [4, 21].

In this work, based on these games, and inspired in
part by the notion of rainbow connected colorings [9, 10]
and proper connected colorings [1, 6] of graphs, we intro-
duce and analyze a “Menger-like” notion of connectivity
[22] for face colorings of polygons composing edge-to-
edge partial tilings of the xy-plane, where these tilings
are defined as follows:

Definition 1. Edge-to-edge partial tiling. Letting S
be a set of polygonal tiles embedded in the xy-plane,
we refer to S as an edge-to-edge partial tiling if no two
polygons share a common interior point (i.e., polygons
are not permitted to overlap) and any adjacent polygons
have exactly one full edge in common (implying vertices
for this common edge must also overlap).

Here, in lieu of considering internally vertex disjoint
simple paths between all pairs of vertices in a graph,
we consider internally disjoint rollings of polyhedra –
per Definition 2 (given below) – between all pairs of
face colored polygons in edge-to-edge partial tilings.

Definition 2. Colored polyhedral rolling. Letting P be
a polyhedron with a face coloring HP , letting T corre-
spond to an edge-to-edge partial tiling of the xy-plane,
and letting CT be a tuple specifying face colorings for the
polygons in T , a colored polyhedral rolling is a continu-
ous rigid body motion of P on T satisfying the following
constraints:

� (Motion Constraint 1) all interior points of P must
maintain a positive non-zero z-component;

� (Motion Constraint 2) in the state where a face of
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P is superimposed on a congruent polygonal tile in
T , the cube can only be moved by being rotated
around an edge shared with T until another face of
P is superimposed on another congruent polygonal
tile in T ;

� (Motion Constraint 3) any superimposed face of P
and polygon in T must be identically colored by
HP and CT , respectively;

� (Motion Constraint 4) the initial and final states
for the motion must have a face of P superimposed
on a congruent polygon of T .

To give a higher level and more intuitive description of
Definition 2, (Motion Constraint 1) is a “hard surface”
requirement saying that the polyhedron must roll “on
top” of the tiling T rather than below or through it,
and (Motion Constraint 2) is saying that P is moved by
being “tipped over” some succession of its edges, or in
other words, rotated about an edge on the edge-to-edge
partial tiling of the xy-plane until such time that a new
face of P is superimposed on a new congruent polygonal
tile in T . Next, (Motion Constraint 3) is saying that any
face of P superimposed on a polygonal tile in T must
have the same coloring as this tile. Finally, (Motion
Constraint 4) expresses that we must begin and end the
rolling motion with P having a face superimposed on a
polygonal tile in T .
For visual intuition concerning the rigid body motion

allowed under (Motion Constraint 1) through (Motion
Constraint 4), we refer the reader to the Figure 1 for
an illustration of a Platonic cube, with a distinct col-
oring for each face, rolling on an edge-to-edge partial
tiling. As a further clarification, we remark that P
can “revisit” any polygon in T any number of times,
and in any orientation so long as (Motion Constraint 1)
through (Motion Constraint 4) are satisfied.

Provided this context, we can now define a disjoint-
ness notion for colored polyhedral rollings by the fol-
lowing Definition 3, and our “Menger-like” notion of
roll-(P,HP , k)-connected w-colorings by the following
Definition 4:

Definition 3 Internally disjoint colored polyhedral
rollings. Letting X and Y be two colored polyhe-
dral rollings for a polyhedron P on an edge-to-edge
partial tiling T , letting FX and FY be the set of
polygons in T that are superimposed on some con-
gruent face of P over the course of X and Y , re-
spectively, and letting {f(X,initial), f(X,final)} ⊆ FX
and {f(Y,initial), f(Y,final)} ⊆ FY be the initial and
final states for X and Y , respectively, we say that
X and Y are internally disjoint colored polyhedral
rollings if and only if

(
FX \ {f(X,initial), f(X,final)}

)
∩(

FY \ {f(Y,initial), f(Y,final)}
)
= ∅.

Ou t [ ] =

Figure 1: Illustration of a Platonic cube P, with all
unique face colorings, undergoing a rigid body “tipping
over” motion under (Motion Constraint 1) through (Mo-
tion Constraint 4) – see Definition 2 – on a set of colored
squares composing an edge-to-edge partial tiling of the
plane; (top) initial stage in which the black face of P
is superimposed on a congruent black colored square
of the edge-to-edge partial tiling, and (white) arrows
show possible and forbidden (indicated via a red “X”)
directions in which P may be “tipped over”; (middle)
intermediate stage of a “tipping over” motion for P;
(bottom) final stage of a “tipping over” motion for P,
in which the red face of P is superimposed on a congru-
ent red colored square of the edge-to-edge partial tiling.

Definition 4. Roll-(P,HP , k)-connected w-coloring.
Assuming the definitions and notation from Definition
2, an assignment CT of at most w ∈ N>0 distinct col-
ors to the polygons in T is a roll-(P,HP , k)-connected
w-coloring if it ensures the existence of k ∈ N>0 inter-
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nally disjoint colored polyhedral rollings of P between
all pairs of polygons in T .

To elaborate on Definition 3 and Definition 4 at a higher
level of abstraction, consider the “dual graph” DT for
an edge-to-edge partial tiling T generated by placing a
vertex at the center of each polygonal tile and adding an
edge between a pair of vertices whenever two polygonal
tiles are adjacent. Next, think of a polyhedral rolling on
T (under the constraints from Definition 2) as a walk
on DT , where we say that the walk visits a given ver-
tex whenever a face of P is superimposed on a congruent
polygonal tile corresponding to that vertex in T . In this
context, we can understand the notion of internally dis-
joint colored polyhedral rollings from Definition 3 as cor-
responding to internally vertex disjoint walks between
the same pair of vertices in DT . Furthermore, we can
understand the notion of a roll-(P,HP , k)-connected w-
coloring from Definition 4 as a coloring of the faces of
T (equiv., coloring of the vertices in DT ) using at most
w colors, where for a polyhedron P with a face coloring
specified by HP , there exist at least k internally disjoint
colored polyhedral rollings for P (equiv., at least k in-
ternally vertex disjoint walks in DT ) between all pairs
of polygonal tiles in T (equiv., all vertex pairs in DT ).
To briefly outline the structure of this paper, in the

proceeding Section 2, we analyze the state transitions
that can occur for the Platonic cube with two differ-
ent types of face colorings during a colored polyhedral
rolling. Subsequently, in Section 3 we establish that
deciding the existence of a roll-(P,HP , k)-connected w-
coloring is tractable in polynomial time (with respect
to the size of the edge-to-edge partial tiling) in the case
where k = 1 (Proposition 1). However, we also show
that the problem becomes NP-hard in the case where
k = 2, even when P corresponds to the Platonic cube
with a face coloring HP identically coloring all opposing
pairs of faces using w = 3 distinct colors (Theorem 1).
Finally, in Section 4, after first showing that the prob-
lem of counting proper 3-colorings of a planar graph of
degree at most 4 is #P-complete under many-one count-
ing reductions (Theorem 2), we subsequently establish
as a corollary that the counting version of the decision
problem from Theorem 2 is #P-hard under many-one
counting reductions (Corollary 1).

2 State transition graphs for the face-colored Pla-
tonic cube rolling on edge-to-edge partial tilings

To represent the full state space for a polyhedron with
colored faces rolling on an edge-to-edge partial tiling un-
der (Motion Constraint 1) through (Motion Constraint
4) from Definition 2, we define the following:

Definition 5. State transition graph. Assuming the

definitions and notation from Definition 2, for a fixed
polyhedron P and a fixed face coloringHP for P, a state
transition graph is constructed by: (1) creating a vertex
for every possible manner in which a face of P may be
superimposed on a congruent polygon in an edge-to-
edge partial tiling; (2) making a pair of vertices va and
vb adjacent if and only if a colored polyhedral rolling can
possibly exist where P can transition from state va to
vb by rotating about (i.e., being “tipped over”) exactly
one edge in an edge-to-edge partial tiling.

Here, for two explicit examples of state transition
graphs, we can consider:

� the Platonic cube with all distinct face colorings;

� the Platonic cube where w = 3 distinct colors are
used to identically color each opposing pair of faces.

Concerning the former example where P corresponds
to the Platonic cube with all distinct face colorings, in
Figure 2(a) we show the planar “unfolding” of this in-
stance of P, in which vertices on each polyhedron face
are labeled in accordance with their corresponding ver-
tices in the folded polyhedron. Next, in Figure 2(b), we
give an illustration of our notation for the state tran-
sition graph shown in Figure 2(c), where the square
polygon represents the “bottom” face of P currently su-
perimposed on a congruent polygon in an edge-to-edge
partial tiling, “N”, “W”, “E”, and “S” indicate North,
West, East, and South motion (i.e., “tipping over”) di-
rections, and we represent the state of the cube with the
tuple (A,B,C,D) of labels for the vertices of the “bot-
tom” face in the Southwest (i.e., A), Southeast (i.e., B),
Northwest (i.e., C), and Northeast (i.e., D) corners. Fi-
nally, in Figure 2(c), we show the state transition graph
for P, in which vertices are again labeled in accordance
with the tuple notation from Figure 2(b) as well as col-
ored in accordance with the face specified by the ver-
tex labels, (solid) arrows show transitions resulting from
motion in the Northward direction, and (dotted) arrows
show transitions resulting from motion in the Eastward
direction.

Concerning the latter example where P corresponds
to the Platonic cube with all opposing faces identically
colored using w = 3 distinct colors, Figure 3(a) shows
the planar “unfolding” of this instance of P, in which
vertices on each polyhedron face are again labeled in ac-
cordance with their corresponding vertices in the folded
polyhedron. Next, in Figure 3(b), we show the state
transition graph for P, following the notation shown in
Figure 2(b,c), with the exception that prefixes appended
to each tuple of labels for the vertices of the “bottom”
face (e.g., “R1”, “R2”, “B1”, “B2”) indicate equivalent
states of P given its face colorings.
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Figure 2: Analysis of the state transitions for a Platonic
cube P, imbued with all unique face colorings, undergo-
ing a colored polyhedral rolling; (a) planar “unfolding”
of P; (b) illustration showing our notation for the state
transition graph; (c) state transition graph for P; see
Section 2 for further details.

3 The complexity of finding and deciding the exis-
tence of some roll-connected colorings

For the following Proposition 1 and Theorem 1, we fol-
low the definitions and notation for P, HP , and T from
Definition 2.

Proposition 1 For fixed P corresponding to a Platonic
solid, fixed HP , and w ∈ N>0 corresponding to the
number of unique face colors encoded by HP , a roll-
(P,HP , k = 1)-connected w-coloring for an edge-to-edge
partial tiling of the plane T can be found, or determined
not to exist, in O (|T |) time.

Proof. Let DT be the dual graph for T , generated by
associating a vertex with each polygon and connect-
ing a pair of vertices when their polygons share all
points along an edge. Observe that DT will have at
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Figure 3: Analysis of the state transitions for a Pla-
tonic cube P, in which each opposing pair of faces is
assigned a distinct coloring, undergoing a colored poly-
hedral rolling; (a) planar “unfolding” of P; (b) state
transition graph for P; see Section 2 for further details.

most O (|T |) vertices and edges, as polygons in T cor-
respond to an edge-to-edge partial tiling of a plane. Ac-
cordingly, we can perform a breadth-first or depth-first
search in O (|T |) time to check that DT is connected.
If so, we can determine a minimum spanning tree QD
for DT , and if not, we can trivially determine that no
roll-(P,HP , k = 1)-connected w-coloring can exist.

To proceed in the case where QD does exist, we begin
by selecting an arbitrary root node vr in QD. Next, un-
der (Motion Constraint 1) through (Motion Constraint
4), for any initial superimposition of the polygon corre-
sponding to vr with a congruent face of P (note that this
initial choice doesn’t matter, as P has the symmetries
of a Platonic solid), we greedily color the polygons in T
along each root to leaf path in QD to ensure that each
such path corresponds to a colored polyhedral rolling
for P with face colorings given by HP . It remains to
observe that this coloring of the polygons in T will nec-
essarily be a roll-(P,HP , k = 1)-connected w-coloring,
with w ∈ N>0 again corresponding to the number of
unique face colors encoded by HP , and that all of the

316



CCCG 2024, St. Catharines, ON, Canada, July 17 – 19, 2024

aforementioned steps will take at most O (|T |) time. □

Theorem 1 For P corresponding to a Platonic cube,
and HP identically coloring each opposing pair of faces
of P using w = 3 distinct colors, it is NP-hard to
decide the existence of a roll-(P,HP , k = 2)-connected
(w = 3)-coloring.

Proof. Letting P correspond to Platonic cube with face
colorings HP corresponding to the planar “unfolding”
shown in Figure 3(a), we proceed via reduction from
the NP-complete proper 3-coloring decision problem for
planar 2-connected graphs of degree at most 4 [18].

To begin, for an arbitrary planar 2-connected graph
of degree at most 4 denoted G, we will draw G on a
Z2 integer lattice in such a manner that: (Requirement
1) all vertices of G fall on lattice points; (Requirement
2) all edges between vertices in G are encoded as non-
crossing “polylines” composed of a series of end-to-end
connected horizontal and vertical unit length segments;
and (Requirement 3) all non-crossing “polylines” con-
tain at least one vertical unit length segment. Concern-
ing (Requirement 1) and (Requirement 2), we refer to
such a drawing as an orthogonal integer lattice embed-
ding, and due to G being a planar graph of degree at
most 4, these drawings can be computed in time poly-
nomial in the size of G via a number of well-known
methods (see, e.g., [5, 23, 25, 26, 27]). For an explicit
example of such an embedding, see Figure 4(a) for an
instance of a planar graph having degree at most 4, and
its (non-unique) orthogonal integer lattice embedding
in Figure 4(b). Concerning (Requirement 3), in Figure
4(c) we show how it is possible to enlarge any such or-
thogonal integer lattice embedding via multiplying all
embedding coordinates by some integer k ∈ N>0, and
Figure 4(d) we show how a (k = 5)-fold enlargement of
an orthogonal integer lattice embedding allows us to re-
draw “polylines” such that they contain at least one
vertical unit segment.
Now let MG be the orthogonal integer lattice embed-

ding of G, letX be the set of vertical and horizontal unit
length segments for polylines in MG, and let Y ⊆ X be
a subset consisting of exactly one arbitrarily chosen ver-
tical unit length segment for each polyline in MG corre-
sponding to an edge in G. We construct an edge-to-edge
partial tiling of a plane T via the following steps: (step
1) we identify each vertical segment in X \ Y with an
appropriately scaled instance of the set of 15 polygons
composing the “vertical color copying gadget” shown in
Figure 5; (step 2) we identify each horizontal segment in
X \ Y with an appropriately scaled instance of the set
of 15 polygons composing a “horizontal color copying
gadget” shown in Figure 6, where this gadget is simply
a π

2 rotation of the “vertical color copying gadget”; and
(step 3) we identify each vertical segment in Y with an
appropriately scaled instance of the set of 27 polygons

composing the “vertical color change gadget” shown in
Figure 7. Here, in each case, gadgets identified with ad-
jacent unit length segments along a “polyline” will share
a common “input / output” cell at the former intersec-
tion point of the unit segments, and we indicate such
“input / output” cells with arrows in Figure 5, Figure
6, and Figure 7.

Noting that all possible roll-(P,HP , k = 2)-connected
(w = 3)-colorings for the “vertical color copying gad-
get”, “horizontal color copying gadget”, and “vertical
color change gadget” are shown in Figure 5, Figure 6,
and Figure 7, respectively, that the “horizontal color
copying gadget” is just a π

2 rotation of the “vertical
color copying gadget”, and observing the state transi-
tion graph from Figure 3(b), we now make the following
observations:

� (obs. 1) any colored polyhedral rolling over the
polygons in a “vertical color copying gadget” or
“horizontal color copying gadget” will map P to an
identical orientation on an identically colored poly-
gon of T (e.g., R1. (. . .)→ R1. (. . .) or B2. (. . .)→
B2. (. . .));

� (obs. 2) for P with initial configuration R1. (. . .),
B1. (. . .), or G1. (. . .) (respectively, R2. (. . .),
B2. (. . .), or G2. (. . .)), rolling over the poly-
gons in a “vertical color change gadget”
can map P to any orientation in the set
(R1. (. . .) , B1. (. . .) , G1. (. . .)) (respectively,
(R2. (. . .) , B2. (. . .) , G2. (. . .))) under the con-
straint that the beginning and ending polygons in
the edge-to-edge partial tiling must have distinct
colors;

� (obs. 3) by brute force enumeration and explicitly
checking each possible square tile coloring of the
“vertical color copying gadget”, “horizontal color
copying gadget”, and “vertical color change gad-
get” (which has 327 = 7625597484987 possible col-
orings when not accounting for symmetries), in the
context of a roll-(P,HP , k = 2)-connected (w = 3)-
coloring, only the colorings of the gadgets shown
in Figure 5, Figure 6, and Figure 7 are possible,
and this holds even if the input graph G is only
2-connected.

Putting everything together, by (obs. 1) through
(obs. 3) we can determine that a roll-(P,HP , k = 2)-
connected (w = 3)-coloring can exist for T only if G ad-
mits a proper 3-coloring. Noting that G is 2-connected,
we can also determine that such a coloring will always
exist if G is proper 3-colorable. This yields the current
theorem. □
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Figure 4: An example orthogonal Z2 integer lattice em-
bedding; (a) planar undirected graph on 6 (labeled)
vertices with vertex degree at most 4; (b) orthogonal
integer lattice embedding of the graph shown in (a), in
which all edges have unit length, (larger black) vertices
are labeled in accordance with the vertices they corre-
spond to in (a), and (smaller gray) vertices indicate the
vertical and horizontal unit length edge segments com-
posing each non-crossing “polyline”; (c) illustration of
how an orthogonal integer lattice embedding can be ex-
panded or “blown up” by moving all embedded points
on the grid from their coordinate {x, y} to the coordi-
nate {k · x, k · y} for some k ∈ N>0; (d) illustration of
how a (k = 5)-fold expansion of an orthogonal integer
lattice embedding allows one to ensure that all “poly-
lines” contain at least one vertical unit length segment.

4 The complexity of counting some roll-connected
colorings

Theorem 2 Counting proper 3-colorings of a planar
graph of degree at most 4 is #P-complete under many-
one counting reductions.

Proof. Observe that counting proper 3-colorings of an
arbitrary planar graph is #P-complete under many-one
counting reductions [3]. Here, letting G be such a planar
graph, our task will be to convert G into a planar graph
of degree at most 4, denoted G′, and to do so while
preserving the number of proper 3-colorings of G.
To begin, we borrow a planar 4-regular “3-valent color

copying gadget” originally due to Dailey [11], corre-
sponding to the subgraph induced by the (green) ver-
tices in Figure 8, which has the property that the “out-
put” vertices labeled va, vb, and vc must have the same
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Figure 5: All possible roll-(P,HP , k = 2)-connected
(w = 3)-colorings of the “vertical color copying gadget”
when P and HP correspond to the Platonic cube with
the Figure 3(a) planar “unfolding”; for the left-most
gadget instance, arrows indicate “input / output” cells;
note that the “horizontal color copying gadget” is sim-
ply a π

2 rotation of the “vertical color copying gadget”.

Ou t [ ] =

⟶

⟶

⟶

⟶

⟶ ⟶

B1 B1 R1 R1 G1 G1

R1 G1 G1 B1 B1 R1

B2 B2 R2 R2 G2 G2

G2 R2 B2 G2 R2 B2

B1 R1 G1 B2 R2 G2

B1 R1 G1 B2 R2 G2

B1 B1

R1 R1

G1 G1

B2 B2

R2 R2

G2 G2

B1 G1

B1 R1

R1 B1

R1 G1

G1 R1

G1 B1

B2 R2

B2 G2

R2 G2

R2 B2

G2 B2

G2 R2

Figure 6: All possible roll-(P,HP , k = 2)-connected
(w = 3)-colorings of the “horizontal color copying gad-
get” when P and HP correspond to the Platonic cube
with the Figure 3(a) planar “unfolding”; for the top-left-
most instance of the gadget, arrows indicate the “input
/ output” cells; note that the “vertical color copying
gadget” is simply a π

2 rotation of the “horizontal color
copying gadget”.

coloring in any proper 3-coloring. Using this gadget, it
is straightforward to construct a planar degree ≤ 4 “k-
valent color copying gadget”, with k “output” vertices of
degree 2 having the same coloring and belonging to the
same face of the gadget. For instance, to construct the
“k-valent color copying gadget” shown in Figure 8, one
can take k copies of the “3-valent color copying gadget”,
and for some cyclic ordering of these gadgets, identify
the vb vertex of each gadget with the va vertex of the
subsequent gadget in the ordering.

Now, letting S be the set of all vertices in G hav-
ing degree ≥ 5, and letting deg (v) be the degree of a
vertex v, we can construct G′ by replacing all vertices
v ∈ S in G with a “deg (v)-valent color copying gad-
get”. In particular, we can substitute each edge with an
endpoint at v ∈ S with an edge having an endpoint at
a distinct instance of one of the “output” vertices, and
preserve planarity by doing so in a manner that respects
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Figure 7: All possible roll-(P,HP , k = 2)-connected
(w = 3)-colorings of the “vertical color change gadget”
when P and HP correspond to the Platonic cube with
the Figure 3(a) planar “unfolding”; for the top-left-most
gadget instance, arrows indicate “input / output” cells.

Ou t [ ] =

(a)

(b)

X Y

Y' X'

va

vc

vb

Figure 8: Illustration of the planar 4-regular “k-valent
color copying gadget” used in the Theorem 3 proof ar-
gument, where the subgraph induced by the (green) ver-
tices is originally due to Dailey [11].

the rotational system for the embedding of G. Finally,
using brute force enumeration to verify that the original
“3-valent color copying gadget” due to Dailey [11] has
exactly 2 proper 3-colorings per coloring of the vertex la-
beled va in Figure 8 (implying 6 proper 3-colorings over-
all), we can determine that there will be

∏
v∈S 2

deg(v)

proper 3-colorings for G′ per proper 3-coloring for G.
Putting everything together, as the problem of count-

ing proper 3-colorings of planar degree ≤ 4 graphs is
straightforwardly in #P, and as many-one counting re-

ductions are transitive, this yields the current theo-
rem. □

Corollary 1 For P corresponding to a Platonic cube,
and HP identically coloring each opposing pair of faces
of P using w = 3 distinct colors, it is #P-hard to count
roll-(P,HP , k = 2)-connected (w = 3)-colorings.

Proof. Recall the Theorem 1 proof argument, in which
we gave a reduction from deciding the existence of a
proper 3-coloring for a planar 2-connected graph G of
degree at most 4 to deciding the existence of a roll-
(P,HP , k = 2)-connected (w = 3)-coloring for the same
specifications of P and HP . Here, by Theorem 2
and (obs. 3) of the Theorem 1 proof argument, it suf-
fices to observe that, per proper 3-coloring of G, there
will be exactly 2 possible roll-(P,HP , k = 2)-connected
(w = 3)-colorings for the edge-to-edge partial tiling con-
structed from G. □

5 Concluding remarks and open problems

Our initial objective was to classify the complexity of
finding and counting roll-(P,HP , k = 2)-connected w-
colorings for all five Platonic solids, and in each case, for
all possible non-equivalent face colorings. However, as
evidenced by the reduced scope of the current work, this
proved much harder and more tedious than expected.
Accordingly, we challenge the reader to come up with
an efficient manner of moving forward with this clas-
sification effort, in particular, one which allows us to
more easily recognize computationally tractable cases
such as a Platonic octahedron in which w = 2 colors
are used to ensure that no pair of adjacent faces have
the same coloring. In addition, noting that we were
only able to establish an NP -hardness (as opposed to
NP -completeness result) with our Theorem 1 proof ar-
gument, a further challenge is to come up with an ef-
ficient algorithm, should one exist, for verifying that a
particular face coloring of an edge-to-edge partial tiling
admits a roll-(P,HP , k = 2)-connected w-coloring.

More broadly, we point out that it is possible to
consider higher dimension colored polyhedral rollings,
where for instance one can permit the rolling polyhe-
dron to rotate to the “underside” of a tiling embedded
in R3. We argue that such generalizations may be inter-
esting for at least the reason that, in cases where k ≥ 3,
it is no longer trivial to decide the existence of roll-
(P,HP , k)-connected w-colorings. Finally, and regard-
less of the dimension of a particular tiling, we strongly
suspect that the counting and decision problems con-
sidered in this work will be fixed-parameter tractable
for a parameter based of the number of holes in a given
tiling, and leave the proof of this as an open problem.
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Slant/Gokigen Naname is NP-complete, and Some Variations are in P
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Figure 1: A simple example of a Slant puzzle, and its
(unique) solution.

Abstract

In this paper we show that a generalized version of the
Nikoli puzzle Slant is NP-complete. We also give poly-
nomial time algorithms for versions of the puzzle where
some constraints are omitted. These problems corre-
spond to simultaneously satisfying connectivity and ver-
tex degree constraints in a grid graph and its dual.

1 Introduction

Gokigen Naname, also known as Slant, is a pencil-and-
paper logic puzzle by the Publisher Nikoli[1]. The puz-
zle involves filling every square in a grid with diagonal
lines so they do not create cycles and each circle has the
indicated number of diagonals touching it. See Fig. 1
for an example of a Slant puzzle.

Rules Slant is played on a square grid, some of whose
vertices may be given numbers (henceforth called a
Slant board). The objective is to add a single diagonal
line to each square obeying the following constraints:

1. There is no cycle formed by diagonal lines.
2. If a vertex has a designated number k ∈
{0, 1, 2, 3, 4}, the number of diagonal lines adjacent
to the vertex must be exactly k.

These shall henceforth be referred to as the cycle con-
straint and vertex constraints. Examples of solu-
tions violating each can be seen in Fig. 2.

Results In Section 2 we discuss some combinatorial
properties of the puzzle which will be used in our algo-
rithmic and computational complexity results.

In Section 3 we give multiple algorithmic results for
special cases of the Slant problem. We show that Slant

∗MIT-CSAIL, jaysonl@mit.edu
†David R. Cheriton School of Computer Science, University of

Waterloo, jacksj@uwaterloo.ca

is fixed-parameter tractable in the number of vertex con-
straints in the puzzle. We give an algorithm for decid-
ing if a partially filled board can be completed with-
out violating the cycle constraint. Finally we show how
to formulate the vertex constraints and the cycle con-
straint as a matroid intersection problem allowing us to
solve instances of the puzzle if the vertex constraints
stay within certain partitions of the vertices.

Finally, in Section 4, we show that solving an instance
of Slant on an n×m grid is NP-complete via a reduction
from Hamiltonian cycle in max-degree-3 planar graphs.

Related Work Many pencil-and-paper puzzles have
been studied from the lens of computational complex-
ity, especially those by the designer Nikoli. For example
the following puzzles all have results showing general-
ized versions to be NP-complete: Angle Loop [30], Bag
/ Corral [11], Chained Block [20], Country Road [15],
Fillomino [34], Five-Cells[18], Hashiwokakero [7], Hebi
[21], Heyawake [14], Hiroimono / Goishi Hiroi [6], Kou-
choku [30], Kurodoko [23], LITS [27], Masyu / Pearl
[12], Mid-Loop [30], Nagareru Loop [19], Nagenawa
[30], Nurimeizu[19], Numberlink [24], Nurikabe [26, 13],
Satogaeri [21], Shakashaka [10, 3], Slitherlink [35, 34, 2],
Suraromu [21], Tatamibari [4], Yajilin [15], and Yosen-
abe [17]. There have also been multiple surveys on
the topic of computational complexity and games and
puzzles[32, 22, 8].

Previous work showed NP-hardness for Yin-Yang
puzzles and connected it to the problem of partition-
ing vertices into two trees with some vertices being pre-
assigned[9]. We find that Slant is also equivalent to a
fairly natural graph problem in which we want to parti-
tion edges between a graph and its dual such that each
forms a single tree with some vertices having degree con-
straints. This is discussed in more detail in Section 2.

4

2

2

2
4 1

2

2

Figure 2: An example of each class of constraint vio-
lation denoted in red (the cycle constraint (left) and a
vertex constraint (right)).
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Figure 3: An example of how the Slant puzzle from
Fig. 1 can be rotated 45◦ so that all its potential edges
come from two complementary grid graphs.

2 Preliminary Results and Key Observations

We discuss some preliminary results about Slant that
will be used in other parts of the paper.

First, we observe that the two choices of diagonals
have a parity constraint. Each possible diagonal con-
nects two vertices which differ by exactly one in both
their x and y-coordinates. Thus, we can partition the
grid into points whose coordinate-sum (x + y) is even,
and points whose coordinate-sum is odd. Every square
then admits a diagonal connecting two odd-sum points
or a diagonal connecting two even-sum points. Further-
more, if we rotate all of our coordinates by 45 degrees
it becomes obvious that every such diagonal belongs to
one of two square grids graphs (see Fig. 3). Moreover,
the two square grid graphs are essentially planar duals
of each other. That is, the faces of one correspond to the
vertices of the other, and vice versa, with the same edge-
vertex and edge-face incidences (with some exceptions
for the boundary). Thus, choosing a diagonal involves
deciding to place an edge either in a primal square grid
graph or a dual square grid graph.

With this dual graph perspective, we can see that the
acyclic constraint also implies that both graphs form
forests where every tree touches the boundary. By
adding edges connecting the various points at which the
boundary is touched, the complementary forests can be
turned into a tree-cotree structure. This also means that
each parity class must contain roughly half the edges,
in particular (n−1)(m−1)/2+O(n+m) edges and the
average degree is also 2 +O(n+mnm ).

3 Polynomial Time Algorithms for Special Cases

We present variants of Slant that can be solved in poly-
nomial time which use subclasses of the constraints.
The most important result in this section is a positive
result on partially-filled boards:

Theorem 1 Given a partially-filled Slant board with no
vertex constraints, whose filled-in diagonals do not al-
ready form a cycle, there always exists a valid solution
extending the partially-filled in diagonals.

Proof. Iterate through the unfilled squares in any or-
der and make a choice of diagonal arbitrarily. If that

Figure 4: An example of why if one configuration of a
square induces a cycle, the other cannot.

choice induces a cycle, choose the other diagonal in-
stead. These two choices of diagonals connect vertices of
different parities (odd degree vs even degree coordinate-
sums), and thus any curve they are a part of do not
share vertices. Further, each pair of vertices is on oppo-
site sides of the diagonal. Thus by required planarity of
the connections and the Jordan curve theorem1[31], the
other diagonal will not induce a cycle (see Fig. 4). □

Theorem 1 will be particularly useful as a component
of the NP-hardness result in Section 4, and we will also
use it to prove results in this section.

Corollary 2 Given a Slant board whose designated
numbers are all either 0 or 4, it can be checked in poly-
nomial time if the board permits a valid solution.

Proof. Every vertex constraint whose designated num-
ber is 0 or 4 requires the same set of diagonals in any
valid solution. In particular, degree-4 constrained ver-
tices constraints require all four edges to be adjacent,
and 0 vertex constraints can only appear on the bound-
ary (otherwise they force a cycle) and all edges to not
be adjacent. If there are any conflicts between these re-
quirements, then the board does not permit a valid solu-
tion. Otherwise, generate the corresponding partially-
filled Slant board. If the board contains a cycle, then it
contains a cycle in any solution, so it does not permit a
valid solution. Otherwise, apply Theorem 1 to obtain a
valid extension to the partially-filled board. □

3.1 Dense and Sparse Representations

The decision variant of the Slant problem (whether or
not a valid solution exists) is trivially in NP, but only if
it is assumed that Θ(nm) values are used to represent
the full n×m grid (the dense representation). How-
ever, since not every vertex is required to have a desig-
nated number, one could instead represent an instance
of Slant with only the grid size, and a list of non-empty
coordinates with designated numbers (the sparse rep-
resentation). In this representation, the size of the
input may be asymptotically much smaller than n×m.
We find that this does not change the complexity class:

Theorem 3 For an n × m Slant board with k vertex
constraints, using a sparse representation, it can be

1Here we can use the simpler result that a simple polygonal
curve divides the plane into two regions
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checked if a valid solution exists in non-deterministic
poly(k log(n+m)) time.

Proof. For a certificate, consider a sparse repsentation
of a partially-filled Slant board whose filled squares are
exactly those adjacent to any vertex with a designated
number. After non-deterministically assigning values to
such a certificate, it can be checked whether the desig-
nated numbers are satisfied, and whether there are any
cycles present among the assigned diagonals in O(k)
time. If all designated numbers are satisfied by the
partially-filled solution, and no cycles are present, by
Theorem 1, there exists some valid extension of the
partially-filled Slant grid, and hence the answer to the
decision problem is “YES”. □

This same argument also implies that Slant is Fixed-
Parameter Tractable in the number of vertex con-
straints. As before, we can exhaustively enumerate all
of the possible configurations around the k clues and
then use Theorem 1 to check for a valid extension.

Corollary 4 Slant can be solved in time O(16k(n+m))
where k is the number of vertex clues, and is thus FPT
in the number of vertex clues.

3.2 Matroid Structure of Slant

In this subsection, we show that Slant can be formu-
lated as the intersection of five matroids. While this on
its own is not particularly surprising (Slant is clearly
in NP, and matroid intersection for ≥ 3 matroids is
known to be NP-hard [29]), the particular structure of
the matroids will give us insight into some relaxations of
Slant’s constraints that are polynomially-time solvable.
We will specifically show that Slant can be formulated
as a weighted intersection of four partition matroids,
and one planar matroid.
A partition matroid is induced by a partition {Pi}i of

its ground set E, and a mapping Pi 7→ bi ∈ Z≥0 so that
a set S ⊂ E is independent if and only if |S ∩ Pi| ≤ bi.
A planar matroid is one that is graphic and co-

graphic. That is, its basis is the set of maximal forests
in some graph (i.e., its independent sets are the forests
in that graph), and the basis of its dual is also the set of
maximal forests in some graph. Equivalently, the graph
defining the graphic matroid is a planar graph.

First, we will observe that for an n×n Slant board, the
vertex constraints alone (without the cycle constraint)
can be solved with an 0− 1 integer linear programming
problem. This will be done by creating a variable for
each square indicating the choice of diagonal, and a con-
straint for each vertex with a designated number. The
details of the construction are as follows:

• Use coordinates (0, 0) for both the top-left vertex
of the grid, and for the top-left square of the grid.

• For each square with coordinates (x, y), create a
variable sx,y ∈ {0, 1}.

• For each vertex with coordinates (x, y) whose des-
ignated number is k ∈ {0, 1, 2, 3, 4}, add an equal-
ity constraint: If x + y is even, require that∑
x∆,y∆∈{−1,0} sx+x∆,y+y∆ = k. Else, require

that
∑
x∆,y∆∈{−1,0} (1− sx+x∆,y+y∆) = k. Equiva-

lently, that
∑
x∆,y∆∈{−1,0} (sx+x∆,y+y∆) = 4− k.

Given an assignment s satisfying these constraints, a
corresponding solution to the Slant puzzle can be con-
structed as follows: For a square whose coordinates are
(x, y), if sx,y = 1, draw a diagonal between the two in-
cident vertices whose coordinate-sums are even. Other-
wise, draw a diagonal between the two incident vertices
whose coordinate-sums are odd.

We can use this ILP formulation to also obtain a ma-
troid intersection formulation. Let E be the set of cells.
E will form the ground set for all five of our matroids.
Essentially, we will consider subsets S ⊂ E, and map
these to possible solutions to a Slant instance. A sub-
set S will represent the set of edges connecting incident
vertices with even coordinate-sums, and likewise the set
E \S will represent the set of edges connecting incident
vertices with odd coordinate-sums. In this sense, the
variables sx,y in the ILP formulation can be thought of
as a indicator functions for some subset S ⊂ E.

Consider the graph G formed by connecting all ver-
tices with even coordinate-sums. This graph is bipar-
tite, so call its parts A and B. A Slant instance induces
a partition matroid over E(G) for each of A and B,
which we will denote as LA and LB : The independent
sets of LA are the subsets of edges which do not surpass
the specified values at the vertices in A. Similarly, the
independent sets of LB are the subsets of edges which
do not surpass the specified values at the vertices in B.
In this case, E(G) = E as defined before, so these are
partition matroids over E, as desired.

We can also form a graph G′ formed by connecting
all vertices with odd coordinate-sums. Call its parts C
and D. We define partition matroids over E(G′) in a
symmetric manner, except that in place of a specified
value k at a vertex in C or D, we use 4 − k. Let the
resulting partition matroids be denoted as LC and LD.
With this formulation, the above ILP, encapsulating

all but the cycle constraint, can be solved via a 4-way
matroid intersection: If a set S is an independent set
in all of LA, LB , LC , and LD, then its corresponding
indicator s function does not violate relaxed constraints
of the form:

∑
x∆∈{−1,0}

∑
y∆∈{−1,0} sx+x∆,y+y∆ ≤ k

(resp. 4−k, if applicable). We weight the elements of E
by summing the left-hand side of all such constraints,
and we let N be the sum of all right-hand sides. Let
S′ be an independent set in all four matroids, such that
its indicator function s′ is of maximum weight. Then,
s′ has total weight equal to N if and only if all such
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constraints must be tight, and hence if and only if S′

satisfies all non-cycle constraints of the Slant instance.
Lastly, we consider the cycle constraint, which was

not encapsulated in the ILP formulation. A graph G
is cycle-free if and only if it is a forest. This is encap-
sulated by a graphic matroid, whose base set is E(G).
In this case, the graph we consider is that of the even
coordinate-sum vertices. This graph is planar and con-
nected (in fact, it’s a grid graph). Hence, its basis con-
sists of trees with m edges for some value of m. Call
this matroid LN . We modify the 4-way matroid inter-
section to be a 5-way matroid intersection as follows:
Add 1 to the weight of every edge in E as determined
for the 4-way intersection. Let S′ be an independent set
in all five matroids, such that its indicator function s′

is of maximum weight. Then, s′ has total weight equal
to N +m− 1 if and only if all constraints must be tight
in all five matroids, and hence if and only if S′ satisfies
all constraints of the Slant instance.

Although three-way (and hence also four and five-
way) matroid intersection is NP-hard, this formulation
implies that any pair of these constraints is solvable in
polynomial time, by the (two-way) matroid intersection
theorem [29]. For example, if we drop the cycle con-
straint, and only allow specified numbers on vertices
with even coordinate-sums (a checkerboard pattern),
then this relaxation of Slant becomes solvable in poly-
nomial time. This particular case also reduces to bi-
partite b-matching, and even non-bipartite b-matching
is well-known to be solvable in polynomial time with-
out matroid intersection methods [25, Theorem 3.5.1].
The result can be more concisely summarized by the
following pair of theorems:

Theorem 5 Let a, b ∈ {0, 1} be constants. Suppose we
are given a Slant board such that each of its clue with co-
ordinates (x, y) has x ≡ a (mod 2) and y ≡ b (mod 2).
Then it can be checked in polynomial time whether the
board permits a solution satisfying both the cycle and
vertex constraints.

Theorem 6 Let a1, a2, b1, b2 ∈ {0, 1} be constants.
Suppose we are given a Slant board such that each of
its clue with coordinates (x, y) has either both x ≡ a1
(mod 2) and y ≡ b1 (mod 2), or both x ≡ a2 (mod 2)
and y ≡ b2 (mod 2). Then it can be checked in poly-
nomial time whether the board permits a solution ignor-
ing the cycle constraint and satisfying the vertex con-
straints.

4 NP-completeness

We will now prove that deciding if a Slant puzzle on
an n × n board is NP-complete. We use a two-step re-
duction: We first review a (slightly modified) reduction
from finding a Hamiltonian cycle with a single required

Connecting

Bridge

Corner

Orthogonal

Start/End

Poly-line Edge

-type Vertex

-type
Vertex

Figure 5: All of the gadgets used in the NP-Hardness
construction for Hamiltonian path in grid graphs, and
an example partial path going through them.

edge in planar, bipartite, 3-regular graph to finding a
Hamiltonian cycle with a single required edge in a grid
graph [16, 28] (this citation uses a slightly different
Hamiltonian cycle variant, so we will add one additional
gadget, and show that it is equivalent to their reduc-
tion). Then, instead of using the latter problem for
another black-box reduction, we will show that we can
replicate the functionality of each gadget used, to form
a two-step reduction. In this section we will always be
using the rotated view of Slant puzzles.

First, we will briefly summarize the key components
of the grid graph reduction; readers interested in a full
proof of this reduction’s correctness should see [16]. We
then make two small modifications to the reduction.
Next, we will give gadgets in Slant that force a portion
of the graph to be a Hamiltonian cycle along a portion
of the grid. Finally, we will address global connectivity
issues and complete the proof.

Grid graph reduction overview In Itai, Papadim-
itriou, and Szwarcfiter’s reduction[16] of Hamiltonian
cycle/path in grid graphs from Hamiltonian cycle in
planar, bipartite, max-degree-3 graphs they take a grid
embedding of the planar graph and construct edge and
vertex gadgets. These are the vertices in Fig. 5 (note
that the grid graph includes all unit-length edges, not
just the example path going through the figure). Call
the planar graph P and the grid graph G.

Edge gadgets are channels of vertices which are two
vertices wide in G and follow the layout of the embed-
ding of P . In a potential Hamiltonian cycle, they can
be covered with either a zig-zag path (alternating pairs
of left and right turns) or a U -shaped path. A zig-zag
path through G has a connection at both ends of the
edge gadget and corresponds to that edge gadget be-
ing in the Hamiltonian cycle in P . A U-shaped path
through G has both ends at the same side of the edge
gadget and corresponds to an edge which is not in the
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Hamiltonian cycle (however, we still need to cover all
of the vertices in G). Vertex gadgets are 3 × 3 squares
of vertices in G and come in two types based on what
parity class they belong to in P . Vertex gadgets are
split into two classes depending on the part of P from
which they were generated. The difference between the
classes lies in how they connect to their incident edge
gadgets. Fig. 5 provides a visualization of the potential
paths and how they interact with the vertex gadgets.
Now we make two small modifications to this reduc-

tion. First, we want our graph to be 3-regular, not just
max-degree-3. Since this is a strict subproblem and al-
ready known to be NP-complete [5], no additional work
is needed. Next, we want the problem we are reduc-
ing from to have a specified edge which is required to
be in the Hamiltonian cycle. This version of the prob-
lem is also known to be NP-complete [28], but this is
not a strict subproblem. In our proof, we must also
require a single edge gadget. Taking inspiration from
Itai et al.’s [16] use of degree-1 nodes to force the start
and end of a Hamiltonian path, we modify the required
edge with the Start/End gadget shown in Fig. 5. The
degree-1 vertices in the Start/End gadget will force any
Hamiltonian path in G to start and end at those loca-
tions and the rest of the edge gadget to be filled with
a zig-zag pattern (Fig. 5). With this property, the cor-
rectness of the reduction to Hamiltonian path in grid
graphs using this gadget follows from the correctness
of the Hamiltonian cycle reduction described by Itai et
al. We use this gadget instead of the approach of Itai et
al. because it will make the second phase of our two-step
reduction more straightforward to describe and argue.

Slant reduction With the above construction in
mind we now turn to our second phase: how the grid
graph reduction can be simulated in Slant. That is, we
will now construct a Slant puzzle. Call the grid graph
representing the even parity of Slant vertices S. We will
at all times assume the Slant puzzle is sufficiently large
to admit our construction, which will only require poly-
nomial size. We will first try to ensure that a portion
SG of S must admit a Hamiltonian path to properly
satisfy that subset of the puzzle, and later we will dis-
cuss connecting the path to the rest of the puzzle to
satisfy the cycle constraint of Slant. Most importantly,
we will construct portions of S which act as barriers to
SG; it will not be possible to connect them to specific
adjacent vertices, thus carving out a subset SG of S
that corresponds directly to G. We will implement the
grid vertices in G with degree-2 constrained vertices in
SG, which cannot connect to any vertex in S \ SG, and
some degree-3 constrained vertices that have exactly one
forced connection to a grid point in S \ SG (this will
be important to global connectivity, which we will dis-
cuss later), and do not permit any others. Additionally,
there are exactly two degree-1 grid vertices in G, which

will correspond to degree-1 constrained vertices in SG
that act as endpoints to any possible Hamiltonian path.
Any valid assignment of edges in SG satisfying these
degree and the cycle constraint will be a Hamiltonian
path on SG, which itself will imply a Hamiltonian path
through G. Finally we will address the global connec-
tivity issues in the puzzle that will allow us to satisfy all
the constraints of the Slant puzzle if G admits a Hamil-
tonian path and enforce that any assignment of S that
satisfies all the constraints of the Slant puzzle must have
a Hamiltonian path over the vertices in SG.

In order to reliably obtain the behaviour we want
from SG, while admitting a Slant solution if G contains
a Hamiltonian path, we will require Slant gadgets that
admit each of the gadgets used by Itai et al.. All of
the gadgets we will use in this reduction can be seen
in Fig. 6. There is a direct correspondence between
the gadgets we use for Slant, and the gadgets used in
the initial grid graph reduction. That is, we will con-
strain each part of SG corresponding to a gadget in G
so that its behaviour is the same in any valid solution
to the Slant puzzle. The main idea of the construc-
tion is to add degree-constrained vertices to S that add
forced edges. That is, in any valid solution to the fi-
nal Slant instance we will construct, these edges will
be present. Forced edges can be thought of as being
possible to “locally deduce”, i.e. determine that they
are required in any valid solution using only a small
neighbourhood around themselves. Most of these forced
edges rely on two useful degree-constraint properties to
force edges to be in the primal or the dual. One, degree-
4 vertices must have all of their adjacent edges. Two,
if a degree constrained vertex already has as many ad-
jacent forced primal edges as its constraint allows, then
all other edges are forced to be in the dual (and vice
versa). The primary backbone of the edge gadgets is a
sequence of degree-4 constrained vertices with adjacent
degree-1 constrained vertices which are immediately sat-
urated, preventing further connectivity. In Fig. 6, all of
the presented gadgets have their corresponding forced
edges drawn. Some of these edges require slightly more
complex, though straightforward, local deductions:

• Degree-1 constrained vertices in the dual force three
surrounding edges to be in the primal.

• If two degree-1 constrained vertices have an edge
between them they cannot have any other edges
and will thus be disconnected from the rest of the
graph (violating the cycle constraint in the dual).

• If we have a pair of degree-1 constrained vertices
next to a degree-1 constrained vertex in the dual
then all three edges around that vertex in the dual
are forced.

• An edge is impossible if one of the endpoint vertices
is already saturated.

• A vertex diagonally across from a degree-4 con-
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Figure 6: Most of the gadgets used in the NP-Hardness construction for
Slant. Circles are vertices with their degree constraint written inside. Green,
dotted circles are vertices in SG. Diamonds are constrained vertices in the
dual. Red lines are forced edges.
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in the NP-Hardness construction.
Forced edges are in red. Two dif-
ferent configurations are given.

strained vertex cannot have two incident edges
along the square shared with 4, since doing so
would guarantee the formation of a square (a cy-
cle). Hence, if one of these edges is already present,
the other is impossible.

• For a given vertex v with edge constraint k, if all
but k of its potential edges are impossible, then
those edges are forced.

The above set of deduction rules is enough to obtain
the entire set of edges of the backbone (i.e., the edges
in Fig. 6). In fact, after adding all of the edges forced
by degree-4 constrained vertices, each of the remaining
backbone edges at a vertex v can be deduced from the
constraints contained in the 3 × 3 window of vertices
centred at v using the above deductions. Hence, each
deduction step can also be algorithmically implemented
with a constant-time brute force check looking at a small
window of constraints on a partially-filled board.

Global connectivity. We have three classes of (pri-
mal) vertices in S: The vertices in SG, the degree-
specified vertices in S \ SG (i.e., the barrier), and the
unspecified vertices in S \ SG (i.e., the face interiors).
As specified, the degree-specified vertices in S \ SG will
form a cycle around the boundary of each face in P
for any possible assignment of edges, which would vi-
olate the cycle constraint in the primal. Additionally,
there are no connections between the first or second sets
of vertices, which would violate the cycle constraint in
the dual. We will solve both of these with a gadget si-
multaneously. To fix this we will assign each face an
edge and apply the edge-connection gadget, shown in
Figure 7, to connect to that face. If the edge is not
long enough to insert the gadget, we can simply scale

up the embedding by an at-most polynomial factor. In
the connection gadget, the edge above the newly con-
nected degree-3 constrained vertex is forced. Further
this is the only place the face is able to connect to the
rest of the construction. Thus the number of free edges
at that vertex remains 2, the connectivity to the rest
of the path is not changed, and thus this does not im-
pact the admissible solutions in the edge. Moreover,
this gadget adds a single “gap” in the barrier of each
face, removing the cycle. Finally, for the remaining ver-
tices in the puzzle (the unspecified vertices in S \ SG),
we leave them unconstrained which will allow the space
outside our construction to be filled in using Theorem 1
for any valid partial solution to the vertices in SG and
degree-specified vertices in S \ SG. There is no possible
interaction between the vertices in SG and the unspeci-
fied vertices in S \SG, and hence this does not affect the
ability of the vertices in SG to form a Hamiltonian path
(corresponding to a Hamiltonian cycle with a specified
forced edge in P ).

Now, if the original 3-regular, bipartite, planar Hamil-
tonian cycle problem has a solution, then so does the
Hamiltonian path problem in G. In our Slant instance,
we can fill in the vertex and edge gadgets based on the
solution in G, fill the faces as connected components
with Theorem 1, and fill in the forced edges which gives
a valid Slant solution (after rotating 45◦).

If there is no solution to the Hamiltonian cycle prob-
lem in P , then we know there is no Hamiltonian path
in the grid graph G. Our construction ensured that
the green vertices which are in the same grid pattern at
G only have a solution if there is a Hamiltonian path
among those vertices. Thus there would be no solution
to the Slant puzzle, completing the reduction.
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Combining the prior NP-hardness construction with
the observation that checking a potential solution to a
Slant puzzle can be done in polynomial time gives us
our desired result.

Theorem 7 Deciding if there is a solution to an n× n
Slant puzzle is NP-complete.

5 Conclusion and Open Questions

In this paper we’ve connected the recreational logic puz-
zle Slant to the Hamiltonian path problem and matroid
theory. Through these tools we’ve shown solving Slant
puzzles is NP-complete and given algorithms to solve
various special cases and simplifications of Slant. In
particular, we showed that the constraints of a Slant
puzzle break into five classes, and the simplifications
that use just any two of them are solvable in polynomial
time. This combination of results leaves open the ques-
tion of exactly how many/which classes of constraints
are needed for NP-completeness. Our construction cur-
rently uses all five classes of constraints (the cycle con-
straint, and all four classes of vertex constraints) and
all types of vertex constraints except 0. It would be
very interesting to know, for example, if the problem is
still hard without the cycle constraint, or if we only need
the cycle constraint and vertex constraints in the primal
graph. We also know that puzzles which only contain
0 and 4 degree constraints are easy to solve, but what
about other subsets?
Another category of questions deals with the unique-

ness and quantity of solutions. We can always find a
way to fill a partially filled Slant puzzle with no remain-
ing degree constraints, but is there a polynomial time
algorithm to count the number of solutions? Further,
since having a unique solution is a common design goal
in pencil-and-paper puzzles, it is natural to ask: is Slant
ASP-hard [35]? Also, is counting the number of solu-
tions #P-hard[33]?

Finally, our view of Slant as a partition of edges be-
tween a planar and dual graph naturally leads to a gen-
eralization of the puzzle to other types of graphs. Is
the problem still NP-hard on the triangular/hexagonal
grid? In this case we consider the problem of partition
edges between a primal and dual graph; as the inter-
pretation of diagonals does not carry over to triangular
girds. Are there interesting and aesthetically pleasing
similar puzzles on different forms of planar graphs?
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Top-k Colored Orthogonal Range Search

Guangya Cai∗ Ravi Janardan∗

Abstract

In a top-k colored orthogonal range search problem, a
set of n colored, weighted points in Rd is to be pre-
processed into a data structure, so that given an axes-
aligned query range q and an integer k ≥ 1, the k (or
fewer) largest-weight points of each color contained in
q can be reported efficiently. Efficient data structures
are presented in R1 and R2 that use near-linear space
(up to a low-degree poly-log factor) and answer queries
in O(log n + λk) query time, where λ is the number of
distinct colors among the points in q (so λk is an upper
bound on the output size). Unfortunately, these results
are not practical for large datasets because the poly-log
factor in the space bound rapidly overwhelms the avail-
able storage. Therefore, practical and space-efficient so-
lutions are also presented. Evaluation of these on large
real-world and synthetic datasets show that they achieve
good speed-up over baseline data structures (sometimes
by up to two orders of magnitude).

1 Introduction

In the colored orthogonal range search problem, we are
given a set, S, of n points in Rd, where each point has
one of c > 0 possible colors, representing its “category”.
We wish to pre-process S into a data structure so that
for any axes-aligned query range, q (e.g., an interval in
R1 or a rectangle in R2), the distinct colors intersected
by q can be reported efficiently. (A color is intersected
by q iff at least one point of that color is intersected by
q.) This problem was first proposed in [12] and has been
studied extensively. (See the survey [10].)

A natural variant is top-k colored orthogonal range
search, where each point p in S has a real-valued weight
w(p). A query consists of an axes-aligned range, q, and
an integer k ∈ [1, n]. We wish to return for each in-
tersected color, the k largest-weight points of that color
intersected by q. (If fewer than k points of a color are
intersected, then all of them are reported.) The case
k = 1, i.e., top-1 colored orthogonal range search, is an
important special case.

This problem has applications in querying databases
(e.g., searching a real-estate databases where houses are
listed by cost and category—single-family, townhome,

∗Department of Computer Science & Engineering, University
of Minnesota, Twin Cities, {cai00171,janardan}@umn.edu

condo, etc.—and users wish to identify (say) the 5 most
expensive houses in each category that lie in a rectangu-
lar query region). Top-k colored search can also provide
users with more diverse query results by leveraging the
color information (e.g., instead of searching for (say) the
100 most cited papers in CS during some time period,
which might favor certain popular areas due to high ci-
tation counts, one could ask for (say) the 5 most cited
papers in different areas (i.e., categories) of CS).

An easy solution to the problem combines a known
solution for orthogonal range search on colored (non-
weighted) points [4, 10, 11, 17] with one for top-
k orthogonal range search on weighted (non-colored)
points [3, 20, 21, 22]. We build a data structure, T ,
for the former on S and a data structure, CT j , for the
latter on the set ofmj points of color j in S. We query T
to identify the λ distinct colors intersected by q and for
each intersected color, j, query CT j to report the k (or
fewer) points with largest weights. Suppose that T uses

O(n logO(1) n) space and has query time O(logO(1) n +

λ logO(1) n) and CT j uses O(mj log
O(1)mj) space and

has query time O(logO(1)mj + k). Then the combined

solution uses O(n logO(1) n) space with a query time of

O(logO(1) n+ λ logO(1) n+ λk). (Note that as λk is the
worst case output size, that term is unavoidable in the
query time.) As a specific example, in R1 using the
real-RAM model, one can use the data structure for
colored search in [11] and the data structure for top-k
search in [22] to get a solution using O(n) space with a
query time of O(log n+ λ log n+ λk). In higher dimen-
sions and/or other computational models, one is free
to choose the best available data structures for colored
search [4, 10, 17] and for top-k search [3, 20, 21, 22] to
build a solution.

There are two major issues with this approach. First,
it is inefficient for small k due to the O(λ logO(1) n) over-
head in the query time. Typically, k is small since users
often want to examine only a small subset of “impor-
tant” records (e.g., if viewing the query output on a
small phone screen). Second, the approach may not
work well in practice due to the non-linear space usage.
For example, even a low-degree poly-log term of log2 n in
a space bound like O(n log2 n) results in a multiplicative
factor of ≈ 400 when n = 106. In practice, linear-size
data structures like kd-trees and R-trees are preferred.

We address the first issue by giving (theoretical) so-
lutions in R1 and R2 that are very efficient in query
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time. The query time is O(log n + λ), when k = 1 and
O(log n + λk), when k > 1. In R1, the space used is
O(n), when k = 1, and O(n log log n), when k > 1.
In R2, the space used is O(n log2 n), when k = 1, and
O(n log3 n), when k > 1. These results are for the real-
RAM model. To address the second issue, we present
practical, space-efficient solutions that incorporate kd-
trees and R-trees along with certain other tweaks. Ex-
periments on real-world and synthetic datasets show
that our solutions achieve good speed-up over baseline
data structures that we have implemented.

Related work: Variants of our problem appear in pre-
vious work. In [24], the problem of reporting the inter-
sected colors with the k largest weights was considered.
(Other approaches to query aggregation were also stud-
ied.) Some of these results can be adapted to solve our
top-1 colored range search problem. In [18], a prob-
lem called Categorical Range Maxima Query (CRMQ)
was studied in word-RAM and external memory mod-
els. The top-1 colored range search problem was consid-
ered over an array of integers using an interval specified
by array indices and efficient linear-space solutions were
given. To the best of our knowledge, there are no known
empirical evaluations of these solutions.

2 Theoretical solutions

Let S be a set of n colored points in R1 or R2, where
p ∈ S has a real-valued weight w(p). A query consists
of an interval in R1 or a rectangle in R2, and an integer
k ≥ 1. For simplicity, we assume that no two points of
the same color in S have the same x- or y-coordinate or
the same weight. (Otherwise we can use a tie-breaking
mechanism based on composite numbers [7].)

2.1 Top-1 search in R1

We sort the points of each color j in S by increasing x-
coordinates into a set Sj and insert dummy points −∞
and +∞ of color j into Sj , both of weight +∞. For
each non-dummy point pi ∈ Sj , we find a pair of points
si and ti in Sj such that si (resp. ti) is the closest point
to the left (resp. right) of pi such that w(si) > w(pi)
(resp. w(ti) > w(pi)). We call the open interval (si, ti)
the maximum top-1 range of pi.

We wish to obtain a necessary and sufficient condition
for pi to be a top-1 point of color j in q. At a minimum,
we must have pi ∈ q. Additionally, if q ⊆ (si, ti), then
any other point of Sj in q has lower weight than w(pi),
so pi is the top-1 point of color j in q. Conversely, if
q ̸⊆ (si, ti), then at least one of si and ti is in q, so pi is
not the top-1 point of color j in q. Thus, pi is a top-1
point of color j in q = [a, b] iff pi ∈ q and q ⊆ (si, ti),
i.e., a ≤ pi ≤ b, si < a, and b < ti. (This observation is
reminiscent of the two-sided chaining method [18] and

of an approach to compute a certain type of skyline in
a query range [19].)

We transform our problem into a standard (i.e., non-
colored) rectangle-stabbing problem, as follows. First,
we restate the above conditions as si < a ≤ pi and
pi ≤ b < ti. Next, we map q = [a, b] to the point (a, b)
and map pi to the rectangle Ri = {(x, y) ∈ R2 | si <
x ≤ pi and pi ≤ y < ti} of color j, both in R2.
Clearly, pi is the top-1 point of color j in q iff point

(a, b) stabs Ri. The rectangles of color j must be pair-
wise disjoint (else the top-1 point will not be unique, vi-
olating the assumption of distinct weights). Thus, (a, b)
stabs at most one rectangle of color j, and that rectangle
corresponds to a top-1 point of color j in q. Then, using
an efficient rectangle-stabbing data structure [2, 5] built
on these rectangles, a top-1 colored search query in R1

can be answered in O(log n+ λ) time and O(n) space.

2.2 Top-k search in R1 (k > 1)

As described in Section 1, we can solve this problem
using known data structures for interval range search
on colored (non-weighted) points and for top-k interval
range search on weighted (non-colored) points. The for-
mer uses O(n) space and has a query time of O(log n+
λ) [11] and the latter uses O(n) space and has a query
time of O(log n + k) [22]. This yields a solution using
O(n) space with a query time of O(log n+λ log n+λk).

When k = ω(log n) the query time of this solution is
O(log n+λk), which is efficient. But when k = O(log n),
the query time is O(log n+λ log n) = Ω(logn+λk). We
design an O(n log log n)-space data structure to answer
queries in O(log n+λk) time when k = O(log n). These
bounds continue to hold for all k when this solution is
combined with the solution above for k = ω(log n).

Let k̂ = α log n, where α is some positive constant.
We first design a solution for k = k̂ and then show how
this can be used to answer queries for any k ∈ [2, k̂].
(Recall that k is part of the query.)
A natural approach is to extend the notion of a max-

imum top-1 range for a point pi from Section 2.1 to a
maximum top-k range for pi. However, the description
of an exact such range is complicated as there are many
possibilities for the relative positions of pi and the re-
maining k− 1 (or fewer) larger-weight points in a query
interval. Instead, we resort to defining an approximate
top-k range which contains a small superset of the de-
sired top-k points. This superset is returned by the
query and we extract the top-k points efficiently from
it in a post-processing step, via selection.

As before, let Sj be the points of color j sorted by
increasing x-coordinates. For each point pi ∈ Sj , we
scan all points in Sj to the left (resp. right) of pi and
find the k-th point si (resp. ti) with w(si) > w(pi)
(resp. w(ti) > w(pi)). If no such si (resp. ti) exists,
we set si = −∞ (resp. ti = +∞). We call the open
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interval (si, ti) the approximate top-k range of pi. It
can be shown that (see Appendix A.1 for a proof):

Lemma 1 Let pi ∈ Sj and let (si, ti) be its approximate
top-k range. Let q = [a, b] be a query interval.

(i) If pi ∈ q and q ⊆ (si, ti), then pi is among the 2k−1
(or fewer) largest-weight points of color j in q.

(ii) If pi ̸∈ q or q ̸⊆ (si, ti), then pi is not among the k
largest-weight points of color j in q.

Lemma 1 does not quite provide a necessary and suf-
ficient condition for pi to be among the top-k points of
color j in q. However, it gives us enough to be useful.
Specifically, if the conditions on pi and q in case (i) are
met, then suitable post-processing of the query output
(discussed below) allows us to decide if pi should be re-
ported. If the condition on pi or on q in case (i) is not
met, then case (ii) tells us that we can safely ignore pi.

As in Section 2.1, we map q to a point (a, b) and
each pi to a rectangle Ri in R2 and build an efficient
rectangle-stabbing data structure [2, 5] on them. A cru-
cial observation here is that if q intersects a color, then
point (a, b) stabs at most 2k−1 rectangles of that color,
by case (i) of Lemma 1. So, all stabbed rectangles can
be reported in O(log n+ λk) time.

A final post-processing step is to take the 2k − 1 (or
fewer) points associated with the stabbed rectangles,
select the point with the k-th largest weight, and report
only those points with weight more than the k-th largest
weight. This does not affect the overall query time.
This solution is for a fixed k = k̂ = α log n. To handle

any k = O(log n) we use a standard doubling trick. We

build the above structure for each value of k ∈ [2, k̂] that
is a power-of-2. This results in O(log log n) structures,
for a total space bound of O(n log log n). To answer a

query for some k ∈ [2, k̂], we query the data structure
corresponding to the nearest higher power-of-2, say k̄.
Since k̄ ≤ 2k, this yields at most 4k−2 points per color
intersected by q. A select-and-scan step is done on these
points. The query time remains O(log n+ λk).

Theorem 2 The top-k colored orthogonal range search
problem in R1 can be solved in O(n) space and O(log n+
λ) query time when k = 1, and in O(n log log n) space
and O(log n+ λk) query time when k > 1.

2.3 Top-k search in R2 (k ≥ 1)

Extending the previous approach from R1 to R2 appears
difficult, even for k = 1, as the shape of the maximum
top-1 range can be irregular and may not be describable
by a constant number of inequalities. We propose a
different approach based on decomposing the query into
quadrants. We describe our solution for k > 1 and then
show how to simplify it for k = 1.

For a generic point p = (xp, yp) ∈ R2, define its north-
east quadrant, NE(p), as {(x, y) | x ≥ xp and y ≥ yp}
and its south-west quadrant, SW(p), as {(x, y) | x ≤
xp and y ≤ yp}. Assume that the query range is NE(q),
for a point q = (a, b), along with an integer k > 1.

Following the idea described in Section 1, the problem
can be solved by combining two known data structures.
(See [11] and [21], respectively). The solution uses O(n)
space and answers queries in O(log n + λ log n + λk)
time. Again, as noted in Section 2.2, the interesting
case is when k is “small”, i.e. k = O(log n). So, we fix

k̂ = α log n, for some positive constant α, and design
a solution for k = k̂. Subsequently, we show how this
solution can be used to answer queries for any k ≤ k̂.

Fix a color j and let Sj ⊆ S be the set of points of
color j. Wlog, assume that no point of Sj has k or
more larger-weight points of Sj in its north-east quad-
rant; otherwise, we identify and remove them in pre-
processing. Thus, every point of Sj is among the set of
top-k points of color j for at least one query quadrant.

Let p1, p2, . . . , p|Sj | be the points of Sj listed in de-
creasing order of their weights. Consider a point pi =
(xi, yi) in this listing. Our goal is to define the locus
of all points, q, such that pi is among the top-k points
for NE(q); we call this the optimal top-k query region
for pi, denoted by Qk(pi). Let di < k be the number
of larger-weight points in NE(pi). Then Qk(pi) is the
subset of SW(pi) that is not covered by the south-west
quadrants of k−di or more of the (larger-weight) points
p1, p2, . . . , pi−1, i.e., is covered by the south-west quad-
rants of fewer than k − di of the points p1, p2, . . . , pi−1.
To build our data structure, we process the points

by decreasing weight. For each point, pi, we extend the
horizontal (resp. vertical) boundary edge of SW(pi) left-
ward (resp. downward), allowing it to intersect (i.e., cut
through) k−di−1 vertical (resp. horizontal) boundary
edges of previously-processed south-west quadrants and
stopping when it meets (i.e., touches) the (k − di)-th
boundary. (If there are fewer than k − di − 1 intersec-
tions, then the corresponding boundary edge of SW(pi)
extends to infinity.)

This results in a rectilinear subdivision, Z, whose
vertices are the points of Sj and the intersection and
meeting points of south-west quadrant boundaries. (See
Figure 1(a).) The number of intersection and meeting
points is O(|Sj |k) as there are at most k such meeting
points per point of Sj . So the total size of the subdi-
vision is O(|Sj |k). The cells of Z of interest are those
that are below and/or to the left of the closed (staircase-
shaped) outer boundary of Z.
To see the reasoning behind this approach, observe

that if a boundary edge of SW(pi) intersects the bound-
ary edge of pj , j < i, it means that a part of SW(pi) is
covered by SW(pj). Since at most k− di− 1 such inter-
sections are allowed to happen, there are at most that
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Figure 1: (a) Subdiv. Z; (b) refinement of Z. (k = 3.)

many quadrants SW(pj), j < i, that overlap SW(pi).
Together with the di larger-weight points that are in
NE(pi), this yields at most k−di−1+di = k−1 larger-
weight points for any query quadrant NE(q) for which
q lies in Qk(pi). Thus, pi is among the top-k points of
color j for NE(q).

Call a cell of Z rectangle-like if it is a rectangle, pos-
sibly with vertices in the interior of some of its edges.
Each cell of Z is rectangle-like and is the optimal top-k
query region, Qk(pi), for some point pi ∈ Sj ,
It is possible, however, that some cells of Z are not

rectangle-like. We can convert a non-rectangle-like cell
into two or more rectangle-like cells by adding a hori-
zontal line-segment from each corner point of the cell
to the nearest vertical boundary to its right. (See Fig-
ure 1(b).) The resulting refinement of Z, which we con-
tinue to refer to as Z, still has size O(|Sj |k) and all
its cells are rectangle-like (either finite or semi-infinite).
For each rectangle-like cell of Z, we discard any vertices
that lie in edge interiors. This yields a set of O(|Sj |k)
interior-disjoint rectangles of color j.

With each of the O(|Sj |k) rectangular cells of Z, we
associate a list of the top-k (or fewer) points of color j
that are the answer for any query quadrant NE(q) such
that q is in that cell. The list is stored in decreasing
order of the weights. We take the set of rectangles
so generated for each color in S and pre-process them
into a data structure for (standard) rectangle-stabbing
queries [2, 5]. The total number of rectangles is O(nk)
and each has an associated list of points of size O(k).
Therefore, the total space used is O(nk2) = O(n log2 n)

since k = k̂ = α log n.

This data structure allows us to answer a top-k̂ col-
ored query in O(log n + λk̂) time by determining the
rectangles stabbed by q in O(log n + λ) time and out-
putting the points in the associated lists in additional
λk̂ time.

Recall, however, that we wish to answer queries for
any k ≤ k̂ specified as part of the query. We can do so
using the above structure. In the output phase, we sim-
ply traverse the sorted lists associated with each stabbed
rectangle and output the first k (or fewer) points. Thus,
the query time is O(log n+ λk).

It can be shown that the top-k lists at adjacent rect-
angles differ by at most one point, so the space can
reduced to O(n log n) via (full) persistence without af-

fecting the query time. (See Appendix B.1.) Also, by
standard techniques, the solution for quadrant queries
can be extended to 4-sided rectangle queries without
affecting the query time. (See Appendix B.2.) The
resulting data structure uses O(n log3 n) space and an-
swers queries in O(log n + λk). When combined with
the earlier discussion for k = ω(log n), at the beginning
of Section 2.3, we get a solution for all k which uses
O(n log3 n) space and has a query time of O(log n+λk).

Deriving the solution for top-1 search in R2: The
solution above for k > 1 can be simplified as follows
for k = 1: (i) There is no need to distinguish between
small and large k. (ii) di = 0, so when building Z the
boundary edges of SW(pi) are extended only until they
touch the boundary of a previous south-west quadrant,
implying that Z (and its refinement) has size O(|Sj |).
(iii) Instead of storing a list of up to k points with each
cell of Z, we store a single point that is the answer to
NW(q) if q lies in the cell. So the space for quadrant
queries is O(n) and persistence is not needed.

Theorem 3 The top-k colored orthogonal range search
problem in R2 can be solved in O(n log2 n) space and
O(log n+λ) query time when k = 1, and in O(n log3 n)
space and O(log n+ λk) query time when k > 1.

We note that there is a subtlety involved in the anal-
ysis of the run time in Theorem 3 (and, similarly, in
Theorem 2). Due to space limitations, we defer a dis-
cussion of this to Appendix B.3.

3 Practical solutions

Even though the data structures above are efficient in
query time, they are generally not practical due to the
poly-log factor in the space bound (as discussed in Sec-
tion 1). Here we present practical solutions for top-k
colored search in R1 and R2.

3.1 Data structure in R1

In Section 2.1, a linear-size data structure is given for
top-1 search which involves rectangle-stabbing. The
latter uses a solution from [2, 5], which is not prac-
tical. Instead, we solve rectangle-stabbing in a prac-
tical way, using an R-tree, augmented with a bulk-
loading method called Sort-Tile-Recursive (STR) [15].
Rectangle-stabbing can also be transformed to an or-
thogonal range query problem in R3 (see Appendix C.1)
and we can use a kd-tree to solve this.

For top-k, k > 1, Section 2.2 extended the method for
top-1 search and built several rectangle-stabbing-based
data structures, alongside an additional data structure
for any k > k̂, where k̂ is dependent on n. In practice, a
query optimizer can choose a constant value for k̂. Also,
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the number of rectangle-stabbing-based data structures
can be more flexible. In the most space-constrained
situation, one can even build a single data structure
from approximate top-k̂ ranges to make it work. Of
course, the query time becomes worse for small k values.
But if memory space allows, one can select a few values
between 1 and k̂ to build additional data structures to
improve the performance.

3.2 Data structure in R2

Top-k colored search is an extension of orthogonal range
search, where a kd-tree [7] is used commonly in practice.
Recall that a kd-tree is built by recursively and alter-
nately splitting the given point-set into two subsets of
roughly equal size by the median value of a spatial co-
ordinate. In our data structure, since each point has a
color, besides splitting by spatial coordinates, splitting
into two subsets is also done by using the colors (as ex-
plained below). If all points in a subset are of the same
color, a substructure for efficient top-k search is built.

Color splitting and substructures: For each color j in
S, a minimum axis-aligned bounding box (AABB) is
computed for all points of color j. Then the point-set is
split into two subsets by splitting AABBs, which we call
color splitting. There are different criteria to be consid-
ered to make a good split, such as overlaps between two
subsets of AABBs and tree balancing. In practice, the
R-tree and its variants also split a collection of rectan-
gles for an overflowing node. So, we use the method
from a variant of the R-tree, namely the R*-tree [1].
Since the two subsets cannot necessarily be split by a
single line, an AABB, denoted as region(v), is stored at
each tree node v to facilitate querying.

We propose two approaches to deploy color splitting:
static splitting and greedy splitting. The first interleaves
color splitting with splitting by spatial coordinates. The
second considers various criteria and if one criterion is
under a threshold value, then color splitting is applied;
otherwise, spatial splitting is applied. The criteria in-
clude the AABB overlap fraction and the number of
colors in the point-set.
While doing spatial or color splitting, if only one point

remains then a leaf is created. Moreover, once all points
in a subset are of the same color, a substructure for ef-
ficient top-k (k ≥ 1) search is built for those points and
the corresponding kd-tree node is denoted as a single-
colored node. For top-1 search, an augmented kd-tree is
built using the approach in [13, 25]. For top-k search
(k > 1), since it is not obvious how one can adapt
this augmentation method, we follow the idea of the
counting-based method described in [22]. Here, an aug-
mented kd-tree (storing the sizes of subtrees) is used
for range counting queries, and a sorted list of points is
maintained to facilitate binary search.

It is not hard to see that our data structure in R2 is
of linear size. It is a combination of linear-size trees, so
the number of tree nodes is also O(n). Except for point
lists at single-colored nodes, each node uses O(1) space.
Finally, each point is stored at most twice (at a leaf and
possibly at a single-colored node).

Query algorithm: Let v be a node reached in the
query. If region(v) only partially intersects the query
rectangle q and v is neither a leaf nor a single-colored
node, then query proceeds as in a kd-tree (See [7].)
The differences lie in the other cases. For top-k search
(k ≥ 1), during the query we maintain a list of top-k
candidate points for each color. If v is a leaf and if its
point is in q, then the appropriate candidate points list
is updated. If v is a single-colored node and region(v)
is contained in q, the top-k (or fewer) points can be ob-
tained from the list stored at the node. Together with
the list of top-k candidate points at hand, top-k points
are obtained by merging the two lists and running a
linear-time selection algorithm. If q only partially inter-
sects region(v), the top-k points can be reported from
the substructure and the list of top-k candidate points
is updated via the same merge method. If v is neither
a leaf nor a single colored node, but region(v) is en-
tirely contained in q, we walk down the tree until a leaf
or a single colored node is reached and update the list
of top-k candidate point accordingly. (See Appendix
D.1 for pseudocode and Appendix D.2 for implementa-
tion tweaks to get real speed-up in practice.) For top-1
search, the algorithm is simpler as only the top-1 search
substructure need be queried at a single-colored node.

4 Experimental results in R1 and R2

For better cache performance, all tree-based structures
(including those in baseline methods we implemented
for comparison) are flattened into linear arrays, with a
pre-order traversal layout. (Other layouts might work
better [14], but are not explored here.) The query time
is measured using the same set of randomly generated
10,000 query ranges for all datasets and is reported as
the total time for these query ranges. Unless stated
otherwise, we use a query range that occupies 2 percent
of the universe (i.e. the maximum span of the points
in R1 or the AABB of the points in R2) and set k = 5.
Our implementations were in C++ on an Intel Core
i5-8300H (2.30 GHz) machine with 16GB RAM. Due to
space constraints, only results on real-world datasets are
discussed here. (See Appendices E.4 and F.3 for results
on synthetic datasets in R1 and R2, respectively.)

4.1 Results in R1

The datasets we use are Google Local Dataset [16]
(n = 38.9M, c = 3455) and Stack Overflow Questions
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Figure 2: Query time in R1 as a function of range length ((a), (b)) and k ((c), (d)). (Plot best viewed in color.)
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Figure 3: Query time in R2 as a function of window size ((a), (b)) and k ((c), (d)). (Plot best viewed in color.)

Dataset [23] (n = 17.7M, c = 35751), where n and
c are number of points and colors, respectively. (See
Appendix E.1 for details.) For comparison, three base-
line methods, namely Naive Range Scan, Naive Top-k
and Naive Linear Scan were implemented. (See Ap-
pendix E.2.) Throughout, our queries are handled by
the rectangle-stabbing-based data structures used in our
method. For large k values, one can choose one of the
baseline methods. In this case the query time compari-
son is uninteresting.

In Figures 2(a) and 2(b), our kd-tree-based method
performs best for any sufficiently large query range and
our R-tree-based method also shows good performance
for the Google Local dataset. In the larger dataset
(Google Local), the kd-tree-based method achieves
speedups of up to 21x, 27x and 128x over Naive Top-k,
Naive Range Scan and Naive Linear Scan, respectively.
We notice that our method has a greater advantage in
the Google Local dataset than in the other one. Our
query algorithm consists of two parts: (1) Rectangle-
stabbing and (2) Gathering and selecting top-k points
per intersected color. We observe that as the query
range becomes larger, the time spent in part (2) grows
more rapidly than the time in part (1). For the Stack
Overflow Questions dataset, the issue is worse since it
has more colors.

Figures 2(c) and 2(d) shows the query time as a func-
tion of k. To show the peak performance, the data struc-
ture built from approximate top-k ranges is queried for
each input k. (See Appendix E.3 for results in a different
setting.) Our kd-tree-based method performs consis-

tently the best and our R-tree-based method performs
better than baseline methods for one dataset. We no-
tice that the query time of our methods increases more
rapidly for the Google Local dataset than for the other
dataset. This is because the number of colors of the lat-
ter dataset is larger, which results in a proportionately
slower growth of output size as k increases.

4.2 Results in R2

The datasets we use are CalCROP21 Dataset [9] (n =
19.2M, c = 70) and Chicago Crime Dataset [6] (n =
7.5M, c = 32). (See Appendix F.1 for details.) For
the static splitting approach, we apply two color splits
consecutively after two spatial splits (x and y). For the
greedy splitting approach, we take the overlap threshold
value to be 0.5 and the color count threshold value to
be 4. For comparison, three baseline methods, namely
Naive Range Query, Naive top-k and Naive Scan were
implemented. (See Appendix F.2.) Query windows with
aspect ratio ranging from 1/4 to 4 are used.

Figures 3(a) and 3(b) shows the query time as a func-
tion of the query window size. For CalCrop21, both
static splitting and greedy splitting work well and out-
perform all other methods in almost all cases. Greedy
splitting performs slightly better than static splitting.
Since points of the same color are more clustered in this
dataset, greedy splitting is able to make good splits. In
this larger dataset, greedy splitting is able to achieve
speedups of up to 6x, 15x and 33x over Naive top-k,
Naive Range Query and Naive Scan, respectively. For
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the Chicago Crime dataset, static splitting outperforms
baseline methods except for the smallest query window.
Even though the clustering of data of the same type is
less obvious here, greedy splitting still performs consis-
tently better than Naive Range Query.
In Figures 3(c) and 3(d), the query times of all meth-

ods increase mildly with k. For CalCROP21, both static
splitting and greedy splitting perform consistently bet-
ter than other baseline methods, with the greedy split-
ting being the best. For the Chicago Crime dataset, the
static splitting method performs the best.
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Ortiz. Online sorted range reporting. In Algorithms and
Computation: 20th International Symposium, ISAAC
2009, Honolulu, Hawaii, USA, December 16-18, 2009.
Proceedings 20, pages 173–182. Springer, 2009.

[4] T. M. Chan and Y. Nekrich. Better data structures
for colored orthogonal range reporting. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 627–636. SIAM, 2020.

[5] B. Chazelle. Filtering search: A new approach to query-
answering. SIAM Journal on Computing, 15(3):703–
724, 1986.

[6] Chicago Police Department. Reported incidents in the
city of Chicago, 2023. Retrieved from UCR-STAR
https://star.cs.ucr.edu/?Chicago%20Crimes.

[7] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and ap-
plications. Springer, Heidelberg, Germany, 3rd edition,
2008.

[8] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. Journal of
Computer and System Sciences, 38(1):86–124, 1989.

[9] R. Ghosh, P. Ravirathinam, X. Jia, A. Khandelwal,
D. Mulla, and V. Kumar. CalCROP21: A georefer-
enced multi-spectral dataset of satellite imagery and
crop labels. In 2021 IEEE International Conference on
Big Data (Big Data), pages 1625–1632. IEEE, 2021.

[10] P. Gupta, R. Janardan, S. Rahul, and M. Smid. Com-
putational geometry: Generalized (or colored) intersec-
tion searching. In Handbook of Data Structures and Ap-
plications, pages 1043–1058. Chapman and Hall/CRC,
2018.

[11] P. Gupta, R. Janardan, and M. Smid. Further results on
generalized intersection searching problems: counting,

reporting, and dynamization. Journal of Algorithms,
19(2):282–317, 1995.

[12] R. Janardan and M. Lopez. Generalized intersection
searching problems. International Journal of Compu-
tational Geometry & Applications, 3(01):39–69, 1993.

[13] M. Jurgens and H.-J. Lenz. The R∗
a-tree: an improved

R*-tree with materialized data for supporting range
queries on OLAP-data. In Proceedings Ninth Interna-
tional Workshop on Database and Expert Systems Ap-
plications, pages 186–191. IEEE, 1998.

[14] P.-V. Khuong and P. Morin. Array layouts for
comparison-based searching. ACM Journal of Exper-
imental Algorithmics, 22:1–39, 2017.

[15] S. T. Leutenegger, M. A. Lopez, and J. Edgington.
STR: A simple and efficient algorithm for R-tree pack-
ing. In Proceedings 13th International Conference on
Data Engineering, pages 497–506. IEEE, 1997.

[16] J. Li, J. Shang, and J. McAuley. UCTopic: Unsu-
pervised contrastive learning for phrase representations
and topic mining. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguis-
tics, pages 6159–6169, 2022.

[17] Y. Nekrich and J. S. Vitter. Optimal color range re-
porting in one dimension. In European Symposium on
Algorithms, pages 743–754. Springer, 2013.

[18] M. Patil, S. V. Thankachan, R. Shah, Y. Nekrich, and
J. S. Vitter. Categorical range maxima queries. In Pro-
ceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages
266–277, 2014.

[19] S. Rahul and R. Janardan. Algorithms for range-skyline
queries. In SIGSPATIAL 2012 International Confer-
ence on Advances in Geographic Information Systems
(formerly known as GIS), SIGSPATIAL’12, Redondo
Beach, CA, USA, November 7-9, 2012, pages 526–529.
ACM, 2012.

[20] S. Rahul and R. Janardan. A general technique for
top-k geometric intersection query problems. IEEE
Transactions on Knowledge and Data Engineering,
26(12):2859–2871, 2014.

[21] S. Rahul and Y. Tao. On top-k range reporting in
2d space. In Proceedings of the 34th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 265–275, 2015.

[22] S. Rahul and Y. Tao. A guide to designing top-k in-
dexes. ACM SIGMOD Record, 48(2):6–17, 2019.

[23] D. Robinson. Stacklite: A simple dataset of stack over-
flow questions and tags. https://github.com/dgrtwo/
StackLite, 2017.

[24] B. Sanyal, P. Gupta, and S. Majumder. Colored top-k
range-aggregate queries. Information Processing Let-
ters, 113(19-21):777–784, 2013.

[25] Y. Tao and D. Papadias. Range aggregate processing
in spatial databases. IEEE Transactions on Knowledge
and Data Engineering, 16(12):1555–1570, 2004.

335



36th Canadian Conference on Computational Geometry, 2024

A Omitted details of Section 2.2

A.1 Proof of Lemma 1

Proof. Suppose that pi ∈ q and q ⊆ (si, ti). Then
there can be at most k − 1 points on either side of pi
with weight larger than w(pi). Thus, pi is among the
2k − 1 (or fewer) largest-weight points of Sj in q. On
the other hand, if pi ∈ q and q ̸⊆ (si, ti), then at least
one of si and ti is in q. Thus there are at least k larger-
weight points of color j in q, so pi is not among the k
largest-weight points of color j in q. Of course, if pi ̸∈ q,
then regardless of whether or not q ⊆ (si, ti), pi is not
among the k largest-weight points of color j in q. □

B Omitted details of Section 2.3

B.1 Reducing space via persistence

Consider the subdivision Z for some color j. We build
a graph, G, where vertices correspond to cells of Z and
edges join vertices whose cells share an edge. Observe
that when we traverse an edge (u, v) of G, we either en-
ter some south-west quadrant or exit it. Thus, the lists
of top-k (or fewer) points stored with the cells associated
with u and v differ by at most one point. So, we can
store all the lists of Z compactly via full persistence [8].
We do a depth-first search of the graph G derived

from Z. When we traverse an edge (u, v), from u to v,
we update the list associated with u in a fully persistent
way, by inserting or deleting one point, to obtain the
list for v. At the end of the search, we have a fully
persistent data structure storing all the lists of Z. There
are (|Sj |k) updates in total, so by the result in [8], the
overall space used by all the lists in Z is O(|Sj |k). Thus,
the total space used for all colors is O(nk) = O(n log n),

since k = k̂ = α log n.

B.2 Handling 3- and 4-sided rectangles

Suppose that the query rectangle, R⊔, is 3-sided and
upward-unbounded. We build a binary search tree on S
by bisecting it recursively with vertical lines and storing
at each node instances of the north-east (and a sym-
metric north-west) quadrant data structure from Sec-
tion 2.3. Given R⊔, we find a node of the tree whose
line intersects it, dividing it into a north-east and a
north-west quadrant. We query the associated struc-
tures to obtain a set of at most 2k largest-weight points
in R⊔. We identify the k largest-weight ones among
these points by first selecting the k-th largest point in
O(k) time. We scan the set of at most 2k points and
output the ones that have larger weight, as well as the
k-th largest point. The query time is O(log n+λk) and
the space used is O(n log2 n).
For 4-sided rectangles, we build a binary search tree

on S by bisecting it with horizontal lines. Each node

stores instances of the above 3-sided query structure,
for upward- and downward-unbounded rectangles. A 4-
sided query is decomposed into two 3-sided ones and the
appropriate associated structures are queried, followed
by a select-and-scan step as above.

The resulting two-level tree structure adds two log-
factors to the space bound of the quadrant structure,
taking it to O(n log3 n), but the query time remains
O(log n+ λ).

B.3 Making query times truly output-sensitive

Let lj be the number of points of color j in S returned by
a top-k colored query with q. For k > 1, the query time
of O(log n+λk) achieved by our query algorithms can be
expressed more precisely as O(log n+

∑
j lj), where the

summation is over all intersected colors. This accounts
for the possibility that lj ≪ k for some (possiblly all) of
the intersected colors j and makes the query time truly
output-sensitive.

A careful study of our query algorithms in R1 and R2

for small k (i.e., k ≤ k̂ = O(log n)) shows that they in
fact achieve this bound. (Specifically, in R1, the number
of stabbed rectangles of color j is at most 2lj − 1 and
in R2 the traversal of the sorted list for the stabbed
rectangle of color j visits and outputs lj points.)

For large k (i.e., k > k̂), however, the query algo-
rithm used (by combining known results for colored
range search and non-colored top-k search) has a run
time which includes the term log n + lj for each of the
λ intersected colors j. (This term comes from the non-
colored top-k query.) When lj ≪ k, the log n term is
not subsumed by the lj term, which makes the query
time non-output-sensitive.

Fortunately, this issue can be resolved in a simple
way, as follows. When k > k̂, we first query the data
structure designed for small k values by setting k = k̂.
Then, in the output of the query, we count the number
of points per intersected color. If for some color j the
number of output points is k̂, then the non-colored top-k
search data structure for that color is queried to report
all top-k points. In this case, since k̂ = α log n, we know
that lj = Ω(log n) so the additional time spent on non-
colored top-k search for color j is O(log n+ lj) = O(lj).
For those colors where the number of output points is
less than k̂, queries on the non-colored top-k search
structures are not needed since all the relevant points
have already been output. Thus, the total time spent
on non-colored top-k search for all intersected colors is
O(
∑
j lj) and the query time becomes O(log n+

∑
j lj),

as desired.

For simplicity, and due to lack of space, this issue is
ignored in the body of the conference submission and
the query time is written as O(log n+ λk) throughout.
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C Omitted details of Section 3.1

C.1 Further transformation of rectangle-stabbing

Recall our transformation from Section 2.1: For a given
query range q = [a, b] and a point pi with its maxi-
mum top-1 range being (si, ti), q is transformed into a
point (a, b) and pi is transformed into a rectangle Ri =
{(x, y) ∈ R2 | si < x ≤ pi and pi ≤ y < ti}. The point
(a, b) can be further transformed into a hyperrectangle
Q = {(x, y, z, w) ∈ R4 | x < a, y ≥ a, z ≤ b, w > b} in
R4 and Ri can be transformed to a point (si, pi, pi, ti)
in R4. Then the original top-1 point from Section 2.1
can be solved by doing an orthogonal range query with
Q on the set of points in R4 resulting from the trans-
formation. Notice that the point (si, pi, pi, ti) in R4 has
identical second and third coordinates, i.e., pi. This al-
lows us to replace the two separate constraints a ≤ pi
and b ≥ pi by a single constraint a ≤ pi ≤ b. Thus, we
can work in R3 with the set of points (si, pi, ti) and the
query range {(x, y, w) ∈ R3 | x < a, a ≤ y ≤ b, w > b}.

D Omitted details of Section 3.2

D.1 Pseudocode for the query algorithm

Algorithm 1 Query algorithm for top-k search (k ≥ 1)

Input: A node v in the data structure, query rectangle
q, and collection, L, of lists of top-k candidate points
for each color (L[j] is the list for color j).

Output: Top-k points lists stored in L.
1: procedure Query(v, q, L)
2: if v is a leaf then
3: Update the appropriate top-k candidate list

in L if the point stored in v lies in q.
4: else if v is a single colored node then
5: l← L[color(v)]
6: if region(v) is fully contained in q then
7: l′ ← top-k weighted points stored at v

or all points if the list has less than
k points.

8: MergeAndSelectTopk(l, l′)
9: else if region(v) intersects q then

10: l′ ← top-k weighted points obtained by
querying the substructure.

11: MergeAndSelectTopk(l, l′)
12: end if
13: else if region(v) is fully contained in q then
14: UpdateTopkCandidates(lc(v), L)
15: UpdateTopkCandidates(rc(v), L)
16: else if region(v) intersects q then
17: Query(lc(v), q, L)
18: Query(rc(v), q, L)
19: end if
20: end procedure

D.2 Implementation tweaks

The query algorithm presented in Section 3.2 shows the
general idea of the query algorithm. However, to get
real speed-up in practice, there are still a number of
implementation details one has to be careful about.

For the top-k search substructure, range counting is
used to find the threshold weight. However, it is not
necessary to count exactly all the time; one only has to
determine whether the number of points is larger than,
less than, or equal to k while doing binary search. In
this case, one can terminate the counting process once
it is known that the number of points inside the query
box is larger than k. This simple trick improves the
performance of the counting-based top-k search method
significantly.

Also, alongside the top-k candidate points, we keep
track of the minimum weighted one among them, whose
weight is denoted wjm. This enables fast testing of points
stored at leaves, where a point can be rejected efficiently
if its weight is less than wjm. Also, for top-k search at
the single colored node, one can use wjm to test against
the maximum weighted point stored at this node and
skip all subsequent operations if wjm is larger. More-
over, one can use it to do range counting first along the
third dimension using the range [wjm,+∞) and report
all points if the number of points inside the range is less
than k. Finally, wjm can be used as a starting point
for binary search for the threshold weight, or as a stop-
ping point if the AABB of a single colored node is fully
contained in q.

One last trick worth mentioning to practitioners (but
which was not used in our experiments) is that one
can further speed-up our data structure by substituting
some counting-based substructures with simple sorted
lists of points, when the number of points in the sub-
structure is under some threshold value. Our choice of
the substructure used for top-k search introduces a log-
factor in the query time, which makes it inefficient when
the number of points in the substructure is small. How-
ever, the choice of the threshold value could be highly
dependent on the machine used and on the data distri-
bution, which makes the problem challenging.

E Omitted details and additional experimental re-
sults of Section 4.1

E.1 Datasets

Details on datasets we use in this work for top-k col-
ored searching in R1 are listed below, where n denotes
the number of data points and c denotes the number of
colors.

1. Google Local Dataset [16] : This dataset contains
review information on Google map (ratings, text,
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images, etc.), business metadata (address, geo-
graphical info, descriptions, category information,
price, open hours, and other miscellaneous infor-
mation) up to Sep 2021 in the United States. The
timestamp of a review is regarded as an attribute
to be range-queried since one might only be inter-
ested in reviews within a certain time period. The
category of the business is regarded as a color and
the length of the text is regarded as a weight. Note
that a business might be in different categories at
the same time (e.g. used car dealer and used truck
dealer). In our experiments, multiple data points,
one for each color, are created from a single review.
Since the dataset is large, with 666 million reviews,
we only use data for Minnesota and Wisconsin. Re-
views without text are filtered out and we end up
with n = 38.9× 106 and c = 3455.

2. Stack Overflow Questions Dataset [23]: This
dataset contains all questions asked by users over
the years at stackoverflow.com. The timestamp
for the creation of a question is regarded as an at-
tribute to be range-queried. For each question, up
to five tags can be added to it and these tags are
regarded as colors in our experiments. Since each
question might have multiple colors, multiple data
points, one for each color, are created from a sin-
gle question. Besides, users can up-vote a question
if they think it is a good one or down-vote it if
they think the other way. A score equal to the
total number of up-votes minus the total number
of down-votes is assigned to each question, and it
is regarded as the weight of the question. In our
experiments, we used all questions asked between
2008 and 2013 and filtered out all deleted questions.
We ended up with n = 17.7× 106 and c = 35751.

3. Uniform Synthetic Dataset: All coordinates and
weights of the points are generated uniformly at
random in the interval [−500, 500] and a color is
assigned to each point uniformly at random. We
have n = 20.0× 106 and c = 200 or c = 1000.

E.2 Baseline methods

For comparison, several baseline data structures were
implemented for top-k colored searching in R1:

1. Naive Range Scan: A list of points sorted by their
x-coordinate in increasing order is maintained. For
a given query range q = [a, b], the first point in the
list whose x-coordinate is greater than or equal to a
is identified by a binary search, followed by a linear
scan to update the list of top-k candidate points
for each encountered color until a point whose x-
coordinate is greater than b, or the end of list, is
reached. Note that we do not report all points
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Figure 4: Query time versus approximate top-k′ ranges
for real-world datasets.

and select top-k points since this method performs
poorly for large query ranges and small k due to
significantly larger number of memory allocations
and worse cache performance.1 Besides, we also
keep track of the minimum weighted point among
top-k candidate points per intersected color for fast
point rejections, as done in Section D.2.

2. Naive Top-k: For each color, a counting-based top-
k search data structure is built on points of that
color, alongside a list of points sorted by their x-
coordinate in increasing order. A query first de-
termines whether there are at most 2k points in-
side the query range by two binary searches on the
sorted list. If so, the top-k points are determined
via selection among up to 2k points. Otherwise,
the counting-based top-k search data structure is
queried to find the threshold weight and report the
top-k points. (The early termination trick applied
in Section D.2 is also used here.)

3. Naive Linear Scan: For each color, a list of points
sorted by their weights is maintained. To answer
a query, each list is scanned in sorted order until
either k points inside the query range are found or
the end of the list is reached.

E.3 Effect of approximate top-k′ ranges

In our experiments, we use k′ to denote an integer in
[1, k̂] for which we build an instance of our rectangle-
stabbing-based data structures. Figure 4 shows that
query time of our data structures that are built with
different k′ values, but only report top-5 points per in-
tersected color. For a better illustration, the query time
(y-axis) is on a linear scale. Also, for a better perfor-
mance, for any k′ > 5, instead of gathering and selecting
top-k points per intersected color, the implementation is
changed to keep updating the top-k candidate list per
color while doing rectangle-stabbing, which is similar

1We observe that the report-and-select method performs bet-
ter if the output size is close to the number of points in q. In most
of our experiments, the output size is significantly smaller.
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Figure 5: Query time versus query range length for syn-
thetic datasets.

to the implementation in Naive Range Scan. We ob-
serve that while k′ grows 20x, the query time of the kd-
tree-based method only increases 4.0x and 2.0x for the
Google Local and Stack Overflow Questions datasets,
respectively, and the query time of the R-tree-based
method increases 4.3x and 2.1x, respectively. Moreover,
one can also notice that the query time increases more
slowly for the Stack Overflow Questions dataset. This is
because the number of stabbed rectangles also increases
more slowly, which is consistent with what we have ob-
served in the experimental results for varying values of
k. This experiment show that with a proper implemen-
tation, the query time will not increase dramatically
by querying the data structure built from approximate
top-k′ ranges with a large k′ value.

E.4 Experimental results on synthetic datasets

Figure 5 shows the query time of all our data struc-
tures as a function of the query range length for uni-
form datasets. Naive Range Scan performs well when
the query range length is very small, but its query time
increases drastically as the query range length increases.
On the contrary, Naive Linear Scan performs well when
the query range length is very long, but its query time
increases drastically as the query range length decreases.
The performance of our kd-tree-based and R-tree-based
methods is more stable across different query range
lengths and both outperform Naive Range Scan and
Naive Linear Scan in most cases. Also, compared with
Naive Top-k, our methods consistently performs better.
As for the comparison between the kd-tree-based and

R-tree-based method: When the number of color is large
or the query range is small, the kd-tree-based method
performs better, which is consistent with observations
from experimental results on real-world datasets (Sec-
tion 4.2).

E.5 Space usage

Table 1 shows the space usage of our data structures,
for different datasets. Note that for our data struc-
tures, only the space usage for the one built with the
largest k′ value in our experiments (k′ = 100) is shown.

Uniform
(c = 200)

Google Local
Stack Overflow

Questions
kd-tree-based 1525.88 2969.55 1350.63
R-tree-based 1831.05 3563.46 1620.75

Naive Range Scan 457.76 890.98 405.19
Naive Top-k 1831.08 3564.29 1625.40

Naive Linear Scan 305.18 594.09 271.22

Table 1: Comparison of space usage of data structures
in R1 (in MB)

As we have discussed in Section 3.1, the actual space
usage can be varied to get a space-time trade-off. In
fact, the one we show here is the most space-consuming
one among data structures built for different k′ values.
In the datasets we used, multiple points could be lo-
cated at the same coordinate and a point could be dis-
carded in the pre-processing if there are more than k′

larger weighted points of the same color and the same
coordinate. For a smaller k′, a point is more likely
to be discarded. Comparing our kd-tree-based imple-
mentation and R-tree-based implementation, the R-tree
uses more space because intermediate tree nodes store
AABBs, which are space-consuming. Even though our
data structures will not be space-efficient if one hopes
to improve the query time by using more space, given
the benefits realized in query efficiency we believe that
this space overhead is reasonable.

F Omitted details and additional experimental re-
sults of Section 4.2

F.1 Datasets

Details on datasets we use in this work for top-k colored
searching in R2 are listed below, where, as before, n
denotes the number of data points and c denotes the
number of colors.

1. CalCROP21 Dataset [9]: The dataset contains a
number of images covering the state of California,
where each pixel of the image corresponds to a
10m×10m region. At each pixel, there is an (inter-
polated) Cropland Data Layer (CDL) label repre-
senting the type of the crop and 10 satellite spectral
signatures over 24 timestamps. A CDL label is re-
garded as a color and a satellite spectral signature
(a real number) at a certain timestamp is regarded
as a weight. Since the dataset is large (with 442
million points), we only use a subset of it. We also
filter out some invalid and irrelevant (e.g. water
and open water) CDL labels and we end up with
n = 19.2× 106 and c = 70.

2. Chicago Crime Dataset [6]: This dataset reflects
reported incidents of crime in the City of Chicago
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starting from 2001 to Sep 2023. Every crime re-
port contains location, time, crime type informa-
tion. Each crime type is regarded as a color. We
use the time of a reported case as the weight so that
one can query k most recent reports in each crime
type. Records with incorrect and missing values
are filtered out and we end up with n = 7.5 × 106

and c = 32.

3. Uniform Synthetic Dataset: All coordinates and
weights of the points are generated uniformly at
random in the interval [−500, 500] and colors are
also assigned to the points uniformly at random.
We have n = 10.0× 106 and c = 50 or c = 200.

4. Clustering synthetic dataset: In this dataset, points
of the same color are generated around a randomly
generated center using the Gaussian distribution.
Coordinates of cluster centers and weights of points
are generated uniformly at random in the interval
[−500, 500]. The standard deviation of the Gaus-
sian distribution is set to be 20 and the minimum
distance between two centers is also 20. We have
c = 50, which is also the number of colors. As each
cluster consists of n = 2.0 × 105 points, we have
n = 10.0× 106.

F.2 Baseline methods

For comparison, several baseline data structures were
implemented for top-k colored searching in R2:

1. Naive Range Query: In this method, a kd-tree is
built on the point-set and we do a standard range
query with the given query window q. During a
query, the list of top-k candidate points for each
color is updated while visiting the leaves. Note
that we do not report all points and select top-k
points, for the same reason in the similar method
for colored top-k search in R1. Besides, minimum
weighted point among top-k candidate points per
intersected color is also maintained for a further
speed-up.

2. Naive top-k: For each color, a counting-based top-k
search data structure is built on points of that color.
Top-k colored points are reported by querying each
top-k search data structure (with the same early
termination trick from Section D.2 applied).

3. Naive Scan: For each color, a list of points sorted
by their weights is maintained. During a query,
each list is scanned from the beginning till either
k points inside q are found or the end of the list is
reached.
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Figure 6: Query time versus query window size for syn-
thetic datasets.

F.3 Experimental results on synthetic datasets

We have synthetic datasets with two data distributions
in our experiments, where one is uniformly distributed
and one is more clustered. For the uniform dataset,
any sufficiently large subset of the dataset will contain
all colors and the AABBs for points of the same color
will have large overlaps with each other. In this case,
our static color splitting method will not result in good
splits and our greedy color splitting method will not
perform any color splitting until the subset of points
is small enough. However, our static splitting method
still shows some advantages over the baseline method
for some query window sizes.

Figure 6 shows the query time of all data structures
as a function of the query window size. For uniform
datasets, our data structure with the greedy splitting
method performs consistently worse than Naive Range
Query. This is because color splitting can only be done
for very deep nodes where only a very small number of
points are stored in the top-k search substructure; this
actually worsens the performance of top-k search due to
the log factor in query time introduced by the threshold
weight-finding step. However, our data structure with
the static splitting method outperforms Naive Range
Query for sufficiently large query windows. Even though
static splitting gives us two regions with large overlaps,
a larger query window is more likely to overlap regions
of both children.

For the clustering dataset, the performance of our
two data structures is much better, when compared to
the results for the uniform dataset. Since the dataset
is more clustered for each color, our greedy split and
the static split methods are more likely to make good
color splits, which results in the speed-up. Note that
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Uniform
(c = 50)

Clustering CalCROP21 Chicago Crime

Static Split 844.21 839.28 1612.64 636.54
Greedy Split 1081.86 839.24 1612.59 704.40

Naive Range Query 610.35 610.35 1170.06 461.96
Naive top-k 839.24 839.24 1608.84 635.20
Naive Scan 228.88 228.88 438.77 173.24

Table 2: Comparison of space usage of data structures
in R2 (in MB)

the Naive Top-k method is quite close to our greedy
split method. The reason is that since points of the
same color are more clustered, spatial splittings are sel-
dom performed in our greedy split method. The result-
ing data structure can be viewed as an R-tree built on
the top of multiple top-k search data structures. Since
c = 50 is not a large number and clusters are separated
by a minimum distance, the performance is similar with
or without an R-tree for pruning.
Even though for the synthetic datasets our data struc-

tures only show performance gains for large query win-
dows or clustered data sets, and the greedy splitting
method does not perform too well, our experiments on
real-world datasets show more promising results (as seen
in Section 4.2).

F.4 Space usage

Table 2 shows the space usage of all data structures
for different datasets. Notice that the static splitting
method and the greedy splitting method have similar
space usage in two datasets but have different space us-
age in the other two, which might seems odd considering
both data structures scale linearly in terms of the num-
ber of points n. However, recall that our structure is a
combination of two linear-size data structures, and tree
nodes of the main structure have to store AABBs for
color splitting while substructures are implemented as
kd-trees, where only a single splitting line is needed at
each intermediate tree node. This means that a node
of the main structure is more space-consuming than a
node of the substructure. For the two splitting methods,
differences in space usage actually reflects differences in
the substructures built. Also, given the benefit realized
in query efficiency, we believe that the space overhead
here is reasonable.
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Set Cover and Hitting Set Problems for Some Restricted Classes of

Rectangles ∗

Minati De† Ratnadip Mandal‡ Subhas C. Nandy§

Abstract

We consider the well-known (weighted/unweighted) set

cover and hitting set problems for some restricted

classes of rectangles. We show that the (unweighted) set

cover problem for boundary rectangles is APX-hard and

also give an 8-approximation algorithm for the problem.

For the (weighted) set cover problem of cross-separable

rectangles, we provide a 2-approximation algorithm. Fi-

nally, we prove that both the (weighted) set cover and

hitting set problems of translated copies of a convex ob-

ject touching a diagonal line from the right side can be

solved in polynomial time.

1 Introduction

In computational geometry, set cover and hitting set

problems are amongst the most important problems

due to their wide range of applications in wireless net-

works, VLSI design, resource allocation, image process-

ing, sensor networks, database systems, computer vi-

sion etc [1, 14]. A range space Σ = (X ,R) consists of

a ground set X of elements and a family R of subsets

of X . A set cover of a given range space Σ = (X ,R)
is a subset S ⊆ R such that every element of X is con-

tained in at least one set of S, and a hitting set of Σ

is a subset H ⊆ X such that each set of R contains

at least one element of H. The goal of the set cover

problem (respectively, hitting set problem) is to find a

set cover (respectively, hitting set) of minimum size. In

the weighted version of the set cover problem (respec-

tively, hitting set problem), the sets in R (respectively,

the elements in X ) have some positive weights, and the

∗Work on this paper by M. De has been partially supported

by SERB MATRICS Grant MTR/2021/000584, and work by

R. Mandal has been supported by CSIR, India, File Number-

09/0086(13712)/2022-EMR-I.
†Dept. of Mathematics, Indian Institute of Technology Delhi,

New Delhi, India, minati@maths.iitd.ac.in
‡Dept. of Mathematics, Indian Institute of Technology Delhi,

New Delhi, India, maz218522@iitd.ac.in
§Advanced Computing and Microelectronics Unit, Indian Sta-

tistical Institute, Kolkata, India, nandysc@isical.ac.in

aim is to obtain a set cover (respectively, hitting set)

of minimum weight. Here, the weight of a set means

the sum of the weights of all the elements in the set.

In the geometric setup, the set X consists of points in

Rd, and the set R consists of geometric objects (e.g.,

disks, rectangles, hypercubes, etc.) in Rd. With a slight

abuse of the notation, we use R to signify both the set

of {X ∩ R | R ∈ R} as well as the set of objects that

define these sets. It is well known that a set cover of

Σ = (X ,R) is a hitting set of the dual range space

Σ⊥ = (X⊥,R⊥). Here, for each range R ∈ R, there is

an element in X⊥, and for each element p ∈ X , there is

a range Rp, namely Rp = {R ∈ R | p ∈ R}, in R⊥ [1].

Thus, if there is no restriction on the range space, then

both problems are equivalent to each other. In particu-

lar, the set cover problem for a range space Σ = (X ,R),
where X is a set of points and R is a set of translated

copies of a convex object C is equivalent to the hitting

set problem for the dual range space Σ⊥ = (X⊥,R⊥),
where X⊥ consists of centers of the objects in R and

R⊥ consists of translated copies of the reflected object

−C (see Section 2 for the definition reflected object)

centered at the points in X [7] (see Figure 1).

R3

R4

R1

R2

R5

p1

p2

p3

p4

p5

p6

(a)

r1

r2

r3

r4

r5

P1

P3

P4

P5

P6

P2

(b)

Figure 1: (a) An instance Σ = (X ,R) of the

set cover problem such that X = {p1, . . . , p6} and

R = {R1, . . . , R5}. Here, {R1, R2, R5} is a minimum

set cover of Σ. (b) An equivalent instance Σ⊥ =

(X⊥,R⊥) of the hitting set problem such that X⊥ =

{ri | ri is center of Ri for 1 ≤ i ≤ 5} and R⊥ =

{Pj | Pj is a unit regular pentagon centered at pj
for 1 ≤ j ≤ 6}. Here, {r1, r2, r5} is a minimum hit-

ting set of Σ⊥.

Both set cover and hitting set problems belong to Karp’s
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21 classic NP-hard problems [15]. A basic greedy algo-

rithm achieves log(|X |) and log(|R|)-approximation for

the set cover and hitting set problems, respectively [23],

which are essentially the best possible under a plausible

complexity-theoretic assumption [11]. Both problems

remain NP-hard for simple geometric objects such as

unit disks and unit squares [12]. Due to Brönnimann

and Goodrich [3], a log(OPT)-approximation algorithm

is known for the set cover problem for a range space

with constant VC-dimension1, where OPT is the size

of an optimum solution. Additionally, both the prob-

lems admit PTAS for unit disks [21] and axis-parallel

unit squares [13]. In the weighted version of both set

cover and hitting set problems, a PTAS is also known

for unit disks [16] and unit square [10]. For a range

space consisting of points and axis-parallel rectangles

with bounded integer side lengths, the weighted set

cover problem admits PTAS due to [18]. The best-

known result of the (unweighted) hitting set problem for

axis-parallel rectangles in R2 or R3 is a log log(OPT)-

approximation algorithm due to Aronov et al. [2], where

OPT is the size of an optimum hitting set.

However, researchers have studied both set cover and

hitting set problems for certain restricted classes of rect-

angles. Some of them are mentioned below. A rectan-

gle Q in R2 is said to be a boundary rectangle with

respect to a rectangular region R̃ if Q lies within R̃ and

has exactly one boundary of it attached to a bound-

ary of the rectangular region R̃ (see Figure 1(a)). Chan

and Grant [4] showed that both weighted set cover and

hitting set problems can be solved in polynomial time

for a range space consisting of points, and boundary

rectangles anchored on only the bottom boundary of

a rectangular region R̃. However, if the rectangles are

anchored on only two opposite boundaries of R̃, Mud-

gal and Pandit [20] showed that both problems are NP-

hard. Observe that the later family of boundary rectan-

gles are pseudo-disks, and hence, the existence of PTAS

is known for both problems [8, 21]. But, if the bound-

ary rectangles are anchored on any boundary of a rect-

angular region R̃, then this family of rectangles is not

a pseudo-disk. While, for the hitting set problem, a

(2 + ϵ)-approximation algorithm can be obtained due

to [21], there is no known non-trivial approximation al-

gorithm for the set cover problem of boundary rectan-

gles. So, we consider the set cover problem of boundary

1For a given range space Σ = (X ,R), a subset Y ⊆ X is said

to be shattered by R if R|Y = {Q∩Y | Q ∈ R} = 2Y . The range

space Σ is said to have a VC-dimension d if d is the smallest

integer such that no d+ 1 point subset Y ⊆ X can be shattered.

rectangles and a restricted version of it as follows.

Problem 1: Set Cover Problem of Boundary

Rectangles (SC-BR Problem). Set cover problem

for a range space Σ = (X ,R), where X ⊆ R2 is a set

of points and R is a set of boundary rectangles with

respect to a rectangular region R̃.

Problem 2: SC-BR-LT Problem. Set cover prob-

lem for a range space Σ = (X ,R), where X ⊆ R2 is a

set of points and R is a set of boundary rectangles with

respect to a rectangular region R̃ such that each rectan-

gle in R attaches to either the left or the top boundary

of R̃.

We prove that the SC-BR-LT problem is APX-hard,

and so is the SC-BR problem.

R̃

(a)

γ

(b)

Figure 2: (a) A set of boundary rectangles with respect

to a rectangular region R̃. (b) A set of cross-separable

rectangles with respect to a x-monotone curve γ.

Chepoi and Felsner [5] studied the hitting set problem

for a range space (X ,R), where X consists of all points

in R2 and R is a set of rectangles intersecting a x-

monotone curve, and provided a 6-approximation algo-

rithm. For the same range space, later, Correa et al. [6]

gave an improved 4-approximation algorithm for the

same problem. A rectangle Q in R2 is said to be a cross-

separable rectangle with respect to a x-monotone curve

γ if the curve γ intersects the left and the right bound-

ary of Q (see Figure 1(b)). Due to the result of Chan

and Grant [4], and Madireddy and Mudgal [17], both set

cover and hitting set problems of cross-separable rect-

angles are known to be APX-hard, respectively. A 4-

approximation algorithm for the hitting set problem is

known due to Dey et al [9] for a range space (X ,R),
where X ⊆ R2 is set of points, and R is a set of cross-

separable rectangles with respect to a x-monotone curve

γ. Surprisingly, there is no known constant factor ap-

proximation algorithm for the set cover problem for this

range space. So, we consider the following problem.

Problem 3: Set Cover Problem of Cross-
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Separable Rectangles (SC-CSR Problem). Set

cover problem for a range space Σ = (X ,R), where X ⊆
R2 is a set of points and R is a set of cross-separable

rectangles with respect to a x-monotone curve γ.

When the objects are axis-parallel unit squares touching

a diagonal line, Mudgal et al. [19] proved that both (un-

weighted) set cover and hitting set problems are solvable

in polynomial time. In this paper, we generalize their

results for a set of translated copies of a convex object

touching a diagonal line. We define these problems in

the following way.

Problem 4: SC-TCO-DT Problem. Set cover prob-

lem for a range space Σ = (X ,R), where X ⊆ R2 is a set

of points and R is a set of translated copies of a convex

object touching a diagonal line from the right side.

Problem 5: HS-TCO-DT Problem. Hitting set

problem for a range space Σ = (X ,R), where X ⊆ R2

is a set of points and R is a set of translated copies of

a convex object touching a diagonal line from the right

side.

Our Contributions. This paper primarily considers

the set cover and the hitting set problems for some re-

stricted classes of axis-parallel rectangles. In Section 3,

we consider the set cover problem of boundary rect-

angles. Here, we first show that the SC-BR-LT prob-

lem is APX-hard by providing a simple encoding of the

SPECIAL-3SC problem (see Definition 1) that is al-

ready known to be APX-hard [4]. Then, we present

a 4 and a 8-approximation algorithm for the SC-BR-LT

problem and the SC-BR problem, respectively. Further-

more, in Section 4, we consider the weighted SC-CSR

problem which is an APX-hard problem due to the re-

sult of Chan and Grant [4, Theorem 1.1(C1)]. For this

problem, we obtain a 2-approximation algorithm. Fi-

nally, in Section 5, we extend the result of [19] to show

that the weighted SC-TCO-DT and HS-TCO-DT prob-

lems can be solved in polynomial time.

2 Notation and Preliminaries

Throughout the paper, points are denoted by small

letters, objects by capital letters, and sets of

points/objects by calligraphic font. We use [n] to

represent the set {1, . . . , n} for a positive integer n.

Let Q = □q1q2q3q4 be a rectangle. The boundaries

q1q2, q2q3, q3q4, and q4q1 will be called the left, the bot-

tom, the right, and the top boundary of Q, respectively.

A point p is said to be contained by a rectangle Q (or

Q contains p) if p ∈ Q.

A point p′ is said to be a reflection of a point p in a plane

through a point q if the midpoint of the line segment pp′

is q. Now, we define the reflection of a convex object C

through a point p, denoted by −C(p), as the collection

of reflection of all points in C through the point p. We

use the term −C to denote a translated copy of −C(p).
We use the term center of a convex object C to mean the

center of the smallest disk circumscribing the object C.

Now, we have the following observation (see Figure 3).

−Cp

c
C

−C(p)p
C

(a) (b)

Figure 3: (a) Here, C (black) is a convex object, and

the object −C(p) (blue) is a reflected copy of C through

a point p. (b) Illustration of Observation 1.

Observation 1 [7] Let C be a convex object centered

at a point c, and −C be a reflected copy of C centered at

a point p. Then, the point p lies in the convex object C if

and only if the reflected object −C contains the point c.

3 Set Cover Problem of Boundary Rectangles

In this section, we consider the set cover problem of

boundary rectangles (SC-BR Problem) and its two re-

stricted versions, SC-BR-LT problem and SC-BR-B

problem, where in the SC-BR-B problem, the objects

are boundary rectangles with respect to a rectangular

region R̃ anchored on the bottom boundary of R̃. The-

orem 1 suggests a polynomial time algorithm for the

weighted SC-BR-B problem.

Theorem 1 The weighted SC-BR-B problem can be

solved in O(mn3 log2 n)-time.

Proof. Let Σ = (X ,R) be an instance of an SC-

BR-B problem such that X = {p1, . . . , pn} and R =

{R1, . . . , Rm}, where R is a set of boundary rectangles

with respect to a rectangular region R̃ such that every

rectangle in R attaches to the bottom boundary of R̃.

Also, for each R ∈ R, let w(R) denote the weight of the
rectangle R. W.l.o.g., assume that each point in X is

contained in at least two rectangles of R.
Consider two vertical lines l1 and l2. Let X (l1, l2)
(respectively, R(l1, l2)) be the set of points (respec-

tively, rectangles) lying fully inside the vertical strip
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formed by the lines l1 and l2. Also, suppose that

S(l1, l2) be an optimum set cover of the instance

Σ(l1,l2) = (X (l1, l2),R(l1, l2)) and OPT(l1, l2) =∑
R∈S(l1,l2) w(R). Now, we have the following two prop-

erties.

Property 1. Each rectangle in S(l1, l2) contains a

point of X (l1, l2) that is not contained in any other rect-

angle of S(l1, l2).

Property 2. Let Rmin be a rectangle in S(l1, l2)
such that the top boundary of Rmin lies below the top

boundary of each rectangle in S(l1, l2). Also, let p ∈
X (l1, l2) be the point uniquely contained in Rmin (due

to Property 1). Then, any rectangle of S(l1, l2) does

not intersect the vertical line l(p) passing through the

point p.

Due to the above two properties, we have the following

lemma.

Lemma 2 For the range space Σ(l1,l2) =

(X (l1, l2),R(l1, l2)), let S(l1, l2) be an optimum set

cover of Σ(l1,l2), and OPT(l1, l2) =
∑
R∈S(l1,l2) w(R)

where the weight of a rectangle R is denoted by w(R).

Then, we have

OPT(l1, l2) = min
R∈R(l1,l2)

{w(R)+ min
p∈R∩X (l1,l2)

{OPT(l1, l(p))

+ OPT(l(p), l2)}}.

Let p ∈ R ∩ X (l1, l2) and R ∈ R(l1, l2) be such that

OPT (l1, l2) = w(R) + OPT (l1, l(p)) + OPT (l(p), l2).

Then, we have

S(l1, l2) = {R} ∪ S(l1, l(p)) ∪ S(l(p), l2).

Observe that the optimum set cover S of the range

space Σ = (X ,R) is equal to S(l′, l′′), where l′ and
l′′ are the vertical lines passing through the left and

right boundary of R̃, respectively. So, S = S(l′, l′′) and
OPT(l′, l′′) =

∑
R∈S w(R). Because of this, Lemma 2

immediately implies that there is dynamic program-

ming to obtain S(l′, l′′) and OPT(l′, l′′). Now, the total

number of primary subproblems (i.e. Σ(l1,l2)) is O(n2)

as each vertical line passes through a point. Further,

for each such primary subproblem, we have another

O(mn) subproblem as we need to consider each rect-

angle R ∈ R(l1, l2) and for each such rectangle, we also

need to consider each point p ∈ R ∩ X (l1, l2) inside

it. Also, we need another O(log2 n)-time to calculate

OPT(l1, l(p)) and OPT(l(p), l2) by using a 2D range

tree. □

Now, we focus on the SC-BR-LT problem. Using an

encoding of the SPECIAL-3SC problem, stated below,

we prove that the problem is APX-hard.

Definition 1 (SPECIAL-3SC Problem [4]) We

are given a universe U = A∪W∪X ∪Y ∪Z comprising

disjoint sets A = {a1, . . . , an}, W = {w1, . . . , wm},
X = {x1, . . . , xm}, Y = {y1, . . . , ym} and

Z = {z1, . . . , zm}, where 2n = 3m. We are also

given a family S of 5m subsets of U satisfying the

following two conditions:

1. For each 1 ≤ t ≤ m, there are integers 1 ≤
i < j < k ≤ n such that S contains the sets {ai, wt},
{wt, xt}, {xt, aj , yt}, {yt, zt} and {zt, ak} (summing

over all t gives the 5m sets contained in S).
2. For all 1 ≤ l ≤ n, the element al is in exactly two

sets in S.
The SPECIAL-3SC problem denotes the set cover prob-

lem on the range space Σ = (U ,S).

Chan and Grant [4] showed the APX-hardness proof

of the SPECIAL-3SC problem by providing a reduction

from the minimum vertex cover problem of the 3-regular

graph. To prove the APX-hardness result of the SC-BR-

LT problem, we construct a point for each element of U
and a boundary rectangle for each set of S.

stv(1) stv(i) stv(j) stv(j
′) stv(k) stv(k

′) stv(n)

xt′

zt′

R̃

sth(t)

sth(t
′)

wt xt

yt
zt

yt′

wt′

ajai
sth(0)

Figure 4: Here, 1 ≤ i < j < j′ < k < k′ ≤
n and 1 ≤ t < t′ ≤ m. The family S con-

tains the sets {ai, wt}, {wt, xt}, {xt, aj , yt}, {yt, zt},
{zt, ak}, {ai, wt′}, {wt′ , xt′}, {xt′ , aj′ , yt′}, {yt′ , zt′} and
{zt′ , ak′}.

Encoding the SPECIAL-3SC Problem to the SC-

BR-LT Problem. Consider a rectangular region R̃.

See Figure 4. For each i ∈ [n], we consider a vertical

strip, say stv(i), inside R̃ such that for 1 ≤ i < j ≤ n,

the strip stv(i) lies on the left side of the strip stv(j),

and stv(i) ∩ stv(j) = ∅. Next, for each 0 ≤ t ≤ m,

we consider a horizontal strip sth(t) such that for 0 ≤
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t < t′ ≤ m, the strip sth(t) lies above the strip sth(t
′),

and sth(t) ∩ sth(t′) = ∅. We use cell(i, j) to denote the

intersection region of the strips stv(i) and sth(j). Now,

for each i ∈ [n], we place the point ai at the middle of

cell(0, i). Now, for each 1 ≤ t ≤ m, we place points

wt, xt, yt, zt on the intersection points of the boundary

of the horizontal strip sth(t) with some vertical strips

as follows. Considering Condition 1 of Definition 1,

let 1 ≤ i < j < k ≤ n be such that S contains the

sets {ai, wt}, {wt, xt}, {xt, aj , yt}, {yt, zt} and {zt, ak}.
We place wt (resp., xt) on one of the corners of the

top boundary of cell(t, i) (resp., cell(t, j)). Whereas yt
(resp., zt) is placed on one of the (left or right) corners

of the bottom boundary of cell(t, j) (resp., cell(t, k)).

Since there are no other points on the top boundary of

sth(t) apart from wt and xt, we can draw a boundary

rectangle anchored on the left boundary of R̃ containing

only wt and xt as shown in Figure 4. Similarly, we draw

a boundary rectangle anchored on the left boundary of

R̃ containing only yt and zt. For each of the sets in-

volving elements from the set A, we draw a boundary

rectangle anchored on the top boundary of R̃. Due to

Condition 2 of Definition 1, we know that each ai ∈ A
is in exactly two sets in S. To ensure that we can draw

two rectangles sharing only ai but no other points, we do

the following. While deciding the corner (left or right)

for the placement of the point wt (resp., xt and zt), if

there is no point on the left boundary of the strip stv(i)

(resp., stv(j) and stv(k)), we place the point on the

left, otherwise at the right corner. Since xt and yt are

the corners of the same cell(t, j), we set the left/right

placement decision of yt the same as that for xt. This

convention guarantees that we can draw three rectan-

gles corresponding to {ai, wt}, {xt, aj , yt} and {zt, ak}
(as shown in Figure 4). Therefore, we have the following

theorem.

Theorem 3 The SC-BR-LT problem is APX-hard.

Now, we present an 8-approximation algorithm for the

SC-BR problem. Let Σ = (X ,R) be an instance of the

SC-BR problem such that X = {p1, . . . , pn} and R =

{R1, . . . , Rm}, where R is a set of boundary rectangles

with respect to a rectangular region R̃.

First, we define the set R(1) = {Ri ∈ R |
bottom boundary of Ri attaches to the bottom bound-

ary of R̃}. Similarly, we can define the other subsets

R(2),R(3) and R(4) corresponding to the right, top and

left boundary of R̃, respectively. Now, for each rectan-

gle Ri ∈ R(t), we consider a binary variable x
(t)
i , where

t ∈ [4]. For a specific solution, the value of x
(t)
i is 1 or

0 depending on whether the square Ri ∈ R(t) is in the

solution or not, respectively. The ILP formulation P1 of

the SC-BR problem for the instance Σ = (X ,R) is as

follows.

P1 : min
∑

t∈[4]

∑

i|Ri∈R(t)

x
(t)
i

subject to,
∑

t∈[4]

∑

i|p∈Ri∈R(t)

x
(t)
i ≥ 1 ∀p ∈ X

x
(t)
i ∈ {0, 1} ∀i s.t. Ri ∈ R(t) for t ∈ [4]

Let P1 be the relaxed LP problem corresponding to the

ILP problem P1. Now, consider an optimum solution x

of the problem P1. Next, we partition the point set X
into four sets X (1), X (2), X (3) and X (4) corresponding

to the optimum solution x as follows. For t ∈ [4], we

consider X (t) = {p ∈ X | ∑i|p∈Ri∈R(t) x
(t)
i ≥ 1

4}.
For a point p ∈ X , if more than one of the above four

conditions holds, then we put p arbitrarily in any one

of the four sets. Note that each of the range spaces

(X (t),R(t)) for t ∈ [4] can be considered as an instance

of the weighted SC-BR-B problem, where the weight of

each rectangle in R(t) is 1. So, we solve each of the

instances (X (t),R(t)) for t ∈ [4] independently, using

Theorem 1, and output their union as a solution of the

instance (X ,R). Let OPT(t)(I) be the optimum set

cover of the instance (X (t),R(t)) for t ∈ [4] obtained by

using Theorem 1. We set ALG = ∪4t=1OPT(t)(I), which

is a set cover of the instance (X ,R).
The ILP formulation P

(t)
2 of the SC-BR-B problem for

the instance (X (t),R(t)), where t ∈ [4], as follows.

P
(t)
2 : min

∑

i|Ri∈R(t)

x
(t)
i

subject to,
∑

i|p∈Ri∈R(t)

x
(t)
i ≥ 1 ∀p ∈ X (t)

x
(t)
i ∈ {0, 1} ∀i s.t. Ri ∈ R(t)

For t ∈ [4], let P
(t)

2 be the relaxed LP problem corre-

sponding to the ILP problem P
(t)
2 . Let OPT

(t)
2 (I) and

OPT
(t)
2 (F ) be the optimum solution of P

(t)
2 and P

(t)

2 ,

respectively, for t ∈ [4]. Now, we have the following

lemma.

Lemma 4 OPT
(t)
2 (I) ≤ 2OPT

(t)
2 (F ) for t ∈ [4].

Proof. We proof the lemma only for t = 1. Other cases

are similar in nature. First, we define an algorithm,

say Algorithm 1, for the set cover problem of the range

space (X (1),R(1)) which uses two sets X ′ and R′ such
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that both are empty at the beginning. Let p be a point

in X (1) with maximum y-coordinate, and Rp be the

set of all rectangles in R(1) that contains p. Also, let

Rl (respectively, Rr) be the rectangle in Rp having a

left-most left boundary (respectively, right-most right

boundary.). Now, first, Algorithm 1 updates X ′ and
R′ by adding p in X ′, and the rectangles Rl, Rr in R′.
Suppose, R1 = R(1) \Rp and X1 = X (1) \Xp, where Xp
consists of all the points of X (1) that are contained in

any rectangle of Rp. Observe that any points in Xp are

covered by Rl ∪ Rr. Next, if the set X1 is not empty,

Algorithm 1 will do the same procedure for the range

space (X1,R1), recursively. At last, it will output R′.
The pseudo-code of the algorithm is given below.

Algorithm 1 An Approximation Algorithm for the SC-

BR-B Problem ScBrB(X (1),R(1))

1: p← the point in X (1) with maximum y-coordinate.

2: Rp ← the set of all rectangles in R(1) that contains

p.

3: Rl ← the rectangle in Rp having left-most left

boundary.

4: Rr ← the rectangle in Rp having right-most right

boundary.

5: Put p ∈ X ′ and Rl, Rr ∈ R′.
6: Let R1 = R(1) \ Rp and X1 = X (1) \ Xp, where Xp

consists of all the points of X (1) that are contained

in Rp.
7: if X1 ̸= ∅ then
8: R′ ← ScBrB(X1,R1) ∪R′.
9: end if

10: Report R′.

Recall that X ′ consists of all those points corresponding
to which Algorithm 1 adds two rectangles in R′. We

now show that |X ′| ≤ OPT
(1)
2 (F ). Observe that for

each pair of points p and q in X ′, there does not exist a

rectangle in R(1) that contains both the points p and q.

As a result, the variables that appear in the constraints

corresponding to p do not appear in the constraints of q.

Hence, |X ′| ≤ OPT
(1)
2 (F ). Since for each point p ∈ X ′,

Algorithm 1 puts two square in R′, we have that |R′| ≤
2|X ′|. Also, note that R′ is a set cover for the range

space (X (1),R(1)). As a result, OPT
(1)
2 (I) ≤ |R′| ≤

2|X ′| ≤ 2OPT
(1)
2 (F ). □

Recall that x is an optimal solution to the prob-

lem P1. Then, for t ∈ [4], we have that 4x(t) sat-

isfies all the constraints of the problem P
(t)

2 . As

a result, OPT
(t)
2 (F ) ≤ 4

∑
i x

(t)
i . Let OPT1(I)

and OPT1(F ) be the optimum solution of P1 and

P1, respectively. Note that OPT1(F ) =
∑
t,i x

(t)
i .

So,
∑4
t=1 OPT

(t)
2 (F ) ≤ 4OPT1(F ) ≤ 4OPT1(I).

Now, we have that |ALG| =
∑4
t=1 |OPT(t)(I)| ≤

2
∑4
t=1 OPT

(t)
2 (F ) ≤ 2 · 4OPT1(I) = 8OPT1(I) (here,

second and third inequality are due to Lemma 4, and∑4
t=1 OPT(t)(F ) ≤ 4OPT1(I), respectively).

The running time of our algorithm depends on solv-

ing the LP problem P1 as well as obtaining a set cover

for each of the range spaces (X (t),R(t)) by using The-

orem 1. Hence, the running time of our algorithm is

polynomial in n and m. Therefore, we have the follow-

ing theorem.

Theorem 5 There exists a polynomial time 8-

approximation algorithm for the SC-BR problem.

Observe that our algorithm is also a 4-approximation

algorithm for the SC-BR-LT problem since the two sets

R(1) and R(2) are empty.

4 Approximation Algorithm for the Weighted SC-

CSR Problem

In this section, we present a 2-approximation algorithm

for the weighted SC-CSR problem. Let Σ = (X ,R)
be an instance of an SC-CSR problem such that X =

{p1, . . . , pn} and R = {R1, . . . , Rm}, where R is a set of

cross-separable rectangles with respect to a x-monotone

curve γ. For each R ∈ R, let w(R) be the weight of the

rectangle R. W.l.o.g., we assume that no point in X lies

on the curve γ.

Let X1 = {pj ∈ X | the point pj lies above the curve γ}
and X2 = {pj ∈ X | the point pj lies below the curve

γ} be a partition of the set X . Also, R1 = {Ri ∈ R |
Ri contains at least a point of X1} and R2 = {Ri ∈ R |
Ri contains at least a point of X2}. Thus, we have two

range spaces, namely Σ1 = (X1,R1) and Σ2 = (X2,R2).

γ

(a)

γ

R̃

(b)

Figure 5: (a) A example of an instance of the range

space Σ1 = (X1,R1). (b) An equivalent instance of the

SC-BR-B problem.
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Now, Σ1 = (X1,R1) is an instance of the weighted

SC-CSR problem such that all points of X1 lie above

the curve γ. As a result of these, the range space

Σ1 = (X1,R1) can be considered as an instance of the

weighted SC-BR-B problem (see Figure 5). Therefore,

we can obtain an optimum set cover for Σ1 in polyno-

mial time by using Theorem 1. Similarly, we can obtain

an optimum set cover for the range space Σ2 in polyno-

mial time by using Theorem 1.

Let ALG1 and ALG2 be an optimum set cover of Σ1 =

(X1,R1) and Σ2 = (X2,R2), respectively, obtained by

using Theorem 1. Consider ALG = ALG1 ∪ ALG2.

Let OPT be an optimum solution of Σ. Again, let

OPT1 = {R ∈ OPT | R ∈ R1} and OPT2 = {R ∈
OPT | R ∈ R2}. Let w(ALG), w(ALG1), w(ALG2) and

w(OPT) be the sum of the weight of all rectangles in

ALG,ALG1,ALG2 and OPT, respectively. It is easy

to observe that OPTt is a set cover of the range space

Σt for t = 1, 2. As a result, w(ALGt) ≤ w(OPTt) for

t = 1, 2. So, we have that w(ALG) =
∑2
t=1 w(ALGt) ≤∑2

t=1 w(OPTt) ≤ 2w(OPT).

We need O(mn)-time to construct the four sets Xt and
Rt for t ∈ [2]. Also, in O(mn3 log2 n)-time, we get

the optimum set cover for the range space Σt due to

Theorem 1. Therefore, we have the following theorem.

Theorem 6 There exists a 2-approximation algorithm

for the weighted SC-CSR problem with running time

O(mn3 log2 n).

5 Polynomial Time Algorithm for the Weighted SC-

TCO-DT and HS-TCO-DT Problems

In this section, we consider the weighted SC-TCO-DT

and HS-TCO-DT problems and provide a polynomial

time algorithm for both of them. Let C be a con-

vex object in R2. Let us consider the weighted SC-

TCO-DT problem for the range space Σ = (X ,R),
where X = {p1, . . . , pn} is a set of n points and

R = {R1, . . . , Rm} is a set of m translated copies of

C touching a diagonal line l from the right side (see

Figure 6(a)). We assume that each rectangle Rj ∈ R
has a weight w(Rj). Let l

′ be a line parallel to l passing

through the centers of all the objects of R (see Fig-

ure 6(b)). Let X ′ = {cj | cj is the center of Rj for j ∈
[m]}. For each cj ∈ X ′, we set the weight w(cj) =

w(Rj). Let R′ = {−Ci ∩ l′ | −Ci is a translated

copy of −C centered at the point pi for i ∈ [n]}. Re-

call that −C is the reflected copy of C (see Section 2).

Now, consider the following lemma.

l

R1

R2

R3

R4

c1
c2

c3

c4

p1 p2
p3

p4 p5
p6

p7

l

R3

c1

c2

c3

c4

p4

l′

P4

(a) (b)

Figure 6: (a) Here, X = {p1, . . . , p7} and R =

{R1, . . . , R4} such that each Rj touching a diagonal line

l from the right side. (b) The line l′ is parallel to l pass-
ing through all the centers of the objects in R. Also, R3

contains the point p4 and the objects P4, the reflected

copy of R3 through the point p4 contains the center c3
of R3.

Lemma 7 For each 1 ≤ i ≤ n, the object −Ci ∩ l′ is
an interval on the line l′.

Proof. Since −Ci is a convex object, −Ci intersects l′
either at one point or at two points. If −Ci ∩ l′ = {a},
a single point, then we are done. Otherwise, −Ci ∩
l′ = {a, b} i.e. −Ci intersects l′ at the points a and b.

Since −Ci is a convex object, the line segment joining a

and b, say lab, lies completely inside −Ci. As a result,

−Ci ∩ l′ = lab, an interval [a, b] on the line l′. □

Now, due to Observation 1 and Lemma 7, one can prove

the following lemma.

Lemma 8 For 1 ≤ i ≤ n and 1 ≤ j ≤ m, a point pi is

contained inside an object Rj if and only if the interval

−Ci ∩ l′ contains the point cj.

As a result, the weighted set cover problem for the in-

stance Σ = (X ,R) is equivalent to the weighted hit-

ting set problem for the instance Σ′ = (X ′,R′). Simi-

larly, the weighted hitting set problem for the instance

Σ = (X ,R), with each pi ∈ X having a weight w(pi),

can be reduced to an equivalent weighted set cover

problem for the instance Σ′ = (X ′,R′), with each

−Ci ∩ l′ ∈ R′ having weight w(−Ci ∩ l′) = w(pi). Since

both weighted set cover and hitting set problems for

points and intervals can be solved in O(nm)-time [22],

we have the following theorem.

Theorem 9 Both the weighted SC-TCO-DT problem

and the weighted HS-TCO-DT problem can be solved in

O(nm) time.
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6 Conclusion

Prior to our result, only the hardness results were known

for the SC-BR problem and the SC-CSR problem; there

were no known constant factors approximation algo-

rithms. Our result provides the first constant factor

approximation algorithms for them. Improving the

approximation ratio further would be an open prob-

lem. For objects touching a diagonal line, no result

was known when objects are anything apart from unit

squares. We obtain the first polynomial time algorithm

for both set cover and hitting set problems when ob-

jects are translated copies of a convex object touching

a diagonal line.
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Building Discrete Self-Similar Fractals in Seeded Tile Automata∗

Ryan Knobel† Adrian Salinas† Robert Schweller† Tim Wylie†

Abstract

In this paper, we show that a special class of discrete
self-similar fractals is strictly self-assembled (without er-
ror) in the seeded growth-only (no detachments) Tile
Automata model. Additionally, we show that under
a more restrictive version of the problem, the same
class of discrete self-similar fractals is also super-strictly
buildable− where there is the added requirement of
reaching certain intermediate assemblies as the assem-
bly grows. This contrasts with known impossibility re-
sults for the abstract Tile Assembly Model, paving the
way for future work in strictly self-assembling any gen-
eralized discrete self-similar fractal.

1 Introduction

The essence of many organisms and processes of na-
ture can often be described as a collection of simpler,
self-organizing components working together to form
more complex structures. The study of such mecha-
nisms has resulted in numerous advances in designing
artificial programmable systems that accomplish simi-
lar tasks. In [12], Winfree introduced the abstract Tile
Assembly Model (aTAM), in which single non-rotating
‘tiles’ attach to growing structures. Other extensions
to this model include the 2-Handed Assembly Model
(2HAM) [8], where two assemblies are allowed to attach;
the Signal-passing Tile Assembly model (STAM) [7],
where glues can turn ‘on’ and ‘off’ and assemblies can
detach; and the seeded Tile Automata Model (seeded
TA) [1], where single tiles attach to a base assembly
(seed) and adjacent tiles are allowed to change states.
While mostly theoretical, experiments realized in the
aTAM prove the potential of these programmable sys-
tems to build complex structures [10, 11, 12].

Despite varying nuances between models, building
precise shapes remains a fundamental task. In particu-
lar, one of the most well-studied problems among these
models is the self-assembly of self-similar fractals. In
[6, 9], it was shown that the aTAM can not strictly
(without error) build certain types of self-similar frac-
tals. However, in other models, this does not hold true.
In [3], it was shown that the 2HAM can finitely self-

∗This research was supported in part by National Science
Foundation Grant CCF-2329918.

†Department of Computer Science, University of Texas Rio
Grande Valley

assemble a scaled-up Sierpinski carpet, while [5] showed
that the 2HAM can finitely self-assemble a larger class
of discrete self-similar fractals. In [7], it was shown that
the Sierpinski triangle could strictly self-assemble in the
STAM if tile detachments are allowed, with [4] provid-
ing constructions for any arbitrary discrete self-similar
fractal with such detachments, while without such de-
tachments, the finite number of times a STAM tile can
change state makes some fractals impossible to build.
The STAM is also capable of simulating Tile Automata
[2] meaning these results can be ported to the STAM,
however, the simulation uses detachments, which is a
known result.

In this paper, we focus on building fractals in the
seeded TA model without tile detachment, a model dif-
fering from the aTAM by the ability for adjacent tiles
to transition states. Particularly, we show that a special
class of discrete self-similar fractals can be super-strictly
built (a more restricted version of strict), leaving a full
treatment for future work. Super-strict assembly of a
fractal essentially requires that each stage of the frac-
tal be built in order on the way to building the infinite
fractal. We feel this is a natural property to strive for as
it implies that any intermediate stage of the assembly
process would represent precisely the transition between
two consecutive stages of the fractal, whereas without,
an intermediate assembly could potentially contain a
mishmash of many different incomplete fractal stages.

2 Preliminaries

This section defines the model, discrete self-similar frac-
tals, and strictly building shapes as defined in [1, 9].

Seeded Tile Automata. Let Σ denote a set of
states or symbols. A tile t = (σ, p) is a non-rotatable
unit square placed at point p ∈ Z2 and has a state of
σ ∈ Σ. An affinity function Π over a set of states Σ takes
an ordered pair of states (σ1, σ2) ∈ Σ×Σ and an orienta-
tion d ∈ D, where D = {⊥, ⊥ }, and outputs an element
of Z0+. The orientation d is the relative position to each
other with ⊥ meaning vertical and

⊥

meaning horizon-
tal, with the σ1 being the west or north state respec-
tively. A transition rule consists of two ordered pairs of
states (σ1, σ2), (σ3, σ4) and an orientation d ∈ D, where
D = {⊥, ⊥ }. This denotes that if the states (σ1, σ2) are
next to each other in orientation d (σ1 as the west/north
state) they may be replaced by the states (σ3, σ4). An
assembly A is a set of tiles with states in Σ such that for
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every pair of tiles t1 = (σ1, p1), t2 = (σ2, p2), p1 ̸= p2.
Informally, each position contains at most one tile.

Let BG(A) be the bond graph formed by taking a
node for each tile in A and adding an edge between
neighboring tiles t1 = (σ1, p1) and t2 = (σ2, p2) with
a weight equal to Π(σ1, σ2). We say an assembly A is
τ−stable for some τ ∈ Z0 if the minimum cut through
BG(A) is greater than or equal to τ .

A Seeded Tile Automata system is a 6−tuple Γ =
(Σ,Λ,Π,∆, s, τ) where Σ is a set of states, Λ ⊆ Σ a set
of initial states, Π is an affinity function, ∆ is a set of
transition rules, s is a stable assembly called the seed
assembly, and τ is the temperature (or threshold). A tile
t = (σ, p) may attach to an assembly A at temperature
τ to build an assembly A′ = A∪ t if A′ is τ−stable and
σ ∈ Λ. We denote this as A →Λ,τ A′. An assembly
A can transition to an assembly A′ if there exist two
neighboring tiles t1 = (σ1, p1), t2 = (σ2, p2) ∈ A (where
t1 is the west or north tile) such that there exists a
transition rule in ∆ with the first pair being (σ1, σ2),
the second pair being some pair of states (σ3, σ4) such
that A′ = (A \ {t1, t2}) ∪ {t3 = (σ3, p1), t4 = (σ4, p2)}.
We denote this as A→∆ A′. For this paper, we focus on
systems of temperature τ = 1, and all bond strengths
are equal to 0 or 1.

An assembly sequence −→α = {α0, α1, . . .} in Γ is a (fi-
nite or infinite) sequence of assemblies such that each
αi →Λ,τ αi+1 or αi →∆ αi+1. An assembly sub-
sequence β = {α′0, α′1, . . .} in Γ is a (finite or infinite)
sequence of assemblies such that for each α′i, α

′
i+1 there

exists an assembly sequence −→α = {α′i, . . . , α′i+1}.
We define the shape of an assembly A, denoted (A)Λ,

as the set of points (A)Λ = {p|(σ, p) ∈ A}.
Discrete Self-Similar Fractals. Let 1 < c, d ∈ N

and X ⊆ N2. We say that X is a (c × d)-discrete self-
similar fractal if there is a set G ⊆ {0, . . . , c − 1} ×
{0, . . . , d − 1} with (0, 0) ∈ G, such that X =

∞⋃
i=1

Xi,

where Xi is the i
th stage of G satisfying X0 = {(0, 0)},

X1 = G, and Xi+1 = {(a, b) + (civ, diu)|(a, b) ∈
Xi, (v, u) ∈ G}. In this case, we say that G gener-
ates X. We say that X is a discrete self-similar fractal
if it is a (c × d)-discrete self-similar fractal for some
c, d ∈ N. A generator G is termed feasible if it is a
connected set, and there exist (not necessarily distinct)
points (0, y), (c − 1, y), (x, 0), (x, d − 1) ∈ G, i.e., a pair
of points on each opposing edge of the generator bound-
ing box that share the same row or column. Note that
the fractal generated by a generator is connected if and
only if the generator is feasible. For the remainder of
this paper we only consider feasible generators.

Strict and Super-strict. Let X be a discrete self-
similar fractal with feasible generator G. Consider a
seeded TA system Γ = (Σ,Λ,Π,∆, s, τ) with (s)Λ = G,
and let S denote the set of all valid assembly sequences

Figure 1: From left to right: the generator, the seed
assembly (with the tile in black representing the origin
tile), the assembly at the start of step 4 and the assem-
bly at stage 2 (or the end of stage 1).

for Γ. Γ strictly builds X if ∀−→αi = {s, α1, . . . , αi, . . .} ∈
S, −→αi is infinite and limi→∞(αi)Λ = X. We further say
that Γ super-strictly builds discrete self-similar fractal
X if ∀−→αi ∈ S, there exists a subsequence β = {s, α′1, . . .}
of −→αi such that each (α′i)Λ = Xi.

Other Definitions. Let G be a feasible generator
with corresponding points (0, y), (c− 1, y), (x, 0), (x, d−
1) ∈ G, X be the discrete self-similar fractal cor-
responding to G, and A be an assembly such that
(A)Λ = Xi for some i ∈ {1, 2, . . .}. We denote key po-
sitions as four points pN , pE , pW , pS ∈ (A)Λ satisfying
pN = (x + ci−1 · x, di − 1), pE = (ci − 1, y + di−1 · y),
pW = (0, y+y ·di−1) and pS = (x+ci−1 ·x, 0). The four
tiles tN , tE , tW , tS ∈ A with positions pN , pE , pW , pS ,
respectively, are called key tiles. We denote t0 ∈ G the
origin tile if t0 has position (0, 0).

Let GG = (V,E) be the embedded graph formed by
adding a vertex for each point p ∈ G and adding an
edge between vertices representing neighboring points
p1, p2 ∈ G. Let H = ⟨h0, . . . , hm⟩ (m = |G| − 1) denote
a Hamiltonian path in GG, and let vertex h0 represent
the origin of the generator, where each hj represents
pj = (wj , uj). Given Xi, the i

th stage of generator G,

denote Xj
i = {(a + ciwj , b + diuj) | (a, b) ∈ Xi, j ∈

{0, . . . ,m}}, where j is the jth step for stage i.

Additionally, we denote a particular assembly A as

Ai if (A)Λ = Xi and A as AJi if (A)Λ =
J⋃
k=0

Xk
i , where

J ∈ {0, . . . ,m}. To refer to a specific sub-assembly of
AJi corresponding to step j ∈ {0, . . . , J} for stage i, we
use Aji , where A

j
i ⊂ AJi and (Aji )Λ = Xj

i .

3 Construction

Given a feasible generator G where the resulting embed-
ded graph GG has a Hamiltonian path, we construct a
seeded TA system with seed s ((s)Λ = G) and origin
tile t0 that super-strictly builds the corresponding frac-
tal infinitely. To start, the number of points m in the
generator excluding the origin determines the number
of steps m needs to scale the assembly from stage i to
stage i+1. We denote each point in the generator as pj ,
where j represents the distance from itself and the ori-
gin p0 following a selected Hamiltonian path P in GG.
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Figure 2: The Sierpinski triangle starting from stage
3 with m = 2 steps. The tile marked T is sending
a signal (yellow) to place itself at position D. Tiles
marked K are key tiles (origin tile is also a key tile, just
not labeled). Tiles marked ∗ have a cap in the direction
of the gray placed tiles. Tiles marked C had 2 caps, so
the cap shifted to the tiles marked ∗.

If we let d(pj , pj−1) denote the relative position of pj to
pj−1 (north, east, west or south), then we can represent
the sequence of directions the assembly will grow.
The high-level idea of the construction is as follows:

given an initial assembly A0, translate a copy of A0 in
the direction of d(p1, p0) and denote the copy as A1.
Repeat for all Aj , copying Aj in direction d(pj+1, pj)

until j = m. Set A′ =
m⋃
j=0

Aj , and then continue the

process with A0 = A′. See Figure 1 for an example.
However, since the seeded TA model is limited to sin-

gle attachments and transitions, a direct implementa-
tion of this high-level idea is not possible. Instead, we
give each tile the responsibility of placing itself in the
correct location, with the final result being a copied
translation from Aj to Aj+1. Thus, a crucial part of our
construction is the ability to store information and send
signals through the assembly. This section focuses on
describing each of these components more thoroughly.

3.1 Storing Information

In order to correctly copy the base assembly, every tile
needs specific information. This information can implic-
itly be stored as the state σ of the tile.

Current State (STATE(t)). As each tile is respon-
sible for placing itself in the right location at the next
step, it is important to know whether each tile has ei-
ther 1) not placed itself yet, 2) is currently placing it-
self or 3) has already placed itself. STATE(t) denotes
the current state of tile t. In Figure 2, green tiles are
tiles with STATE(t) = complete, red tiles are tiles with
STATE(t) = incomplete and the yellow tile marked T
has STATE(t) = waiting. Gray tiles are tiles that have
been placed from the current step, so they must wait
until the current step finishes.
Direction to Key Tiles (KEYd(t)). With the key

tile information, signals are sent in the direction of the

t t t

t

t

ttt

t

Figure 3: An example of the ‘next’ (left) and ‘previous’
(right) directions for each tile. Tiles marked t are ter-
minal tiles, meaning they have no ‘next’ direction. The
only tile without a ‘previous’ direction is the origin tile,
which is the tile located at the bottom left. Note that
the ‘next’ and ‘previous’ directions at each tile do not
always include all adjacent tiles.

correct key tile. For instance, if the assembly is being
copied to the north at step j, signals are sent in the
direction of tjN ∈ Aji . KEYd(t) denotes this direction
for t. To reference all 4 key tiles, we use KEYNEWS(t).
This is illustrated in Figure 5a.

Next/Previous Tiles (NEXT (t)/PREV (t)). This
serves the purpose of knowing where each tile’s neigh-
bors are (or should be). NEXT (t) denotes the direction
to the ‘next’ tiles from t, which usually signifies which
directions the signal can propagate, excluding the source
direction. PREV (t) denotes the direction to the pre-
vious tile from t, which usually signifies the direction a
signal comes from. We use NEXTt(t) to denote the tile
adjacent to t in directionNEXT (t) (or similarly, the set
of tiles adjacent to t for each direction in NEXT (t)).
Similarly, PREVt(t) denotes the tile adjacent to t in
direction PREV (t). This is described in Figure 3.

The State of Neighboring Sub-assemblies
(SUBd(t)). This is crucial for several reasons. Firstly,
this creates the order in which tiles are placed. Sec-
ondly, this makes it possible to keep track of which di-
rection the signal is coming from, and once the tile is
placed, where the signal needs to return to. SUBd(t)
denotes the state of the sub-assembly (whether all tiles
have been placed or not) stemming from the neighbor-
ing tile of t in direction d. To reference the state of
all sub-assemblies adjacent to t, we use SUBNEWS(t).
Additionally, we refer to a specific sub-assembly as
SUBASMd(t), denoting the sub-assembly stemming
from tile t in direction d. See Figure 5b for an example.

The Tile being Transferred (TRANS(t)). To dis-
tinguish between different signals, each tile keeps track
of which tile the signal started from. TRANS(t) is used
to denote the tile that the signal is coming from.

Step. Each tile stores which step it is a part of. This
allows an assembly AJi to know which tiles to use (tiles

in Aji ) to create sub-assembly Aj+1
i . Additionally, Aji

will only send signals to tjd(pj+1,pj)
.
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Figure 4: The Sierpinski triangle resetting at the end
of stage 3. Tiles marked ? are waiting for the sub-
assemblies adjacent to reset (the blue tiles to the north
and west). Gray tiles have been reset. Blue tiles are
transmitting the reset signal. Light blue tiles marked
‘K’ are the new key tiles for the assembly.

Terminal (TERM(t)). Tiles must know when they
are at the end of a sub-assembly. Once a terminal tile
is placed, the system knows part of the sub-assembly is
complete. TERM(t) is a boolean that denotes whether
tile t is terminal or not. In Figure 3, these tiles are
marked t.
Caps (CAPd(t)). Copied assemblies require one ex-

tra piece of information. As the shape grows, there are
points where signals can branch in multiple directions.
To direct this, signals always go ‘left’ when there is a
fork. If the sub-assembly in this direction is already con-
structed, a cap is placed to prevent signals from going
in that direction, and it instead goes to the next path.
If all paths have a cap, then it turns around and the cap
is shifted to reflect that all paths are complete. Caps
start from terminal tiles and gradually shift as the sub-
assemblies are completed. CAPd(t) is a boolean that
denotes whether tile t has a cap in direction d. Figure
2 shows an example of how caps are used and shifted.

3.2 Signal Passing

In addition to the stored information, it is important
that tiles can communicate through signal passing. This
is done via transition rules.

Tile Placement Ordering. The order in which tiles
place themselves follows a ‘left’ first order (described
in Section 3.3). As the tiles place themselves and are
marked complete, transition rules prompt the next tile
to start placing itself.

Tile Placement Signals. When a tile tji is placing

itself, the signal is transmitted from tji to the tile adja-

cent to the target position for tji . Transition rules make
this possible by transferring the signal between adjacent
tiles. In Figure 2, the transmission of this placement
signal is represented as the sequence of yellow tiles.

Tile Placement Completion Signals. Once the
tile is placed in the correct location, a ‘completion’ sig-
nal gets sent back the same direction as the placement
signal. Once this signal reaches the tile getting placed

K

(a)

A...

. B

(b)

Figure 5: (a) An example of the direction stored at each
tile for tE , the tile marked K. (b) An example of how
sub-assemblies work. The check mark denotes the sub-
assemblies to the south of tile A are completed. The
sub-assemblies to the west and north of A, however, are
not. As a result, SUBS(A) = complete, SUBW (A) =
incomplete and SUBN (A) = incomplete. Tiles marked
with . are part of SUBASMW (A). Note that B does
not start placing itself until SUBW (A) and SUBS(A)
are both marked completed.

from Aji , the tile is marked as complete.
Cap Signals. When a terminal tile is placed, as the

‘completion’ signal gets sent back in the sub-assembly
being created, a ‘cap’ is sent back with it to mark the
sub-assembly as complete. This forces future signals to
go a different path to complete a different sub-assembly.

Reset Signals When a stage is completed, reset sig-
nals are sent to update current state, direction to key
tiles, state of neighboring tiles and step, as well as re-
moving any remaining caps. Figure 4 illustrates the
resetting process.

Figure 2 details the construction outlined in Sections
3.1 and 3.2. The following section provides more specific
details to express how the system interacts to create
these fractals.

3.3 Approach

This section describes the process for taking an assem-
bly Ai to Ai+1, assuming G is a feasible generator for
(Ai)Λ, H = ⟨h0, . . . , hm⟩ is a Hamiltonian path in GG
starting from the origin where m is the number of steps,
i is the stage and t0 ∈ A0

i is the origin tile. Additionally,

we denote tjd as the key tile for direction d in assembly

Aji and dj = d(pj+1, pj). We briefly define some addi-
tional terminology:
OPP (d). This denotes the complement of direction

d, e.g., OPP (north) = south.
LEFT (D). Consider D ∈ {{N}, {E}, {W},

{S}, {N,E}, {E,S}, {N,W}, {W,S}}, where
N,E,W, S represent north, east, west and south
respectively. LEFT (D) denotes the ‘left’ direction for
D. This is 1) North if D = {N,E} or {N}, 2) East if
D = {E,S} or {E}, 3) West if D = {N,W} or {W}
and 4) South if D = {W,S} or {S}.
Conversely, RIGHT (D) denotes NEXT (D) \

LEFT (D). For a tile t, we use LEFTt(D)/RIGHTt(D)
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to denote the tile adjacent to t in direction
LEFT (D)/RIGHT (D), respectively.
RESET (t). At the end of stage i, tiles must reset.

This includes 1) updating the direction to the new 4 key
tiles and 2) updating the ‘next’ direction for former key
tiles (see Figure 6). RESET (t) denotes tile t resetting,
defined as follows:

• If t = tjdj , where pj ∈ X1 is the key position for dj ,

set KEYdj (t) = current tile.

• For each tile ta ∈ NEXTt(t) (if all ta have reset) set
each KEYd(t) = PREV (t) if KEYd(ta) = d(t, ta).
If there is a tile such that KEYd(ta) ̸= d(t, ta), set
KEYd(t) = KEYd(ta). If ta is a key tile for d, set
KEYd(t) = d(ta, t).

• Clear TERM(tc) and update NEXT (tc) if appro-
priate.

3.3.1 Algorithm

Now we describe the algorithm. For better compre-
hension, we describe the algorithm using sub-processes.
Technical descriptions of these sub-processes are in-
cluded in Section 6.

Start with j = 0 and let tc = t0 denote the current tile
getting placed, starting with the origin tile. Let Aj+1

i

represent the translated assembly being created at step
j + 1. The following will be repeated until j = m.
While SUBPREV (tjdj

)(t
j
dj
) and SUBNEXT (tjdj

)(t
j
dj
) are

not marked as completed:

1. Let ta denote the tile adjacent to
tc in direction KEYdj (tc). Run

send placement signal(tc, t
j
OPP (dj)

, tjdj , ta, dj)

to send a signal through the assembly to place tc
in the correct location.

2. The placement signal stops at the tile adjacent to
the target position by always traversing ‘left’ until
a tile no longer exists. Run place tile(ta, t

′
c, p) to

place the tile at this location, where ta is the tile
adjacent to position p, the target position for tc.
This places tc in the correct location as t′c.

3. Retrace the signal to the tile that got placed by run-
ning send completion signal(t′c, ta, dj). This also
marks the tile as complete.

4. Mark sub-assemblies as complete if needed.
Run mark completed sub-assemblies(tc, ta) if
TERM(tc) = True, where tc is the tile that just
placed itself and ta is the tile adjacent to tc such
that STATE(ta) = complete.

5. Choose the next tile to be placed. Let tc de-
note the last tile updated and C be the tiles in
NEXTtc(tc) ∪ PREVtc(tc) that have a completed
state. If tc ̸= tjdj , repeat from (1) with the new

tc = LEFTtc(PREV (tc) ∪NEXT (tc) \ C).

t

Figure 6: The highlighted tile is initially set as terminal.
Since the tile used to be a key tile, resetting also updates
the ‘next’ direction if appropriate.

6. If tc = tjdj , j ̸= m (the stage is not yet

completed) and SUBPREV (tjdj
)(t

j
dj
) and

SUBNEXT (tjdj
)(t

j
dj
) are marked as com-

pleted (every tile has now been placed), run
start next step(tj+1

OPP (dj)
, tj+1
dj+1

, dj , dj+1) to signal

for the next sub-assembly to start being created.
Repeat from (1) with j = j + 1, Aji = Aj+1

i and
clear TRANS(tc).

7. If instead j = m, the initial assembly has now been
up-scaled and has reached the end of stage i. To
repeat this process, the assembly now has to reset.
Run reset(tmOPP (dm−1)

).

8. Repeat the algorithm.

A primary reason as to why this algorithm works is
the existence of a Hamiltonian path in the generator, as
this dictates the directions in which the fractal grows.
This allows growth of the fractal for any step to only
depend on the created sub-assembly from the previous
step, regardless of whether or not the resulting assem-
bly contains a Hamiltonian path or not. If a generator
does not contain a Hamiltonian path, then some sub-
assemblies of the fractal must be used multiple times
to create copies in multiple directions, which results in
synchronicity issues as multiple signals could exist in
the assembly at once.

4 Results

We now show that any feasible generator G with a
Hamiltonian path in GG can be super-strictly built by a
seeded TA system Γ. Let G be a feasible generator for
discrete self-similar fractal X, with H = ⟨h0, . . . , hm⟩
denoting a Hamiltonian path in GG such that each
hj corresponds to point pj = (wj , uj) ∈ G. Let
dj = d(pj+1, pj), A be the current assembly start-
ing from A = AJi for some J ∈ {0, . . . ,m − 1}, and

Aj+1′

i = A \AJi . We denote the copy of a tile t as t′.

Lemma 1 Under the construction from Section 3, tile
tjOPP (dj)

∈ Aji must be the first tile to place itself.

Proof. This is due to geometry. While there may be
other adjacent tiles between Aji and the sub-assembly
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being created, Aj+1′

i , tjdj is the only tile that recognizes

the existence of Aj+1′

i . Thus, the only way to send a

signal to Aj+1′

i is through tjdj , and the only adjacent

tile to tjdj in Aj+1′

i is tj
′

OPP (dj)
. □

Lemma 2 Let ti = (σi, pi) ∈ Aji and let tf = (σf , pf ) ∈
Aj+1′

i represent the tile adjacent to p′i, the target location
for t′i. A signal will follow exactly 1 path from ti to tf .

Proof. From Section 3.3, signals will always follow one

path in Aji and Aj+1′

i . We show that this signal ends
at tile tf . This can be done by comparing the order in
which tiles are chosen to be placed to the direction that
the signal travels.

To prove equivalence, we show that for each tile in

Aj+1′

i , PREV (tc)∪NEXT (tc)\d(tp, tc) = NEXT (t∗c).
We consider 2 cases:

Case 1: t∗c = tj+1
OPP (dj)

. From Section 3.3,

NEXT (t∗c) = NEXT (tjOPP (dj)
) ∪ PREV (tjOPP (dj)

) \
OPP (dj). Initially, tp is the tile in direction OPP (dj)
from tc. This results in PREV (tc) ∪ NEXT (tc) \
d(tp, tc).

Case 2: t∗c is any other tile. Let t∗p denote the tile ad-
jacent to t∗c from which the signal came from, with tp, tc
denoting the corresponding tiles from Aji . We consider
2 scenarios.

1. tc ∈ NEXTtp(tp). From Section 3.3, NEXT (t∗c) =
PREV (tc) ∪NEXT (tc) \ d(tp, tc).

2. tc ∈ PREVtp(tp). From Section 3.3,
NEXT (t∗c) = NEXT (tc)∪PREV (tc)\ (d(tp, tc)∪
{directions to tiles not in step j}). The only time
there exists a direction to a tile not in step j is
when tc is the first tile placed in step j. Since this
is no longer the case for step j + 1, we get rid of
this direction from NEXT (t∗c), and since the next
tile chosen to be placed from tc does not consider
this direction either, the equivalence holds. □

Lemma 3 Let ti = (σi, pi) ∈ Aji and let tf = (σf , pf ) ∈
Aj+1′

i represent the tile adjacent to p′i, the target location
for t′i. Tile tf will place tile t′i at position p

′
i = pi+a·d∗j ,

where a−1 ∈ N represents the distance |pdj −pOPP (dj)|
and d∗j ∈ {0, 1}2 is a 2-D vector denoting the direction.

Proof. Let d∗j = [0, 1], [1, 0], [−1, 0], [0,−1] represent
dj = north, east, west and south, respectively. In the
case of tOPP (dj)’ being the tile placed, the signal will

stop at tile tjdj with position pdj = pOPP (dj)+(a−1)·d∗j .
Tile t′OPP (dj)

is then placed at position p′OPP (dj)
=

pdj + d∗j = pOPP (dj) + a · d∗j .
For any other tile ti, as described in Lemma 2, we

know 2 things: 1), the signal from tile ti will stop at tile
tf adjacent to position p′i and 2) the order in which tiles

are chosen to be placed is equivalent to the direction in
which signals are passed. Since the relative position of p′i
to t′OPP (dj)

is the same as pi to tOPP (dj) and t
′
OPP (dj)

=

tOPP (dj) + a · dj , it follows that p′i = pi + a · d∗j . □

Lemma 4 Let ti = (σi, pi) ∈ Aji and let t′i = (σ′i, p
′
i) ∈

Aj+1′

i represent the copy of ti. A signal will follow ex-
actly 1 path from t′i to ti.

Proof. By Lemma 2, there exists one path from pi to
the tile adjacent to p′i. Thus, when tile t′i is placed at
position p′i, the converse holds true by retracing this
path. □

Theorem 5 There is at most one tile transmitting a
signal in A.

Proof. By contradiction. Assume that there exists 2
tiles t1 ̸= t2 transmitting signals through Aji and let

Aj
∗
1 , Aj

∗
2 ⊂ Aji denote 2 sets of tiles such that:

1. ∀ta ∈ Aj
∗
1 , STATE(ta) = complete.

2. ∀tb ∈ NEXTta(ta) ∪ PREVta(ta), tb ∈ Aj
∗
1 ,

STATE(tb) = incomplete or tb = t1.

where the same applies for Aj
∗
2 and t2. We consider 2

cases:

Case 1: Aj
∗
1 ∩ Aj∗2 = ∅. This implies tjOPP (dj)

∈ Aj∗1
or tjOPP (dj)

∈ Aj∗2 , but not both. By Lemma 1, tjOPP (dj)

must be the first tile placed, resulting in a contradiction.

Case 2: Aj
∗
1 ∩ Aj

∗
2 ̸= ∅. Consider a tile

t∗ such that t1 ∈ SUBASMd1(t
∗) and t2 ∈

SUBASMd2(t
∗). Since SUBASMRIGHT ({d1,d2})(t

∗)
must wait for SUBASMLEFT ({d1,d2})(t

∗) to be com-
pleted, it must be that d1 = d2. This implies that
t1 = t2. □

Theorem 6 Step j + 2 will start only when step j + 1
is completed.

Proof. By our construction, since tjdj is the tile

communicating between Aji and Aj+1′

i , both
SUBPREV (tdj )

(tdj ) and SUBNEXT (tdj )
(tdj ) must

be marked as completed before step j + 2 begins. This
is true only when ∀t ∈ Aji , STATE(t) = complete. □

Lemma 7 Let AMi =
m⋃
j=0

Aji denote the resulting as-

sembly at step m for stage i. Every tile will reset before
moving to stage i+ 1.

Proof. This is due to our construction. A tile t will
only reset when ∀ta ∈ NEXTt(t), ta is reset. The only
time this is not true is when t is terminal, which marks
the end of a sub-assembly. □
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Lemma 8 Let AMi =
m⋃
j=0

Aji denote the resulting as-

sembly at step m for stage i. When t0 resets, there will
exist at most 4 key tiles and KEYNEWS(t)∀t ∈ AMi is
updated to point to these new key tiles.

Proof. We first show that there will exist at most four
key tiles, one for each direction d. From Section 3.3, td
must appear only in some step j. Thus, as the assembly
resets, tjd resets as the new td for the up-scaled assembly,
and all other tkd ∀k ̸= j ∈ {0, . . . ,m} are reset to normal
tiles. This leaves at most four key tiles.
Next, we show that every tile will point to the direc-

tion of the new td’s. We show this by contradiction.
Assume that there exists a tile t such that KEYd(t) =
PREV (t), but td ∈ SUBASMNEXT (t)(t). This implies
that for ta = PREVtd(td), KEYd(ta) = PREV (ta),
which is true only if td is not the key tile for direction
d. Hence, td ̸∈ SUBASMNEXT (t)(t). □

Lemma 9 Let Aj∗ ⊆ Aji where ∀t ∈ Aj∗, STATE(t) =

complete. At the end of step j +1, (Aj+1′

i )Λ = (Aji )Λ +
a · d∗j , where a − 1 ∈ N represents the distance |pdj −
pOPP (dj)| and d∗j ∈ {−1, 0, 1}2 is a 2-D vector denoting
the direction.

Proof. We use Lemmas 1 and 3 to construct an induc-
tive proof. Let d∗j = [0, 1], [1, 0], [−1, 0], [0,−1] represent
dj = north, east, west and south, respectively.

Base case. |Aj∗i | = 0, with t1 = tjOPP (dj)
being

the first tile copying itself (Lemma 1). By Lemma 3,
t′OPP (dj)

is placed at position p′1 = p1 + a · d∗j .
Inductive step. |Aj∗i | = k, with tk+1 being the tile

copying itself. By Lemma 3, t′k+1 is placed at position

p′k+1 = pk+1+ a · d∗j . It holds that (Aj+1′

i )Λ = (Aj∗)Λ+

a · d∗j . Thus, (Aj+1
i )Λ = (Aji )Λ + a · d∗j . □

Theorem 10 At the end of stage i, (AMi )Λ = (Ai+1)Λ.

Proof. Follows from Lemma 9. For each AKi with
K ∈ {0, . . . ,m − 1}, a new sub-assembly Ak+1

i is con-
structed such that the new assembly AK+1

i = AKi ∪Ak+1
i

satisfying (AK+1
i )Λ = XK+1

i . Thus, the final assembly

AMi = AM−1i ∪ Ami with (AMi )Λ =
m⋃
j=0

Xj
i = Xi+1 =

(Ai+1)Λ. □

Theorem 11 Let X be a discrete self-similar fractal
with feasible generator G in bounding box c × d such
that GG has a Hamiltonian path ⟨h0, . . . , hm⟩ where h0
represents the origin. There exists a seeded TA system
Γ with O(|G|) states, O(|G|2) transitions and O(|G|2)
affinities that super-strictly builds X.

Proof. We start by showing Γ strictly builds X. This
follows from Theorem 10. We start with seed s, where

(s)Λ = G and each tj ∈ s stores NEXT (tj) =
d(pj+1, pj) (if pj+1 exists), PREV (tj) = d(pj−1, pj) (if
pj−1 exists) and TERM(tm) = True. Denote the as-
sembly as A1. By Theorem 10, applying the construc-

tion from Section 3 yields a new assembly A2 =
m⋃
j=0

Aji

with shape (A2)Λ = X2. Repeating this for all Ai yields
limi→∞(Ai)Λ = X.
Now we show that Γ super-strictly builds X. To do

so, we consider 2 cases:

1. The assembly AMi at the end of stage i before reset-
ting. Leading up to this point, the order in which
tiles are placed and signals are passed is determinis-
tic. As a result, there exists 1 unique valid assembly
sequence from Ai to A

M
i .

2. The assembly Ai+1 after AMi resets. While there
no longer exists 1 unique valid assembly sequence
from AMi to Ai+1, Lemmas 7 and 8 show that every
tile will reset to point to the 4 new key tiles. From
(1), the rest of the local information at each tile
will remain the same. Thus, every valid assembly
sequence from AMi to Ai+1 starts with A

M
i and ends

with Ai+1.

Choose β = {s,AM2 , AM3 , . . .} or β = {s,A2, A3, . . .}. It
follows that Γ super-strictly builds X.

Disregarding steps, the total number of ways infor-
mation can be locally stored at any tile is O(1) since a
tile has at most 4 neighbors. However, as tiles need to
distinguish between different sub-assemblies represent-
ing different steps, this results in O(|G|) different states.
Similarly, since transition rules and affinities use com-
binations of 2 states, this results in O(|G|2) transition
rules and affinity rules. □

5 Conclusion

In this paper, we present a method to strictly build frac-
tals infinitely under the assumption that the generator
is feasible and contains a Hamiltonian path. This con-
trasts with previously known results from similar (but
slightly differing) models such as the aTAM, where some
fractals, such as the Sierpinski triangle, are shown to
be impossible to build strictly. Additionally, we show
that this class of fractals can be super-strictly built, as
our construction guarantees stopping at unique inter-
mediate assemblies for all possible assembly sequences,
where each intermediate assembly represents a differ-
ent stage of the fractal. However, there remains several
open questions:

• Our construction strictly builds fractals infinitely
with states linear in the size of the generator and
transitions and affinities quadratic in the size of
the generator. Is there an alternative method that
reduces the state, transition and affinity counts?

357



36th Canadian Conference on Computational Geometry, 2022

• Is it possible to construct all fractals infinitely? If
not, what fractals are impossible to build?

• Does there exist a seeded TA system that can
strictly build any fractal infinitely?

• Our work focuses on systems with temperature 1.
Is it possible to take advantage of systems with
higher temperatures to strictly build these frac-
tals more efficiently, or does higher temperatures
increase the complexity of the problem?

6 Full Details for Algorithm

Below are the full details for the sub-processes used in
the algorithm described in Section 3.3.

send placement signal(tc, t
j
OPP (dj)

, tjdj , ta, dj):

1. Set STATE(tc) = waiting.

• If tc = tjOPP (dj)
, set NEXT (t′c) = NEXT (tc) ∪

PREV (tc)\OPP (dj), PREV (t′c) = OPP (dj)
and TERM(t′c) = False.

• Else if STATE(ta) = complete and the num-
ber of tiles from step j in NEXTtc(tc) ∪
PREVtc(tc) is = 1, set TERM(t′c) = True
and PREV (t′c) = d(ta, tc).

• Else if STATE(ta) = complete and
tc ∈ PREVta(ta), set NEXT (t′c) =
NEXT (tc) ∪ PREV (tc) \ (d(ta, tc) ∪
{directions to tiles not in step j}) and
PREV (t′c) = d(ta, tc).

• Else, set NEXT (t′c) = NEXT (tc) and
PREV (t′c) = PREV (tc).

• Set KEYNEWS(t
′
c) = KEYNEWS(tc),

TERM(t′c) = TERM(tc) if TERM(t′c)
is not defined yet, SUBd(tc,ta)(ta) = waiting
and TRANS(ta) = t′c.

• Let tc = ta.

2. While tc ̸= tjdj :

• Set SUBd(tc,ta)(ta) = waiting and TRANS(ta) =
TRANS(tc).

• Let tc = ta.

3. If no tile exists adjacent to tc in direction dj ,
stop. Otherwise, set SUBOPP (dj)(ta) = waiting
and TRANS(ta) = TRANS(tc).

4. Repeat the following:

(a) Let ta = LEFTtc(NEXT (tc)) if
!CAPLEFT (NEXT (tc))(tc), else set
ta = RIGHTtc(NEXT (tc)).

(b) If ta exists, set SUBd(tc,ta)(ta) = waiting and
TRANS(ta) = TRANS(tc). Set tc = ta and
repeat from (a).

(c) If ta does not exist, stop.

place tile(tc, tc’, p):

1. Place t′c in position p and set SUBd(tc,t′c)(t
′
c) =

maybe. If TERM(t′c), set SUBd(tc,t′c)(t
′
c) = maybe

with cap.

send completion signal(tc, ta, dj):

1. Set SUBd(ta,tc)(tc) to its original state, clearing
TRANS(tc) and changing SUBd(ta) = waiting to
SUBd(ta) = maybe for the direction d that the sig-
nal came from.

2. If length(NEXT (tc)) = number of caps on tc, set
SUBd(ta) = maybe with cap and clear the cap from
tc. Otherwise, set SUBd(ta) = maybe and leave the
cap on tc in direction LEFT (tc).

3. If STATE(ta) = waiting, set SUBd(ta,tc)(tc) to its
original state, clearing TRANS(tc) and changing
STATE(ta) = waiting to STATE(ta) = complete.
Otherwise, set tc = ta, let ta be the tile adjacent
to tc from which the signal came from and repeat
from (1).

mark completed sub-assemblies(tc, ta):

1. Repeat the following until ta is not updated:

(a) Set SUBd(tc,ta)(ta) = complete.

(b) If length(SUBNEWS(tc) = complete) =
length(NEXT (tc) ∪ PREV (tc)), set tc =
ta and let ta be the tile next to tc with
STATE(ta) = complete and SUBd(tc,ta) =
incomplete.

start next step(tj+1
OPP (dj)

, tj+1
dj+1

, dj, dj+1):

1. Let tc = tj+1
OPP (dj)

. Set TRANS(tc) = ready. While

tc ̸= tj+1
dj+1

:

(a) Let ta denotes the tile adjacent to tc in di-
rection KEYdj+1

(tc). Set TRANS(ta) =
TRANS(tc) and clear TRANS(tc). Then let
tc = ta.

reset(tmOPP (dm−1)
):

1. Set TRANS(tmOPP (dm−1)
) = reset. For all tiles

ta adjacent to tc = tmOPP (dm−1)
in directions

d ∈ NEXT (tc) ∪ PREV (tc), set TRANS(ta) =
TRANS(tc) and set tc = ta.

2. If TERM(tc), set tc = RESET (tc). For the tile
ta ∈ PREVtc(tc), set SUBd(tc,ta)(ta) = done. Add
d(tc, ta) to NEXT (ta) if not already done.

3. If length(SUBNEWS(tc) = done ) =
length(NEXT (tc)), then for the tile
ta = PREVtc(tc), set tc = RESET (tc) and
set SUBd(tc,ta)(ta) = done.
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