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Maintaining Light Spanners via Minimal Updates

David Eppstein *

Abstract

We study the problem of maintaining a lightweight
bounded-degree (1 + ¢)-spanner of a dynamic point set
in a d-dimensional Euclidean space, where ¢ > 0 and d
are arbitrary constants. In our fully-dynamic setting,
points are allowed to be inserted as well as deleted, and
our objective is to maintain a (1 4 €)-spanner that has
constant bounds on its maximum degree and its lightness
(the ratio of its weight to that of the minimum spanning
tree), while minimizing the recourse, which is the num-
ber of edges added or removed by each point insertion
or deletion. We present a fully-dynamic algorithm that
handles point insertion with amortized constant recourse
and point deletion with amortized O(log A) recourse,
where A is the aspect ratio of the point set.

1 Introduction

Spanners are sparse subgraphs of a denser graph that
approximate its shortest path distances. Extensive study
has been made of geometric spanners, for which the dense
graph is a complete weighted graph on a point set in
d-dimensional Euclidean space, and where the weight of
an edge (u,v) is simply the Euclidean distance between
u and v. The approximation quality of a spanner is
measured by its stretch factor ¢, where a t-spanner S
is defined by the property that for every two vertices u
and v in the graph, dg(u,v) < t-d(u,v). Here d and
dg are respectively the Euclidean metric of dimension
d and the shortest path metric induced by the spanner.
In other words, the Euclidean distances are stretched by
a factor of at most ¢ in the spanner.

In this paper, we study the problem of maintaining
1 + e-spanners under a dynamic model in which points
are inserted and removed by an adversary and our goal is
to minimize the recourse, which is the number of changes
we make to the edge set of the spanner. The recourse
should be distinguished from the time it takes us to
calculate the changes we make, which might be larger;
our use of recourse instead of update time is motivated
by real-world networks, where making a physical change

*Department of Computer Science, University of California,
Irvine, eppstein@uci.edu. Work funded by NSF grant CCF-
2212129.

TDepartment of Computer Science, University of California,
Irvine, khodabah®@uci.edu. Work funded by NSF grant CCF-
2212129.

Hadi Khodabandeh T

to the network is often more costly than the actual run-
time of the algorithm that decides what changes need
to be made.

As our main contribution in this paper, we construct
a fully-dynamic spanner that maintains, at all times, a
lightness and a maximum degree that are bounded by
constants. Our maintenance regime achieves amortized
constant recourse per point insertion, and amortized
O(log A) recourse per point deletion. We state and
prove our bounds in the following theorem:

Theorem 18 Our fully-dynamic spanner construc-
tion in d-dimensional Euclidean spaces has a stretch-
factor of 1 4+ € and a lightness that is bounded by a
constant. Furthermore, this construction performs an
amortized O(1) edge updates following a point insertion,
and an amortized O(log A) edge updates following a
point deletion.

1.1 Related work

Geometric t-spanners have numerous applications in net-
work design problems [15]. Finding a sparse lightweight
t-spanner is the core of many of these applications. The
existence of such spanners and efficient algorithms for
constructing them have been considered under different
settings and constraints [3,12,17]. In offline settings,
where the point set is given as a whole to the algorithm,
the prominent greedy spanner algorithm is well known
for its all-in-one quality due to its optimal performance
under multiple measures including sparsity (its number
of edges), lightness (the weight of the spanner divided
by the weight of the minimum spanning tree), and max-
imum degree [1,4]. The output of the greedy spanner
also has low crossing number in the plane and small
separators and separator hierarchies in doubling metric
spaces [8,14]. However, in some applications, the points
of an input set may repeatedly change as a spanner for
them is used, and a static network would not accurately
represent their distances. The dynamic model, detailed
below, deal with these types of problems.

In the dynamic model, points are inserted or removed
one at a time, and the algorithm has to maintain a t-
spanner at all times. In this setting the algorithm is
allowed to remove previous edges. For n points in d-
dimensional Euclidean space, Arya, Mount, and Smid [2]
designed a spanner construction with a linear number of
edges and O(logn) diameter under the assumption that
a point to be deleted is chosen randomly from the point
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set, and a point to be inserted is chosen randomly from
the new point set. Bose, Gudmundsson, and Morin [5]
presented a semi-dynamic (1 + £)-spanner construction
with O(logn) maximum degree and diameter. Gao,
Guibas, and Nguyen [9] designed the deformable spanner,
a fully-dynamic construction with O(log A) maximum
degree and O(log A) lightness, where A is the aspect
ratio of the point set, defined as the ratio of the length
of the largest edge divided by the length of the shortest
edge.

In the spaces of bounded doubling dimension,
Roditty [16] provided the first dynamic spanner con-
struction whose update time (and therefore recourse)
depended solely on the number of points (O(logn) for
point insertion and O(n!/3) for point removal). This
was later improved by Gottlieb and Roditty [11], who
extended this result in doubling metrics and provided a
better update time as well as the bounded-degree prop-
erty. The same authors further improved this construc-
tion to have an asymptotically optimal insertion time
(and therefore recourse) of O(logn) under the algebraic
decision tree model [10] but logarithmic lightness.

It is worth to mention that none of the work mentioned
above in the dynamic setting achieve a sub-logarithmic
lightness bound on their output. The problem of main-
taining a light spanner in this setting has remained open
until now.

2 Preliminaries and overview

In this section, we cover the notations as well as impor-
tant definitions and facts that we use throughout the
paper. We also provide an overview of what to expect in
the upcoming sections and the methods we use to reach
our bounds on the recourse.

Notation. We denote the current point set by V' and
its aspect ratio (as defined earlier) by A. We use the
notations ||e|| and ||P|| for the Euclidean length of an
edge e and a path P, respectively. We also refer to the
Euclidean distance of two points u and v by |luv| or
d(u,v), interchangeably. The notation |E| is used when
we are referring to the size of a set E. Also, for a spanner
S, the weight of S is shown by w(S5).

2.1 Overview

We build our spanners on top of a hierarchical clustering
(T, R) of the point set that we maintain dynamically as
the point set changes over time. The tree T represents
the parent-child relationship between the clusters, and
the constant R specifies how cluster radii magnify on
higher levels. Each cluster C € T is specified by a pair
C = (p,1) where p € R? is one of the given points at the
center of the cluster and [ € Z is the level of the cluster.
The level of a cluster determines its radius, R'. It is

possible for the same point to be the center of multiple
clusters, at different levels of the hierarchy.

We maintain our hierarchy so that after a point in-
sertion, a cluster is added centered at the new point,
and after a point deletion, each cluster with the deleted
point as its center is removed. Meanwhile, we maintain
a separation property on the hierarchy to help us build a
sparse spanner. Additional edges of our sparse spanner
connect pairs of clusters of the same level. Each such
edge ensures that pairs of descendants of its endpoints
have the desired stretch-factor. These edges form a
bounded-degree graph on the clusters at each level, but
this property alone would not ensure bounded degree
for our whole spanner, because of points that center
multiple clusters. Instead, we redistribute the edges of
large degree points to derive a bounded-degree spanner.

Maintaining bounded lightness on the other hand is
done through an iterative pruning process. We start
by removing certain edges to decrease the weight of the
spanner, which in turn might cause some other pairs
that previously used the removed edge in their shortest
paths to not meet the stretch bound of 14+ . We fix
those pairs by adding an edge between them, which again
increases the weight of the spanner. This causes a chain
of updates that alternatively improve the stretch and
worsen the weight of the spanner, or improve the weight
and worsen the stretch of the spanner. We show that
this sequence of updates, which we call maintenance
updates, if performed properly and for the right pairs,
will indeed not end in a loop, and even more strongly,
will terminate after an amortized constant number of
iterations. This will be covered in section 4.

The rest of this section includes the techniques we use
for our light-weight spanner construction. We start with
one of these techniques which is called the bucketing
technique. Instead of enforcing the stretch bound and
the lightness bound on the whole spanner, we partition
its edges into a constant number of subsets and we
enforce our criteria on these subsets. This partitioning
is necessary for the purpose of our analysis.

Bucketing. We maintain a partition of the span-
ner edges into a constant number of subsets. As we
mentioned before, our invariants are enforced on these
subsets instead of the whole spanner. Let C > ¢ > 1 be
constants that we specify later. We partition the edges of
the spanner into k = [log, C' subsets, So, S1, -+ ,Sk—1,
so that for each set S; and any pair of edges e, f € .5;
such that |le|| > ||f]|, one of the following two cases
happen: (i) either flell /[ f]| < ¢ or (ii) [le]l/[]] > C. In
other words, the edge lengths in the same set are either
very close, or very far from each other.

Such partitioning can be maintained easily by as-
signing an edge e to the set with index index(e) =
[log.|le]|]] mod k.  We refer to this as the index of
the edge e. We also define the size of an edge e as
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size(e) = |(log.|le|)/k]. By definition, if index(e) = i
and size(e) = j, then **0 < ||| < +HL We
similarly define the index and the size for any pair
(u,v) of vertices that are not necessarily connected
in the spanner: index(u,v) = |log.||uv|] mod k, and
size(u, v) = | (logl|uv]))/k).

Invariants. In order to construct a light-weight span-
ner, we start from our sparse dynamic spanner construc-
tion. To distinguish the edges of our light spanner with
the edges of our sparse spanner, we call the edges of
our sparse spanner the potential pairs, since a carefully
filtered set of those edges will make up our light-weight
spanner. After bucketing the potential pairs, since we
maintain the edges of each bucket separately, we must
find per-bucket criteria that guarantee the the main prop-
erties we expect from our spanner: the stretch-factor
and the lightness. We call these criteria the invariants.
To make sure the union of the buckets meets the stretch
bound, we generalize the notion of stretch factor to work
on individual buckets and we call it Invariant 1.

e Invariant 1. For each pair of vertices (u,v) ¢ S;
with index 4, there must exist a set of edges e; =
(x1,91),e2 = (w2,92),..., e = (x,) in S; such
that

l -1
S el (142) (Hw S ] + IIyzvl)
=1

i=1
< (1+¢)|juv].

In other words, © must reach v by a path of cost
at most (1 + )||uv|| where the cost of every edge
e € S; is ||e]| and the cost of every edge e ¢ S; is
(1+¢)lell.

Lemma 1 If Invariant 1 holds for all S;, then S =
Uf:_ol S; is a (14 ¢)-spanner.

Proof. [Proof of Lemma 1] Let (u,v) be a pair of
vertices. We find a (1 + ¢)-path between « and v using
edges in S. Let i = index(u,v). By Invariant 1 there
exists a set of edges e; = (x1,y1),e2 = (z2,92),...,e; =
(z1,y1) in S; such that

(u,v) and it terminates because the length of each miss-
ing edge in a replacement path is smaller than the length
of the edge that is being replaced (otherwise Invariant 1
would not hold). O

Furthermore, we bound the weight of the spanner
by ensuring the second invariant, which is the leapfrog
property on S;. [7]

e Invariant 2. Let (u,v) € S;. For every subset of

edges ey = (r1,y1),e2 = (2,92),...,e1 = (z1, 1)
in .S; the inequality

l -1
> el +(14¢) (usmll + 3 Nyiial + ||yw||>
=1

i=1
> (1+&")|Juv||

holds, where &’ < ¢ is a positive constant. In other
words, u should not be able to reach v by a (short)
path of cost (1 + &')||uv||, where the edge costs are
the same as in Invariant 1.

The leapfrog property leads to a constant upper bound
on the lightness of S;, for each 0 < i < k. And since the
weight of the minimum spanning tree on the end-points
of each S; is at most a constant factor of the weight of
the minimum spanning tree on the whole point set, this
implies a constant upper bound on the lightness of the
spanner S = Ui:ol S;. As well as the weight bound, we
prove, in the following lemma, that Invariant 2 implies a
similar result to the packing lemma, but for the number
of edges on the same level.

Lemma 2 (Edge packing) Let E be a set of edges
(segments) with the same index and the same level that
is consistent with Invariant 2. Also, assume that E is
contained in a ball of radius R, and the minimum edge
size in E is r. Then

|B| < Cu(R/r)*
where Cy = (2(1 + ¢€)/¢")?%d? is a constant.

Proof. [Proof of Lemma 2] A simple observation is
that for any two segments (u, v) and (y, z) in F we must

1 -1 have ,
> llesll+(+e)  uzall + > llyswisall + vl ) < (1+e)uv]. max([Juyl], [[v2]) > ——— -7
i—1 i—1 2(1+¢)

Consider the path P = uz1y1x2ys2 - - - 2;y;v between u
and v. We call this path the replacement path for (u,v).
The edges z1y1, Zayo,...,21y; are present in S; (and
therefore present in S) but the other edges of the re-
placement path are missing from S;. A similar procedure
can be performed on the missing pairs recursively to find
and replace them with their corresponding replacement
paths. This recursive procedure yields a (1 + ¢)-path for

because otherwise, assuming that ||uv| > ||yz||, for the
pair (u,v) and the sequence e; = (y, z), the left hand
side of the inequality in Invariant 2 would be at most

/

2(1+¢) - 72(11 5

o flyzll < (1+€)fuv]]

contradicting the fact that F is consistent with Invariant
2. Thus, given a covering of a ball of radius R with



36" Canadian Conference on Computational Geometry, 2024

’

M balls of radius v’ = ﬁ - r, every segment in F
has its endpoints in a unique pair of balls, otherwise
Invariant 2 will be compromised. Hence, |E| < M?. A
simple calculation yields a covering with M < (2(1 +

£)/")?dY?(R/r)¢ balls. O

We can simplify the two invariants by defining a dis-
tance function d; over the pairs of vertices,

Definition 1 Let S} be a complete weighted graph over
the vertices such that the weight of an edge e in S} is
defined as

ifeeS;

wiey— LIl
(L+e)lell ifed S

We define an extended path between u and v in S; as
a path between u and v in S¥ that only uses edges (y, z)
where size(y, z) < size(u,v). We also define the length
of an extended path as the sum of its edge weights in S} .
Finally, we define df(u,v) as the length of the shortest
extended path between u and v.

Using this new distance function we can rephrase the
two invariants as follows.

e Invariant 1. For every pair (u,v) ¢ S; with
index(u,v) = 4, we have d}(u,v) < (14 ¢)d(u,v).

o Invariant 2. For every pair (u,v) € S;, we have
df (u,v) > (1 +¢&)d(u,v).

It is worth noting that these forms are not exactly
equivalent to the previous forms, as we are only consid-
ering paths of lower level edges in the definition of d,
while a short path in the spanner could potentially con-
tain an edge of the same level. This provides a stronger
variation of Invariant 1, which still implies a 1+ ¢ stretch
for the spanner. However, this change weakens Invariant
2. But as we will see, a careful addition of the same-level
edges can prevent any possible violations of Invariant 2
that could be caused by this new form.

Maintaining the invariants. The quality of our
light-weight dynamic spanner depends on the two invari-
ants we introduced above, and an update like a point
insertion or removal could cause one of them to break,
if not both. Therefore, we establish a procedure that
addresses the inconsistencies and enforces the invariants
to hold at all times.

The procedure for fixing a violation of Invariant 1
is straightforward: as long as there exists a pair (u,v)
that violates Invariant 1 for its corresponding subset S,
add an appropriate potential pair to S; that connects
an ancestor of u to an ancestor of v in the hierarchy 7.
This resolves the inconsistency for (u,v) if the ancestors
are chosen properly, but it might cause other pairs to
violate Invariant 2 because of this edge addition. We will

prove that if certain criteria are met, there would be no
side effect on the same-level pairs and the addition can
only result in a constant amortized number of inflicted
updates on higher level pairs.

Fixing a violation of Invariant 2, on the other hand,
is more tricky. After we remove the violating edge (u,v)
from its subset S;, the effect on higher level pairs would
be similar to the previous case, but removing (u, v) might
cause multiple updates on the same level, which in turn
cascade to higher levels. We therefore analyze the re-
moval of (u, v) together with the subsequent additions of
same-level edges that aim to fix the incurred violations
of Invariant 1, and we prove that a constant amortized
bound on the number of inflicted updates on higher
level pairs would still hold. We get to the details of our
maintenance updates in section 4.3.

Amortized analysis. We analyze the effects of an
update (edge addition and removal) on higher level pairs
using a potential function, for each S; separately. We
define our potential function over the potential pairs in
S;. The change in the potential function shows how much
a pair is close to violating one of the invariants. The
higher the potential, the closer the pair is to violating the
invariants. This enables us to assign a certain amount
of credit to each update, that can be used to pay for the
potential change of the updated pair and the affected
pairs, which in turn results on an amortized upper bound
on the number of edge updates in the future. Therefore,
for a potential pair (u,v) with index 7 and following an
update in S;,

o if (u,v) € S; and d} (u,v) decreases, or
o if (u,v) ¢ S;, and d} (u,v) increases,

we increase the potential of the pair (u,v) to account
for its future violation of the invariants.

More specifically, we define the potential function
pi(u,v) of a potential pair (u,v) in S; as

d; (u,v)
(1+¢)— )

Cy - (diéifff -1+ 6’))

if (u,v) € S;
if (u,v) ¢ S; and
index(u,v) =1

pi(u,v) =

where Cy > 1 is a positive constant coefficient that we
specify later. This implies that if p;(u,v) < e —¢’, then
both invariants would hold for the pair (u,v) (in S;).
Based on this observation, we define a potential function
on S; in the following way,

o= Y

(u,v)€P;US;

pi(u,v)

where P; is the set of potential pairs with index i. We
simply define the potential of the whole spanner as

o=
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We add another term to this potential function later
in section 4 to account for future edges between the
existing nodes.

n

* Pmax
d* = (I)“r B ‘Zl(Dmax —degsl(”i))

We first prove some bounds on ® but we ultimately
use the adjusted potential function ®* to prove our
amortized bounds on the number of updates. In the
remainder of this paper, we specify our sparse and light-
weight construction in more details, and we will provide
our bounds on the recourse in each case separately.

3 Sparse spanner

In this section, we introduce our dynamic construction
for a sparse spanner with constant amortized recourse per
point insertion and O(log A) recourse per point deletion.
We build our spanner on top of a hierarchical clustering
that we design early in this section.

Krauthgamer and Lee [13] showed how to maintain
such hierarchical structures in O(log A) update time
by maintaining e-nets. However, this hierarchy is not
directly applicable to our case since a point can appear
log A times on its path to root, which would imply a
O(log A) bound on the degree of the spanner instead
of a constant bound. Cloe and Gottlieb [6] improved
the update time of this hierarchy to O(logn). Gottlieb
and Roditty [10] later introduced a new hierarchical
construction with the same update time for their fully-
dynamic spanner, which also satisfied an extra close-
containment property. Here, we introduce a simpler
hierarchy that suits our needs and does not require the
close-containment property. Our hierarchy performs con-
stant cluster updates for a point insertion and O(log A)
cluster updates for a point deletion.

Our hierarchy consists of a pair (7, R) where T is a
rooted tree of clusters and R > 0 is a constant. Every
cluster C € T is associated with a center ¢(C) € V and
a level [(C) € Z. The level of a cluster specifies its
radius; C covers a ball of radius R'€) around ¢(C). We
denote the parent of C in T by p(C). The root of T,
denoted by 7 .root, is the only cluster without a parent.
Furthermore, the level of a parent is one more than of
the child, i.e. I{(p(C)) = 141(C), for all C € T except the
root. A parent must cover the centers of its children.

Besides these basic characteristics, we require our
hierarchy to satisfy the separation property at all times.
This property states that the clusters at the same level
are separated by a distance proportional to their radii,

Definition 2 (Separation property) For any pair
of same-level clusters C1,Co € T on level j,

d(C(Cl), C(CQ)) > Rj

Each point at the time of insertion creates a single
cluster centered at the inserted point, and during the
future insertions, might have multiple clusters with dif-
ferent radii centered at it. In fact, each point could have
clusters centered at it in at most O(log A) levels. At
the time of deletion, any cluster that is centered at the
deleted point will be removed.

Our clusters are of two types: explicit clusters and
implicit clusters. Explicit clusters are the ones we create
manually during our maintenance steps. Implicit clusters
are the lower level copies of the explicit clusters that
exist in the hierarchy even though we do not create them
manually. Therefore, if a cluster C = (p,1) is created
in the hierarchy at some point, we implicitly assume
clusters (p,i) for i < [ exist in the hierarchy after this
insertion, and they are included in their corresponding
T; as well. We maintain the separation property between
all clusters, including the implicit ones. We use these
implicit clusters for constructing our spanner.

3.1 Maintaining the hierarchy

We initially start from an empty tree 7 and a constant
R that we specify later.

Point insertion. Let 7; be the set of clusters
with level 4, i.e. Tgze(T.roor)y Only contains the root,
Tsize(T .root)—1 contains root’s children, etc. Upon the in-
sertion of a point p, we look for the lowest level (between
explicit clusters) 7 that p is covered in 7;. We insert
C = (p,i— 1) into the hierarchy. Since p is covered in T},
we can find a cluster C’ = (p, i) that covers p and assign
it as the parent of C (Algorithm 1).

In the case that p is not covered in any of the levels in
T, which we handle by replicating the root cluster from
above until it covers the new point, then the insertion
happens the same way as before.

Algorithm 1 Inserting a point to the hierarchy.

1: procedure INSERT-TO-HIERARCHY (T, R, p)
if |[T| =0 then
Add a root cluster C = (p,0) to T.
return C
Let ¢ be the lowest level in T .
while 7; does not cover p do
Increase 7 by 1.
if @ > size T.root then
Create a new cluster C = (7 .root, size(T .root) + 1).
10: Make C the new root of the hierarchy.
11: The old root becomes a child of C.
12: Let C’ be a cluster in 7; that covers p.
13: Create a cluster C = (p, size(C’) — 1) and add it as a child
of C'.

N

© 0D

The basic characteristics of the hierarchy hold after
an insertion. We now show that the separation property
holds after the insertion of a new cluster C = (p,).
Assume, on the contrary, that there exists a cluster
C' = (g,1) that (C,C’) violates the separation property.
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C is inserted on level [, thus p is not covered by 7;.

According to the assumption, d(gq,p) < R!, meaning
that C’ covers p. This contradicts the fact that 7; does
not cover p since C' € 7;. A similar argument shows that
the separation property holds for the implicit copies of
C as well.

Point deletion. Upon the deletion of a point p, we

remove all the clusters centered at p in the hierarchy.

The clusters centered at p create a chain in 7 that starts
from the lowest level explicit copy of p and ends at the
highest level copy. We remove this chain level by level,
starting from the lowest level cluster C = (p,1) that is
centered at p. Upon the removal of C, we loop over
children of C one by one, and we try to assign them to a
new parent. If we find a cluster on level [ + 1 that covers
them, then we assign them to that cluster, otherwise we
replicate them on one level higher and we continue the
process with the remaining children. After we are done
with (p,1), we repeat the same process with (p,l + 1),

until no copies of p exist in the hierarchy (Algorithm 2).

Algorithm 2 Deleting a point from the hierarchy.

1: procedure DELETE-FROM-HIERARCHY (T, R, p)

Let C = (p,1) be the lowest level (explicit) cluster centered
at p.
3 Delete C from 7 and mark its children.
4 while there exists a marked cluster on level [ — 1 do
5: Let C" = (¢, — 1) be a marked cluster.
6.
7
8

!\?

Find a cluster C”” on level [ that covers q.
if such cluster exists then
Assign C" as the parent of C’ and unmark C’.
9: else

10: Create C"" = (g,1) and make it the parent of C’.
11: Mark C”” and unmark C’.

12: if there still exists a marked cluster in 7 then

13: Increase | by one and repeat the while loop above.

Again, the basic characteristics of the hierarchy hold
after a deletion. We need to show that the separation
property still holds. Immediately after removing the
cluster (p,!) the separation property obviously holds.
After re-assigning a marked child to another parent the
property still holds since no cluster has changed in terms
of their center or level. If a marked child is replicated on
level [ + 1, it means that there was no cluster covering it
on this level, otherwise it would have been assigned as
its new parent. Therefore, the separation property holds
after the replication on level [ + 1. We will prove more
properties of our hierarchy later on when we define the
spanner.

3.2 The initial spanner

Our initial spanner is a sparse spanner that is defined on
the hierarchy 7 and it has bounded cluster degree but
not bounded point degree. The reason that a bounded
degree on the clusters would not imply a bounded degree
on the point set is that every point could have multiple

clusters centered at it, each of which have a constant
number of edges connected to them. This would cause
the degree of the point to get as large as Q(log A). Later
we will fix this issue by assigning edges connected to
large degree points to other vertices.

The initial spanner consists of two types of edges.
The first type that we already mentioned before, is the
edges that go between clusters of the same level. These
edges guarantee a short path between the descendants
of the two clusters, similar to a spanner built on a well-
separated pair decomposition. And the second type is
the parent-child edges, that connect every node to its
children. The edge weight between two clusters is the
same as the distance between their centers.

We define the spanner formally as follows,

Definition 3 (Initial spanner) Let (T, R) be a hier-
archy that satisfies the separation property. We define
our sparse spanner Sy to be the graph on the nodes of T
that contains the following edges,

o Type I. Any pair of centers p and q whose clusters
are located on the same level and d(p,q) < X- R! are
connected together. Here, \ is a fized constant.

o Type II. Any cluster center in T is connected to the
centers of its children in T .

Note that the implicit clusters are also included in
this definition. Meaning that if two implicit same-level
clusters are close to each other then there would be an
edge of type I between them. We show that the spanner
Sp has a bounded stretch.

Lemma 3 (Stretch-factor) For large enough A\ =
O(e71) the stretch-factor of Sy would be bounded from
above by 1 + €.

Proof. Let p and ¢ be two points in the point set, and
also let C = (p,1) and C’ = (¢,l') be the highest level
clusters in 7 that are centered at p and g, respectively.
By symmetry, assume [ > I’. If d(p,q) < \- R, then
there is an edge between the (possibly implicit) cluster
(p,') and C’. This edge connects p and ¢ together,
therefore the stretch would be equal to 1 for this pair.
If d(p,q) > X~ RY, we perform an iterative search for
such shortcut edge. Start with C = (p,1’) and C’ = (gq,1’)
and every time that the inequality d(p,q) < A- R is not
satisfied set C and C’ to their parents and set I’ =1’ + 1
and check for the inequality again. We show that the
inequality eventually will be satisfied. Let p; and g;
be the centers of C and C’ on the i-th iteration of this
iterative process (i = 1,2,...), and let I’ have its initial
value before any increments. We have d(p;41,p;) < RV
and d(gi11,¢;) < R’ By the triangle inequality,

Ad(Pit1, qir1) < d(pir1, pi)+d(pi, i) +d(gis1, i) < 2R Y 4d(ps, ¢;)
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Denote the ratio d(p;, ¢;)/R' i1 by x;. We have,
z;
Tip1 <2+ 7

Therefore, x; is roughly being divided by R on every
iteration and it stops when x; < A\. We can easily see
that the loop terminates and the value of x; after the
termination would be greater than A/R. This particu-
larly shows that the edge between C and C’ is a long
shortcut edge when A is chosen large enough, since its
length is more than A/R times the radius of the centers
it is connecting.

Now we show that this shortcut edge would be good
enough to provide the 1 + ¢ stretch factor for the initial
points, p and ¢. Note that because of the parent-child
edges, p can find a path to ¢ by traversing p;s in the
proper order and using edge between p; and ¢; and
traversing back to q. We show that the portion of the
path from p to p; (and similarly from ¢ to ¢;) is at most
RlP:l_ L We prove it only for p, the argument for ¢ is
similar. Note that if the termination level I’ +7 < [ then
p; = p and this path length from p to p; would be 0,
confirming our claim for p. Therefore, we assume the
termination level is above the level of p. The length of
the path from p to p; that only uses type II edges would
be at most

Rl +i4+1 1

RlJrl . Rl,Jri <
+ + R_1

Thus the length of the path from p to ¢ would be at

most
Rl/+i+1 1

R-1
On the other hand, by the triangle inequality,

2 + d(pi, i)

Rl’+i+1 -1
(p.q) > d(pi, a:) 71
Finally, the stretch-factor of this path would be at most

Vil
2 Bt + d(pi, 4:)

d(ph%') -2 %

A simple calculation yields that this fraction is less than
1+ewhen A\=2(2+¢)e !R=0("1). O

Next, we show that the degree of every cluster in Sy
is bounded by a constant. Note that this does not imply
a bounded degree on every point, since a point could be
the center of many clusters.

Lemma 4 (Degree bound) The degree of every clus-
ter in Sy is bounded by O(e~9).

Proof. We first prove that the type I degree of every
cluster C = (p, 1) is bounded by a constant. Let C' = (g, 1)

be a cluster that has a type I edge to C. This means that
d(p,q) < X-R'. By the separation property, d(p, q) > R'.
Thus, by the packing lemma there are at most

AN = 0(e™7)

type I edges connected to C. The last bound comes from
the fact that a choice of A = O(¢~!) would be enough
to have a bounded stretch.

Now we only need to show that the parent-child edges
also add at most a constant degree to every cluster, which
is again achieved by the packing lemma. Because the
children of this cluster are located in a ball of radius R'
around its center, p, and they are also pair-wise separated
by a distance of at least R'~!, we can conclude that the
number of children of C would be upper bounded by
d¥?RY = O(1). O

Representative assignment. So far we showed how
to build a spanner that has a bounded degree on each
cluster and the desired stretch-factor of 1+ ¢. But this
spanner does not have a degree bound on the actual point
set and that is a property we are looking for. Here, we
show how to reduce the load on high degree points and
distribute the edges more evenly so that the bounded
degree property holds for the point set as well.

The basic idea is that for every cluster C in the hier-
archy, we pick one of lower level clusters, say C’, to be
its representative and play its role in the final spanner,
meaning that all the spanner edges connecting C to other
clusters will now connect C’ to those clusters after the
re-assignment. This re-assignment will be done for every
cluster in the hierarchy until every cluster has a repre-
sentative. Only then we can be certain that the spanner
has a bounded degree on the current point set. Since
by Lemma 4 the degree of every center is bounded by
a constant, we only need to make sure that every point
is representing at most a constant number of clusters in
the hierarchy.

First, we define the level of a point p, denoted by
size(p) to be the level of the highest level cluster that
has p as its center, i.e. size(p) = max, el

Definition 4 (Representative assignment) Let T
be a hierarchy. We define the representative assignment
of T to be a function L that maps every cluster C = (p,1)
of T to a point q in the point set such that | > size(q)
and d(p,q) < R'. We say L has bounded repetition b if
|£71(q)| < b for every point q.

Connecting the edges between the representatives in-
stead of the actual centers would give us our bounded-
degree spanner.

Definition 5 (Bounded-degree spanner) Define
the spanner Sy to be the spanner connecting the pair
(L(C), L(C")) for every edge (C,C") € Sp.
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Now we show that this re-assignment of the edges
would not affect the stretch-factor and the degree bound
significantly if the clusters are small enough, or equiva-
lently, A is chosen large enough.

Lemma 5 (Stretch-factor) For large enough A =
O(e71) and any representative assignment L the stretch-
factor of S1 would be bounded from above by 1 + €.

Proof. The proof works in a similar way to the proof
of Lemma 3. A shortcut edge would still provide a good
path between two clusters even after its end points are
replaced by their representatives. The path from a p to
p; will be doubled at most since a representative could be
as far as a child from the center of a cluster. Therefore,
the stretch-factor of the path between p and ¢ will be

Rll+i+17

4. Tll + d(piv Qi)

d(pi,q;) — 4+ T

Again, this fraction is less than 1 + ¢ when A = 4(2 +
g)eTIR=0(e1). O

To construct a bounded-repetition representative as-
signment we pay attention to the neighbors of lower
level copies of a cluster. Let C = (p,1) be a cluster that
we want to find a representative for. As we mentioned
before, (p,l’) exists in the hierarchy for all I’ < {. If I
is small enough, i.e. I’ <1 —logg A, then the neighbors
of (p, ") will be located within a distance X - R' = R of
p, making them good candidates to be a representative
of C. Therefore, having more neighbors on lower levels
means having more (potential) representatives on higher
levels. This is how we assign the representatives.

We define a chain to be a sequence of clusters with the
same center that form a path in 7. We divide a chain
into blocks of length logz A. The best way to do this so
that maintaining it dynamically is easy is to index the
clusters in a chain according to their levels and gather
the same indices in the same block. We define the block
index of a cluster in a chain to be |I/logg A|, where [
is the level of the cluster. The clusters in a chain that
have the same index form a block.

The first observation is that if we are given two non-
consecutive blocks in the same chain, we can use the
neighbors of the lower level block as representatives
of the higher level block. This is the key idea to our
representative assignment, which we call next block as-
signment. In this assignment, we aim to represent higher
level points with lower level points. Let p be a point
and Py, Ps, ..., Py be all the blocks of the chain that is
centered at p in T, ordered from top to bottom (higher
level blocks to lower level blocks). We say a block is
empty if the clusters in the block have no neighbors in
T. We say the block is non-empty otherwise. We make
a linked list L of all the even indexed non-empty blocks,

and a separate linked list £; for all the odd indexed
non-empty blocks. For every element of £y we pick an
arbitrary neighbor cluster of its block in £y (because
the blocks are non-empty such neighbors exists), and
we assign that neighbor to be the representative of the
clusters in that element. More specifically, let B; be a
block in Ly, and let B;;1 be the next block in L. Let C
be an arbitrary cluster in B;; that has a neighbor. This
cluster exists, since B,y is a non-empty block. Let ¢ be
the center of a neighbor of C. We assign L(C’) = ¢ for all
C' € B;. The same approach works for £1. This assigns
a representative to every block in the chain, except the
last block in £y and £,. We assign p itself to be the
representative of the clusters in these blocks.

Now we show that this assignment has bounded repe-
tition. First, we show that our assignment only assigns
lower level points to be representatives of higher level
points.

Lemma 6 Let p and q be two points in the point set
and let size(p) > size(q) . In the next block assignment
q would never be represented by p.

Proof. Assume, on the contrary, that g is represented
by p. Therefore, there exists two same-parity cluster
blocks in the chain centered at ¢ that a cluster centered
at p is connected to the lower block. Let C = (p,)
and C' = (g,1') be the highest clusters centered at p
and ¢, respectively. Since the connection between p and
q is happening somewhere on the third block or lower
on the chain centered at ¢, we can say that d(p,q) <
A RI'-losr X — R This means that the separation
property does not hold for the lower level copy of C,
(p,l'), and C’, which is a contradiction. O

Now that we proved that points can only represent
higher level points in our assignment, we can show the
bounded repetition property.

Lemma 7 (Bounded repetition) The next block as-
signment L described above has bounded repetition.

Proof. We show that every point represents at most
a constant number of clusters. First, note that the
two bottom clusters of the two block linked lists have a
constant number of clusters in them (to be exact, 2logp A
clusters maximum). So we just need to show that the
number of other clusters that are from other chains and
assigned to the point are bounded by a constant. Let p
be an arbitrary point and let C = (p,l) be the highest
level cluster centered at p. According to the previous
lemma, any point ¢ that has a cluster C’ = (q,!’) that
L(C") = p must have a higher level than p. Therefore,
there exists a lower level copy of ¢ on level [. Also, the
distance between p and ¢ is bounded by \- R! since p and
q are connected on a level no higher than [ (remember
that we only represent our clusters with their lower level
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neighbors). Now we can use the packing lemma, since
all such points ¢ have a cluster centered at them on level
! and therefore separated by a distance of R'. By the
packing lemma, the number of such clusters would be
bounded by d%2\? such points. So the repetition is at
most b = d¥/2\% + 2. O

Corollary 8 The spanner S, has bounded degree.

3.3 Maintaining the spanner

So far we showed S; has bounded stretch and bounded
degree. Here we show that we can maintain Sy with O(1)
amortized number of updates after a point insertion and
O(log A) amortized number of updates after a point
deletion. We know how to maintain the hierarchy from
earlier in this section. Therefore, we just explain how
to update the spanner, which includes maintaining our
representative assignments dynamically.

Point insertion. We prove the amortized bound by
assigning credits to each node, and using the credit in
the future in the case of an expensive operation. Let
Dz be the degree bound we proved for §;. When
a new point is added to the spanner, we assign D4z
credits to it.

We analyze the edge addition and removals that hap-
pen after the insertion of a point p in the spanner. Note
that although only one explicit cluster is added to 7 after
the insertion, there might be many new edges between
the implicit (lower level) copies of the new cluster and
other clusters that existed in 7 beforehand. We need to
show that these new edges do not cause a lot of changes
on the spanner after the representative assignment phase.

First, we analyze the effect of addition of p on points ¢
that size(p) > size(q). Similar to the proof of Lemma 6,
we can show that any edges between the chain centered at
p and the chain centered at ¢ will be connected to the top
two cluster blocks of the chain centered at g. This means
that these edges will have no effect on the assignment
of other clusters in the chain centered at ¢, because
each non-empty block is represented by some neighbor
of the next non-empty same-parity block, and the first
two blocks, whether they are empty or not, will not
have any effect on the rest of the assignment. Therefore,
no changes will occur on the representatives of ¢ and
therefore the edges that connect these representatives
together will remain unchanged.

The addition of p as we mentioned, would cause the
addition of some edges in the spanner &7, that we pay
for using the constant amount of credit stored on the
endpoints of those edges. Therefore, we are not spending
more than constant amount of amortized update for this
case.

Second, we analyze the effect of addition of p on points
q that size(p) < sizeq. The outcome is different in this
case. Similar to the previous case we can argue that

any edge between the chain centered at p and the chain
centered at ¢ must be connected to the top two blocks
of the chain centered at p, but they could be connected
to anywhere relative to the highest cluster centered at g.
This means that they could add a non-empty block in the
middle of the chain centered at g. If this happens, then
the assignment of the previous non-empty same-parity
block changes and also the new non-empty block will
have its own assignment. This translates into a constant
number of changes (edge additions and removals) on the
spanner &1 per such point g. We earlier in Lemma 7
proved that there is at most a constant number of such
clusters. This shows that there would be at most a
constant number of changes on the spanner &; from
higher level points.

Finally, we can conclude that overall the amortized
recourse for insertion is bounded by a constant, since
in the first case we could pay for the changes using the
existing credits, and in the second case we could pay for
the changes from our pocket.

Point deletion. After a point deletion, all the clus-
ters centered at that point will be removed from the
hierarchy, and a set of replication to higher levels would
happen to some clusters to fix the hierarchy after the
removal. It is easy to see that the number of cluster
changes (including removal and replication) would be
bounded by a constant. Each cluster change would also
cause a constant number of changes on the edges of the
spanner Sy. Note that a cluster removal can introduce
an empty block to at most a constant number of higher
level points and a cluster replication can also introduce
an empty block to at most a constant number of higher
level points. Therefore, the changes on the representa-
tive assignments would be bounded by a constant after
a single cluster update. Since we have at most O(log A)
levels in the hierarchy, each of which having at most a
constant number of cluster updates, overall we would
have at most O(log A) number of edge changes on S;.
After the removal, we assign full D,,,, credit to any
node that is impacted by the removal. This would make
sure we have enough credits for the future additions.

4 Light spanner

In section 3 we discuss how we maintain our hierarchical
clustering and how we construct and maintain a sparse
spanner on top of this hierarchy so that each point
insertion makes at most O(1) changes on the spanner
and each point deletion makes at most O(log A) changes
on the spanner.

In this section, we introduce our techniques for main-
taining a light spanner that has a constant lightness
bound on top of all the properties we had so far. In
our main result in this section we show that maintain-
ing the lightness in our case is not particularly harder
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than maintaining the sparsity, meaning that it would
not require asymptotically more changes than a sparse
spanner would.

We first analyze the effect of point insertion or deletion

on the potential functions we defined earlier in section 2.

Then we introduce our maintenance updates and we
show our bounds on the recourse of a light spanner.

4.1 Bounding the potential function

In this section we analyze the behavior of our potential

functions, after a point insertion and a point deletion.

These bounds will later help us prove the amortized
bounds on the recourse. We refer to section 2 for the
definition of the potential function.

Single edge update. We start with a simple case
of bounding the potential function after a single edge
insertion, then we consider a single edge deletion, and
finally we extend our results to point insertions and
deletions. We assume the pair that we insert to or delete
from the spanner is an arbitrary pair from the set of
potential pairs, because we only deal with potential pairs
in our light spanner.

First, we consider a single edge insertion. We divide
the analysis into two parts: the effect of the insertion
of the potential pair onto the same level potential pairs,
and the effect of the insertion onto higher level potential
pairs. Recall that the level of a pair was defined in
section 2. We show that the edges of the same level
satisfy a separation property, meaning that two edges in
the same bucket cannot have both their endpoints close
to each other.

Lemma 9 (Edge separation) Let (u,w) and (y, z) be
two potential pairs in the same bucket. Assuming that
(u,w) and (y,z) are not representing clusters from the
same pair of chains in T,

max{d(un,y), d(w,2)} > 15— max{d(u, w), d(y, =)}

22
Proof. [Proof of Lemma 9] Note that the constraint on
not connecting the same pair of chains in the lemma is
necessary, because in our sparse spanner construction, it
is possible that two points are connected on two different
levels on two different pairs of clusters. These two edges
could potentially go into different non-empty blocks
and get assigned different representatives and cause two
parallel edges between two neighborhoods. While this is
fine with sparsity purposes as long as there is at most a
constant number of such parallel edges, we do not want
to have them in our light spanner since they will make
the analysis harder. Therefore, we assume that the edges
are not connecting clusters centered at the same pair of
points.

Next we show that these two pairs are from two cluster
levels that are not far from each other. Let (u,w) be

an edge on level [ of the hierarchy and (y, z) be an edge
on level I’ of the hierarchy. Without loss of generality,
assume that [ > I’. We know that the potential pairs
connect same level clusters together. Therefore, the
length of (u,w) could vary between R! and X\ - R!. A
similar inequality holds for (y, z). Thus the ratio of the
length of the two would be at least A"*R!=!". Also, if C
is chosen large enough it is clear that the two edges must
have the same index as well, otherwise the length ratio
of C' between the two edges would make their endpoints
very far from each other. Thus, the edges belong to the
same bucket and index, meaning that the length of their
ratio is at most ¢. So,

ARV < ¢

Now, the separation property on level I’ between the
clusters that these two edges are connecting to each
other states that

l

max{d(u,y),d(w,z)} > R > %

Also according to earlier in this proof, R! > d(u,w)/\.
Thus,

d(u,w) 1
max{d(u, y)?d(w72)} > )\2 .c - )\2 .c

O

Now using this lemma we show that the insertion of a
potential pair will not cause any violations of Invariant
2 on the same level.

Lemma 10 Let (u,w) be a potential pair that is inserted
to S; where i = index(u, w). If df (u,w) > (14+¢&’)d(u, w),
then the insertion of (u,w) results in no violations of
Invariant 2 on same or lower level edges, assuming that
14?2 >1+¢€.

Proof. [Proof of Lemma 10] It is clear that (u,w) cannot
participate in a shortest-path (in S}) for any of the lower
level pairs, so adding it does not affect any of those pairs.
Also adding (u,w) would not violate Invariant 2 for
the pair itself because of the assumption df(u,w) >
(14 €")d(u,w). Thus we only need to analyze the other
same level edges.

So let (y, z) be a same-level edge in S;. If one of (u,w)
or (y, z) use the other one in its shortest extended path
(in S¥), then by Lemma 9, the length of the path would
be at least

min{d(u, w), d(y, z)} + max{d(u,y),d(w, z)}

> min{d(u,w), d(y, z)} + ﬁ max{d(u,w),d(y, z)}

10

max{d(u,w),d(y, z)}



CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

We also know, from the assumption, that (u, w) and (y, 2)
are same-level edges in S;, so ¢! < d(u,w)/d(y,2) < c.
Therefore, the stretch of the path would be at least

min{d(u, w), d(y, z)} + max{d(u,y),d(w, z)}
max{d(u,w),d(y, z)}
Sc 142 >1+€

Thus the stretch of the path is more than 1 + ¢’, which
shows that this addition would not violate Invariant 2
for any of the two pairs, even though the paths of same
level edges are excluded in df (u,w). O

Note that satisfying the condition in Lemma 10 is easy.
We first choose large enough A to have a fine hierarchy,
then we choose ¢ small enough that ¢ < 1+ A~2, then
we choose &’ = ¢71(1+ A72) — 1. Now we show that the
potential change on higher level potential pairs would
be bounded by a constant after the insertion of (u,w).

Lemma 11 Let (u,w) be a potential pair that is inserted
to S; where i = index(u,w). The insertion of (u,w)
results in at most
Cs
ck—1

potential increase on higher level potential pairs in S;,
where

Cs = e(1 + e)dct+icy

is a constant (and k is the number of buckets).

Proof. [Proof of Lemma 11] Let (y,z) be an edge of
level 3/ > j in S; whose df is decreased by the addition
of (u,w). Thus the shortest extended path between y
and z in S} passes through (u,w). Denote this path
by P’(y, z). Before the addition of (u,w), the length of
the same path in S} was at most || P} (y, z)|| + ed(u, w).
Hence, Ad}(y, z) > —ed(u,w), and the potential change
of this edge would be

—Ad; (y, 2)
d(y, z)

ed(u,w
d(y, z)

Api(y,z) = ) < eckG—3)+1

In the next step, we bound the number of such (y, 2)
pairs. Let r be the minimum length of such edge in level
j'. Both y and z must be within (1 + €)cr Euclidean
distance of u (and w), otherwise the edge (u,w) would
be useless in (y, z)’s shortest path in S;. Thus, all such
pairs are located in a ball B(u, (1 +¢)ecr), and according
to Lemma 2, there would be at most

Cy = (1 + s)dch’l

number of them.
Thus, the overall potential change on level 5/ would
be upper bounded by Coec®7=7)+1 Summing this up

11

over j' > j, the overall potential change on higher level
pairs would be at most

G

AD; < Y eCyc" =0T = "

J'>J

where C3 = eCse. O

Now we analyze the removal of a potential pair from a
bucket. The difference with the removal is that it could
cause violations of Invariant 1 on its level. Therefore,
we analyze a removal, together with some subsequent
edge insertions that fix any violations of Invariant 1 on
the same level.

Definition 6 (Edge removal process) Let (u,w) be
a potential pair that is located in S; where i =
index(u,w). We define the single edge removal pro-
cess on (u,w) to be the process that deletes (u,w) from
S; and fizes the subsequent violations of Invariant 1 on
the same level by greedily picking a violating pair, and
connecting its endpoints in S;, until no violating pair for
Invariant 1 is left.

We analyze the effect of the edge removal process in
the following two lemmas,

Lemma 12 Let (u,w) be a potential pair that does not
violate Invariant 1 (df(u,w) < (1 + ¢)d(u,w)) and is
deleted from S; (i = index(u,w)), using the edge removal
process. The deletion of (u,w) together with these sub-
sequent insertions results in no violations of Invariant 1
or Invariant 2 on same or lower level edges, assuming
that c Y (1+A"2) > 1+¢.

Proof. [Proof of Lemma 12] It is clear that (u, w) cannot
participate in a shortest-path (in S}) for any of the
lower level pairs, so deleting it does not affect any of
those pairs. Also, every same level pair that violates
Invariant 1 is fixed after the insertion of subsequent edges.
Therefore, we just need to show there are no violations
of Invariant 2 after these changes. This is also clear by
Lemma 10, because we are only inserting edges (y, z) that
that violate Invariant 1, i.e. df(y,z) > (1 +¢€)d(y,z) >
(14+€")d(y, z), meaning that the assumption of the lemma
holds in this insertion. O

We show a similar bound as edge insertion on the
effect of the edge removal process on higher level pairs.

Lemma 13 Let (u,w) be a potential pair that is deleted
from to S; where i = index(u,w). The edge removal
process on (u,w) results in at most

Cs
k-1
potential increase on higher level potential pairs in S;,

for some constant Cs that depends on €, €', and c. is a
constant.
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Proof. [Proof of Lemma 13] The edge removal process
can be divided into two phases. The deletion of (u,w),
and the insertion of the subsequent pairs. First, we
show that the potential increase after the edge deletion
is bounded. Let (y, z) be an edge of level j' > j in S;
whose df is increase by the deletion of (u,w). Thus the
shortest extended path between y and z in S} passes
through (u,w). Denote this path by P/ (y,z). After the
removal of (u,w), the length of the same path in S} is at
most || P} (y, 2)||+ed(u, w). Hence, Ad}(y, z) < ed(u, w),
and the potential change of this edge would be

Adi(y,2) _ ed(u,w)
d(y, z) d(y,z) —

Again, the number of such (y, z) pairs is bounded by

k(j—5")+1

Api(y,z) =

Cy = (14 ¢)4ctcy

according to Lemma 2. Thus, the overall poten-
tial change on level j° would be upper bounded by
Checki=i+1, Summing this up over j' > j, the overall
potential change on higher level pairs would be at most

Cs

AD; < Y eCyc"i=I0Tt = .

J'>J

where C5 = eCye.

Now, the number of subsequent edge insertions would
also bounded by a constant. Because in order for an
inserted pair (y, z) to violate Invariant 1 after the dele-
tion of (u,w), v and w must be within a distance
c(14¢)d(u, w), otherwise the edge (u, w) would be useless
in their shortest-path. Also since they satisfy Invariant
2, we conclude from Lemma 2 that the number of such
pairs is bounded by a constant. Denote this bound by
Cy. Then the potential on higher level pairs from the
insertions of Cy4 pairs on the same level would be at most
0304/(Ck - 1)

Overall, the potential increase on higher level pairs
from the edge removal process will be Cs/(c* — 1) where
Cs :Cg(C4+1). [l

Adjusted potential function. We have one last
step before analyzing the potential function after a point
insertion and a point deletion. We need to slightly
adjust the potential function to take into account future
edges that might be added between the existing points
because of a new point. As we see in section 3, a new
point can have a large degree in Sy due to its implicit
clusters in multiple levels of the hierarchy. We handled
this by assigning these edges to nearby representatives
and we proved a constant degree bound on S§;. But
this still would mean adding a point could increase the
potential function by Q(log A) since logarithmic number
of edges could be added to the sparse spanner. We
fix this issue in our potential function by taking into

account all the future edges that can be incident to a
point. Our adjusted potential function on the whole
spanner, denoted by ®*, has an extra term compared to
the previous potential function &,

n

) Z(Dmaw — degg, (vi))

i=1

* Pmax
P =9
* 2

degs, (v;) is the degree of the i-th point (in any fixed
order, e.g. insertion order) in the sparse bounded degree
spanner Sp, and

Pmaz = max{l +¢,Cy(c — ')}

is the maximum potential value a potential pair can have
in its own bucket given the fact that it does not violate
Invariant 1. Note that the first term is the maximum
of the potential of any pair if its edge is present in the
bucket and the second term is the maximum potential
of the pair if its edge is absent from the bucket and it
is not violating Invariant 1. We will later see why the
assumption that Invariant 1 holds for such pairs is fine.
But this extra term in the potential function will be
used to cover the potential p; of the extra potential pairs
added by the new point.

4.2 Maintaining the light spanner

We are finally ready to introduce our techniques for
maintaining a light spanner under a dynamic point set.
For point insertion, we select a subset of edges added
in the sparse spanner to be present in the light spanner.
We show that the potential increase on ®* after inserting
the new point would be bounded by a constant. Then
we perform the same analysis for point deletion and we
show that the potential increase is bounded by O(log A).
In the last part of this section we introduce our meth-
ods for iteratively improving the weight of the spanner
by showing an algorithm that decreases the potential
function by a constant value in each iteration. This
concludes our results on the recourse for point insertion
and point deletion.

Point insertion. Following a point insertion for a
point p, we insert p into the hierarchy and we update
our sparse spanner S;. There are at most a constant
number of pairs whose representative assignment has
changed, we update these pairs in the light spanner as
well. Meaning that if they were present in the light span-
ner, we keep them present but with the new endpoints,
and if they were absent, we keep them absent. Besides
the re-assignments, there could be some (even more than
a constant) edge insertions into the sparse spanner, but
the degree bound of D,,,, would still hold on every
point. We greedily pick one new edge at a time that its
endpoints violate Invariant 1 in the light spanner, and
we add that edge to the light spanner. (Algorithm 3)

12
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Algorithm 3 Inserting a point to the light spanner.

Algorithm 4 Deleting a point from the light spanner.

1: procedure INSERT-TO-LIGHT-SPANNER(D)
2: Insert p into the hierarchy 7.

3: Make the required changes on the sparse bounded degree
spanner Sj.

4: for any pair (u,w) with updated representative assignment
do

5: Update the endpoints of the edge in the light spanner.

6: for any edge (u,w) added to the sparse spanner do

7 if Invariant 1 is violated for this pair on the light
spanner then

8: Add (u,w) to the light spanner (to its own bucket).

We now analyze the change in the potential function
after performing this function following a point insertion.

Lemma 14 INSERT-TO-LIGHT-SPANNER adds at most
a constant amount to ®*.

Proof. [Proof of Lemma 14] Note that at most a con-
stant number of edges will go through a representative
assignment change. Each representative change can be
divided into removing the old pair and adding the new
one. Each removal will increase the potential of at most
a constant number of pairs on any same or higher level
pairs. This would sum up to a constant amount as we
saw earlier in Lemma 12 and Lemma 13. Also, insert-
ing the updated pairs would also sum up to a constant
amount of increase in the potential function as we saw
in Lemma 10 and Lemma 11.

For the edge insertions however, we will get help from
the extra term in our potential function. Note that any
extra edge that is added between any two points that
existed before the new point will increase both of their
degrees by 1 and therefore, decrease the term

n

Pmax - Z(Dmaz - deg81 (vi))

i=1

by Pmaz- On the other hand, the new pair will either
be added to the light spanner or will satisfy Invariant 1
if not added. Thus, its potential will be at most 1 + ¢
in the first case, and at most Cy(e —€’) in the second
case. In any case, the potential of the new pair is not
more than p,,q., and hence ®* will not increase due to
the addition of the new pair.

Lastly, the new point will introduce a new term
Pmaz * (Dmae — deggs, (Vp41)) in ®* which would also
be bounded by a constant. Overall, the increase in ®*
will be bounded by a constant. O

Point deletion. Following a point deletion, we per-
form the deletion on the hierarchy and update the sparse
spanner accordingly. This would cause at most O(log A)
potential pairs to be deleted from or inserted into the
spanner. The procedure on the light spanner is simple
in this case. We add all the inserted pairs to the light

13

1: procedure DELETE-FROM-LIGHT-SPANNER(p)
2: Delete p from the hierarchy 7.
3: Make the required changes on the sparse bounded degree
spanner Sj.
for any pair (u,w) removed from the sparse spanner do
Remove (u,w) from the light spanner if present.

for any pair (u,w) added to the sparse spanner do
Add (u,w) to the light spanner.
for any pair (u,w) with updated representative assignment
do
9: Update (u,w) in the light spanner as well.

spanner, and we remove the removed pairs from the light
spanner if they are present.

Lemma 15 DELETE-FROM-LIGHT-SPANNER adds at
most O(log A) to ©*.

Proof. [Proof of Lemma 15] The number of edges up-
dated on every level of hierarchy after a point removal is
bounded by a constant. Therefore, the total number of
changes would be bounded by O(log A). Each change
would cause ®* to increase by at most p;,q.. Thus, the
total increase is bounded by O(log A). O

4.3 Maintenance updates

Our maintenance approach is simple, as long as there
exists a potential pair on any S; that violates either of the
two invariants, we perform the corresponding procedure
to enforce that invariant for that pair. The fact that
the potential function decreases by a constant amount
after each fix is the key to our amortized analysis on the
number of maintenance updates to reach a spanner with
bounded degree and bounded lightness.

Fixing a violation of Invariant 1. In our first
lemma in this section, we show that fixing a violation of
Invariant 1 in the way that we mentioned above, would
decrease the value of the potential function on each S;.

Lemma 16 Let (v,w) be a potential pair with
index(v,w) = i that wviolates Invariant 1, i.e.
di(v,w)/d(v,w) > 14 €. Also, assume that

k> log, (HW)

Then adding the edge (v,w) to S; decreases the overall
potential ®; of S; by at least (¢ — €’).

Proof. [Proof of Lemma 16] Note that adding (v, w)
would have no effect on the potential of the lower level
or same level potential pairs, due to the definition of d}.
We know from Lemma 11 that adding (v, w) to S; would
increase the potential on higher level pairs by at most
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Cs/(ck —1). Also, the potential of the pair itself before
the addition is

plow) =Gy (G~ 1+2)

On the other hand, after the addition,

d; (v, w)

pi(v,w)=(1+¢)— (. w0)

Therefore,

Api(v,w) = (e =€) + (Cy +1) (1 e d(”w)>

d(v,w)

We know by the assumption that the stretch of the
shortest extended path between v and w would be more
than 1+e¢, since (v, w) is violating Invariant 1. Therefore,

di (v, w)

1 I
te d(v,w)

< —(e—¢€)

Thus,
Api(v,w) < (e —¢€') = (Cp +1)(e — &) = =Cy(e — &)

According to this and what we mentioned earlier in the
proof,

Cs
k-1

AD; < —Cyle =€)+

and if

k > log, <1+ (C’¢—1C)3(5—6’))

then A®; < —(e —¢’), which is a negative constant. [

Fixing a violation of Invariant 2. Next, we con-
sider the second type of maintenance updates, which
is to fix the violations of Invariant 2. Whenever a pair
(v,w) that violates Invariant 2 is found, the first step
is to remove the corresponding edge from its subset .5;.
Afterwards, we address the same-level violations of In-
variant 1 by greedily adding a pair that violates Invariant
1, until none is left. This is the same as performing the
edge removal process on the violating pair.

Lemma 17 Let (v,w) € S; be an edge that violates
Invariant 2, i.e. df(v,w)/d(v,w) <1+¢'. Also assume

that o0
k > log, (1 + 5/)
gE—¢€

Then performing the edge removal process on (v,w) de-
creases the overall potential ®; of S; by at least (¢ — &’).

Proof. [Proof of Lemma 17] Since all the additions and
removals in the edge removal process are happening on
the same level and also due to the definition of d, there
would be no potential change on any of the same or

lower level pairs. We know from Lemma 13 that deleting
(v,w) from S; would increase the potential on higher
level pairs by at most Cs/(c¥ — 1). The potential of the
pair itself before the deletion is

_ di (v, w)
pl(”U,U)) = (1 +€) — W
After the deletion,
_ d?(v’w) /

Therefore,

Api(v,w) = =(e —&") = (Cp + 1) (1 te - ch))

d(v,w)

We know by the assumption that the stretch of the short-
est extended path between v and w would be less than
1+ &', since (v, w) is violating Invariant 2. Therefore,

d¥
1+¢ — di (v, w) >0
d(v, w)
Thus,
Ap;(v,w) < (e — &)
According to this and what we mentioned earlier in the

proof,
Cs

ck—1

2
k > log, <1+ 05,)
E—¢€

then A®; < —(e—¢’)/2, which is a negative constant. [

A(I),L' < —(5 — 6/) +

and if

Bounding the number of updates. Now that we
introduced our maintenance updates and we analyzed
the change in the potential functions after each of these
updates, we can finally prove our amortized bounds. We
prove that the amortized number of edge updates in
our algorithm after a point insertion is O(1), while the
amortized number of edge updates after a point deletion
is O(log A).

Theorem 18 Our fully-dynamic spanner construction
in d-dimensional Fuclidean spaces has a stretch-factor
of 1 + ¢ and a lightness that is bounded by a constant.
Furthermore, this construction performs an amortized
O(1) edge updates following a point insertion, and an
amortized O(log A) edge updates following a point dele-
tion.

Proof. [Proof of Theorem 18] The stretch factor and
the lightness immediately follow from the fact that our
spanner always satisfies the two invariants, and according
to Lemma 1 and the leapfrog property, that would be
enough for a 1 + ¢ stretch factor and constant lightness.

14
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In order to prove the amortized bounds on the num-
ber of edge updates after each operation, we recall
that by Lemma 14, the potential change A®* after
a point insertion is bounded by a constant, and by
Lemma 15, the potential change after a point dele-
tion is bounded by O(logA). On the other hand, by
Lemma 16 and Lemma 17, each maintenance update
reduces the potential ®* by at least (¢ — £’)/2, since
the impacted ®; reduces after the maintenance update,
®; for j # ¢ will remain unchanged, and the extra
term 2zez . 37 (Dypnap — degg, (v;)) will also remain
unchanged since the sparse spanner is not affected by the
maintenance updates. Therefore, the amortized num-
ber of maintenance updates required after each point
insertion is O(1) while this number after a point dele-
tion is O(log A). Also, the number of edge updates be-
fore the maintenance updates would be bounded by the
same amortized bounds. Thus, we can finally conclude
that the amortized number of edge updates following a
point insertion is O(1), while for a point deletion it is
O(log A). O
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On Totally-Concave Polyominoes*

Gill Barequet? Noga Keren'

Abstract

A polyomino is an edge-connected set of cells on the
square lattice. Every row or column of a totally-concave
(TC) polyomino consists of more than one sequence of
consecutive cells of the polyomino. We show that the
minimum area (number of cells) of a TC polyomino is 21
cells. We also suggest, implement, and run an efficient
algorithm for counting TC polyominoes. Finally, we
prove that the associated sequence (k(n)) has a finite
growth constant A\, prove the lower bound A, > 2.4474,
and conjecture that A, is equal to the growth constant
of all polyominoes.

1 Introduction

A polyomino of area n is a connected set of n cells on the
square lattice Z2, where connectivity is through edges.
Two polyominoes are considered equivalent if one can
be transformed into the other by a translation.

Counting polyominoes is a long-standing problem in
discrete geometry, originating in statistical physics in
the context of percolation processes [10] and popularized
in Golomb’s pioneering book [12] and by M. Gardner’s
columns in Scientific American. The sequence A(n),
which lists the number of polyominoes, is currently
known up to n = 70 [1].

The growth constant of polyominoes has also at-
tracted much attention in the literature. Klarner [16]
showed that the limit (a.k.a. Klarner’s constant) A :=
lim, o ¥/ A(n) exists. The convergence of A(n +
1)/A(n) to A, as n — oo, was proved only three decades
later by Madras [17]. The best-known lower [4] and up-
per [5] bounds on A are 4.0025 and 4.5252, respectively.
By applying numerical methods to the known values of
A(n), it is widely believed that A = 4.06, and the cur-
rently best estimate of A is 4.0625696 + 0.0000005 [15].
(Based on the new counts of A(n) till n = 70, a better
estimate, 4.06256912(2), was provided to us by I. Jensen
in a personal communication.)
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In a convex polyomino, each row and column consists
of exactly one maximal continuous sequence of cells.
These polyominoes are essential in many application do-
mains, and they attracted a considerable amount of at-
tention in the literature. See, for example, a discussion
of the asymptotic number of convex polyominoes [8], a
derivation of a rather complex generating function for
the sequence that enumerates convex polyominoes [9], a
method for generating random convex polyominoes [13],
and an investigation of the relation between ordering
and convex polyominoes [11], among many other works.

However, the complement type of polyominoes was
hardly considered. In a totally-concave (TC) poly-
omino, each row and column consists of at least two
maximal continuous sequences of cells, as is shown in
Figure 1.1 It is hinted in Ref. [7, §14, p. 369, prob-
lem 14.5.4] that the minimum possible area of a TC
polyomino is 21. Let x(n) be the number of TC polyomi-
noes of size (area) n. An algorithm for computing x(n),
for a given n, is also sought as an open problem [7, §14,
p. 369, problem 14.5.5]. Among other results, we set-
tle the minimality conjecture and suggest an efficient
algorithm.

The paper is organized as follows. In Section 2, we
prove that there do not exist TC polyominoes of area
less than 21. In Section 3, we present a nontrivial exten-
sion of Jensen’s algorithm to counting TC polyominoes,
and report counts of these polyominoes up to size 35.
In Section 4, we prove that the sequence k(n) has a
growth constant A, prove that A\, > 2.4474, and pro-
vide a motivation for the conjecture that A\, = \. We
end in Section 5 with some concluding remarks and fu-
ture research directions.

2  Minimum Area

Theorem 1 The minimum area of a TC polyomino
is 21.

The proof of this theorem follows a necessity-
sufficiency format. Necessity is shown by deducing up-
per and lower bounds on the area of TC polyominoes
in m x £ bounding boxes; These bounds contradict each
other for areas less than 21. Sufficiency is evident by
example.

IRecipe for the picture in Figure 1(a.2) is available upon re-
quest.
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(a.1) Symbolic
(a) Area 21

(a.2) Eatable

O D00
000 0O
O D0
00 00
0o 0o
00O oo

With marked edges
(b) Area 24

Figure 1: TC polyominoes of various areas and flavors. The symbolic representation in (b) distinguishes between
hidden edges (green), inside edges (blue), and outside edges (red).

Proof. A lower bound on the area of a TC polyomino
within an m x ¢ bounding box is achieved by partitioning
the edges of such a polyomino into hidden, outside, and
inside edges, as shown in Figure 1(b). The top (resp.,
right /bottom /left) edge of a cell ¢ is hidden if there is a
cell of the polyomino immediately above (resp., to the
right of/below/to the left of) c. An edge is outside if it
is not facing any other edge. An inside edge is an edge
facing another edge, but not immediately, that is, with
a gap of at least one cell. Consider a TC polyomino.
Denote by n its area, and by ¢, o, and h the number
of inside, outside, and hidden edges, respectively, of the
polyomino. For example, by these definitions, the “U-
pentomino” (B:E]) has i = 2, o = 10, and h = 8. For
the area-24 TC-polyomino depicted in Figure 1(b), we
have ¢ = 26, o = 24, and h = 46. By pairing inside and
outside edges in rows and columns, we have that o =
2m+ 20 and ¢ > 2m + 2¢. We also have that h > 2n —2
since the polyomino is connected and, hence, it must
include at least n—1 cell adjacencies. Since h 4+ 041 =
4n, we have that n > 2m + 20 — 1.

For an upper bound on n, we may assume without
loss of generality that m < ¢. Then, a TC polyomino
within an m x ¢ bounding box must be missing at least
one cell from each of the ¢ columns, none of which is
in the top or bottom row (for guaranteeing concavity of
the columns), as well as at least two further cells, one
in the top and one in the bottom row (for guaranteeing
concavity of these rows). Therefore, n < mf — ¢ — 2.

Altogether, we have that 2m+2/—1 <n < mf—{—2,
with m < . A simple case analysis shows that the
smallest n satisfying these constraints is 21, with m =5
and ¢ = 6.

Hence, n > 21 is a necessary condition for a TC poly-
omino. On the other hand, the existence of a TC poly-
omino of area 21 is evident by Fig. 1(a). This completes
the proof. O

This result was confirmed by our TC-polyomino
counting programs (see Section 3). Figure 2 shows
representatives of the 152 TC polyominoes of area 21.

I | | [ | O ] |
| [ | | ] L1
| | ] ] ]
O O [ ] L] ]
| 1 [ 1 | O ] [
I I I ] [ |
— I I |
SEpEEEgEN | | 1 [ 1 O [1]
O T [T O O [ | 1 O [
I 11 O [T [ I T
I [ 1 I ]
| L1 [ ] ] 1T [ I L
] O [T A1
[ [ I N -
[ | | [ ]
[ | L] I HER | [T

Figure 2: The 19 TC polyominoes of area 21, up to
rotation and mirroring.

(None of these polyominoes have any symmetries,
hence, the polyominoes formed by the eight orientations
of each of the 19 drawn polyominoes are distinct.)

3 An Efficient Counting Algorithm

3.1 Algorithm

We first implemented a prototype backtracking algo-
rithm for counting TC polyominoes. The program re-
cursively concatenated concave columns to a growing
polyomino. A branch of this procedure was abandoned
when the area of the polyomino grew too large or if it
was no longer possible for it to become connected with
the addition of further columns. (This happened when
a component of the polyomino became permanently de-
tached.)

We then designed a much more efficient algorithm,
based on Jensen’s algorithm for counting all poly-
ominoes [14, 15]. In a nutshell, Jensen’s algorithm
counts polyominoes within horizontal bounding strips
of height h, where 1 < h < [n/2]. The algorithm con-
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siders column by column from left to right, and cell by
cell from top to bottom within each column. At each
cell, the algorithm considers either to have it occupied
(belonging to the polyomino) or empty (not belonging).
At all stages, the algorithm does not keep in memory all
polyominoes but all possible right boundaries of poly-
ominoes, that is, all combinations of the last h cells
considered. The algorithm maintains a database whose
entries have keys that are the different signatures, where
a signature consists of a boundary plus all possible con-
nections between cells on the boundary by cells found
to the left of it. In other words, the keys reflect all
possible splits of boundary cells into connected com-
ponents, where the connections are to the left of the
boundary. In addition, a signature also includes two
bits that indicate whether or not the polyominoes asso-
ciated with that entry touch the top and/or bottom of
the strip. The contents of each entry in the database is
statistics of all partially-built polyominoes (“partially”
means that polyominoes may still consist of more than
one connected component), that is, the counts of all
polyominoes parameterized by area, having that spe-
cific signature. When the currently considered cell is
chosen to be occupied, the counts of polyominoes are
updated by adding the numbers of fully-built polyomi-
noes, that is, polyominoes that consist of exactly one
connected component and touch the top and bottom of
the strip.

Our modifications. For counting TC polyominoes,
we also need to ensure that each column and each row
consists of more than one consecutive sequence of cells.
This is simple to achieve for columns: At the end of pro-
cessing a column, we discard from the database all en-
tries that correspond to columns that contain less than
two sequences of occupied cells. For rows, we enhance
the signatures by splitting each one into at most 4"
subsignatures: For each row, we keep a code as follows:
‘0’ indicates that the first sequence of occupied cells has
not been met yet; ‘1’ means that we are in the mid-
dle of the first sequence; ‘2’ states that we are between
the first and second sequences; and ‘3’ signifies that we
have already entered the second sequence. (Once we
reach ‘3,” we do not need to update this indicator any
more.) Figure 3 shows an enhanced signature, in which
each boundary cell is associated with two numbers: The
original vertical code (left), and the additional horizon-
tal code (right). Then, we count only polyominoes with
signatures whose line indicators are all ‘3.” Note that
the indicators of the top and bottom rows make the two
bits described above redundant.

Jensen’s algorithm is efficient in the sense that it
is the only known algorithm whose running time,

O(1.732") [3], is smaller than the total number of poly-

ominoes, O(A\"). (Recall that A ~ 4.063.) Our modifi-
cation splits every signature into at most 4™/2 = 2" sub-
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Figure 3: An enhanced boundary signature in the mod-
ified version of Jensen’s algorithm.
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Figure 4: Plots of the number of signatures (while
counting TC polyominoes), all poyominoes, and TC
polyominoes.

signatures (in practice, into much less than that), thus,
the running time of the modified algorithm is 0(3.464"),
which is still much smaller than the total number of
polyominoees. In conclusion, our version of the algo-
rithm is slower than the original algorithm, although
we eventually count fewer polyominoes, due to the ex-
ponential growth in the number of processed signatures.

Figure 4 plots in a semi-logarithmic scale the num-
ber of distinct signatures encountered by the algorithm
while computing k(n)) (in red circles), together with
the number of TC polyominoes (cyan) and the total
number of polyominoes (blue), all as functions of n, for
21 <n < 31.

3.2 Results

Our prototype program, implemented in Python, com-
puted in 90 hours (elapsed time) x(n) up to n = 26 on
a PC with a 64-bit system operating an i5-9400F Intel
Core CPU at 2.90GHz with 12GB of RAM.
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Figure 5: The concatenation of two TC polyominoes is
always a TC polyomino.

The modified version of Jensen’s algorithm was im-
plemented in C++ and run on a 12th generation Intel(R)
19-12900KF with 128GB of RAM. Using about 41 hours
of CPU, the program computed k(n) up to n = 35, ob-
taining the values reported in Table 1 and agreeing with
all values computed by the prototype program.

4 Growth Constant

Bender [8] showed that the number of convex polyomi-
noes of size n is asymptotically ty", for v ~ 2.3091
and t ~ 2.6756, that is, the growth constant (see
a formal definition below) of convex polyominoes is
roughly 2.3091. In this section, we investigate the
growth constant of TC polyominoes.

4.1 Existence

Definition 1 (lexicographic order) For cells c¢1,ca, we
say that c1 < co if ¢1 lies in a column which is to the
left of the column of ca, or if ¢y lies below co in the same
column.

Definition 2 (concatenation) Let Py, Py be two poly-
ominoes, and let ¢1 (resp., c2) be the largest (resp.,
smallest) cell of Py (resp., Py). The concatenation of Py
and Ps is the placement of Py relative to Py, such that co
1s found immediately on top of cy.

Figure 5 shows the concatenation of two polyomi-
noes P; and P». The result of concatenating P, and P,
is always a valid polyomino since the two polyominoes
touch each other but do not overlap. Moreover, if
both P; and P, are TC, then the result of concatenating
them is also TC.

Theorem 2 The limit A\, := lim 3/k(n) (the growth
n—oo

constant of (k(n))) exists and is finite.

Proof. We follow the proof of existence and finiteness

of Klarner’s constant A [16]. First, the sequence x(n) is
supermultiplicative, that is, k(n)k(m) < k(n + m) for

—
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Figure 6: Plots of known values of (4x(n))/™
and k(n)/k(n—1).

all m,n € N. This is justified by a simple concatenation
argument. Indeed, all TC polyominoes of area n can
be concatenated with all TC polyominoes of area m
(see, e.g., Figure 5), yielding distinct TC polyominoes
of area n + m. Second, there exists a constant y > 0
for which k(n) < p™ for all n € N. For example, u = A,
the growth constant of all polyominoes. (This follows
immediately from the fact that x(n) < A(n) < A".) By
a lemma of Fekete (Klarner cites Ref. [18, p. 852] for
similar results), the claim follows. O

It would be much more ambitious to prove the ex-
istence of the ratio sequence, that is, lim, %
Obviously, if it exists, it must be equal to A..
Remark In fact, it makes more sense (see Section 4.2)
to explore ((4k(n))'/™) instead of ((k(n))*/™). Fig-
ure 6 shows plots of the known values of (4r(n))'/™
and k(n)/k(n — 1). Surprisingly, the ratio sequence
seems empirically to be monotone decreasing (except
some low-order fluctuations), a property rarely found in
other families of polyominoes.

4.2 Lower Bound

We now present a computer-assisted proof of a lower
bound on ..

Definition 3 (composition) A composition of two poly-
ominoes is a relative placement of the two polyominoes,
such that they touch (edge to edge), possibly in multiple
places, but do not overlap.

Figure 7 shows a few compositions of a pair of poly-
ominoes P, Q. Some compositions (e.g., those shown in
Figures 7(b-d)) are lezicographic, that is, compositions
in which all cells of P are lexicographically smaller than
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Table 1: Counts of TC polyominoes.

n k(n) n k(n) n k(n) n K(n)

1-20 01 24 52,306 || 28 119,309,768 || 32 88,476,873,440
21 152 || 25 | 606,636 || 20 | 641,447,812 || 33 |  435,921,253,072
22 120 || 26 | 3,376,528 || 30 | 3,403,173,276 || 34 | 2,113,011,155,472
23 | 15,820 || 27 | 20,204,672 || 31 | 17,634,751,456 || 35 | 10,065,872,407,536

of 4

pi-

Figure 7: A few compositions of a sample pair of poly-
ominoes.

()

all cells of @ (or vice versa), while other compositions
(see, e.g., Figure 7(a)) are not lexicographic. It is easy
to observe that a composition of two T'C polyominoes is
not always a TC polyomino. However, any lexicographic
composition of two T'C polyominoes is also TC.

Lemma 3 (A simplified version of Theorem 1(a) in

Ref. [2, p. 3]) Assume that the limit p := li_>m V/Z(n)
n—oo

exists for a sequence (Z(n)). Let ¢ > 0,co be some

constants. Then, if cin®2Z?(n) < Z(2n) Vn € N, then

Vep(2n)2Z(n) < p Vn € N.

Theorem 4 )\, > 2.4474.

Proof. We use a composition argument, using the
property that the extreme (rightmost and leftmost)
columns of any TC polyomino have at least two cells.
This property allows at least four lexicographic compo-
sitions of any pair of TC polyominoes P, ) that yield TC
polyominoes. It can easily be verified that the minimum
number of such compositions is obtained when both the
rightmost column of P and the leftmost column of @

21

33
e

Figure 8: There are at least four lexicographic compo-
sitions of any pair of TC polyominoes.

contain exactly two cells, with the same vertical gap
between them. For such pairs of TC polyominoes, we
have the four lexicographic compositions shown in Fig-
ure 8. Indeed, if the gaps between these cells are differ-
ent (as seen in Figure 9), the two TC polyominoes P, Q
have five lexicographic compositions; and if the respec-
tive columns of P, Q) have more than two occupied cells,
the number of lexicographic compositions may only in-
crease.

Consequently, we have that 4(k(n))? < k(2n). Then,
Lemma 3 implies that any term of the form (4r(n))'/™
is a lower bound on A,. Checking the known values
of k(n), we see that n = 35 provides the best lower
bound A\, > (4k(35))'/3% > 2.4474. O

4.3 Conjectured Value

Figure 4 may suggest that the growth constant of TC
polyominoes is identical to that of all polyominoes. We
state this as a conjecture and provide for it a tentative
proof that depends on another well-known conjecture
about the average diameter of lattice animals.

Conjecture 1 )\, = \.
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Figure 9: Five lexicographic compositions of a pair of
TC polyominoes.

It is generally believed [19, §9.2] that all standard
models of lattice animals and lattice trees (including
polyominoes) have average diameter that scales as n”
for some critical exponent v < 1 that depends only on
the dimension of the lattice. Numerically, v ~ 0.64 in
two dimensions. This is borne out in several numerical
and theoretical studies in the physics literature. Here we
can define the “diameter” of a polyomino P as the max-
imum Euclidean distance between any two cells of P. In
particular, since (it is believed that, say) v < 0.9, let U,
be the set of all polyominoes of size n whose diameter
is less than n%%. Then, the above belief implies that
|Uy,| > A(n)/2 for all sufficiently-large n.

Refer to Figure 10. Let L be the L-shaped frame de-
picted in red in the figure. Its width and height are
n%?  Let a(n) be the number of cells in L. Then,
a(n) = O(n%?). For any polyomino P € U,, let f(P)
be the union of L with the translation of P (colored in
green) that has the lower left corner of its bounding box
at (0,0). Then, f(P) is a TC polyomino, and its area
is n4+a(n). Since the function f(+) is clearly one-to-one,
we deduce that k(n + a(n)) > |Uy|. It follows that

At > w(n+ a(n)) > A(n)/2

for all sufficiently-large n. Now take nth roots of the
above, and let n — oo. The leftmost side converges
to Ax, and the rightmost side converges to A. We con-
clude that A, > A. The reverse relation is trivial, hence,
A = A~ 4.06.

)

|
=

Figure 10: The function f(P).

Y

(7]

To the best of our knowledge, if this conjecture were
true, then the family of TC polyominoes would be the
only nontrivial proper subset of polyominoes previously
studied in the literature that has been shown to have
the same growth constant as all polyominoes.

5 Conclusion and Future Work

In this paper, we investigate a few problems related to
TC polyominoes. We prove that the minimum possible
area of such a polyomino is 21; suggest an efficient algo-
rithm for counting TC polyominoes, and report counts
of TC polyominoes till area 35; show that (k(n)), the
sequence of counts of TC polyominoes of area n, has a
growth constant A,; prove that A\, > 2.4474; and finally,
conjecture that A, = X\ = 4.06.

Our main future research directions are the following.

1. Prove the existence of the limit of the ratio se-
quence, that is, lim, % (As noted above,
if the limit exists, then it must be equal to A,.)

2. Set a good wupper bound on A.. (Traditionally,
upper bounds are harder to obtain than lower
bounds).

Other future research directions include a few sub-
families of TC polyominoes.

Definition 4 (minimality) A TC polyomino P is min-
imal if no proper subset of cells of P is TC.

Duplicating any row or column of a TC polyomino
results in a TC polyomino. The opposite is also true:
Discarding all but at least one of consecutive identical
rows or columns of a TC polyomino results in a TC
polyomino. This gives rise to the following definition.

22
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Definition 5 (primitivity) A TC polyomino is primi-
tive if it does not contain any consecutive identical rows
or columns.

It is also worth considering T'C polyominoes whose
bounding boxes are “full.”

Definition 6 (saturation) A TC polyomino P is satu-
rated if no empty cells in the bounding box of P can be
filled and added to P, such that the result is still a TC
polyomino.

Here are some more questions to explore.

3. Are there members of the above subfamilies of un-
limited size? (We found minimal, primitive, and
saturated TC polyominoes of unlimited size.)

4. Is the intersection between the above subfamilies
non-empty?

5. Do the sequences that enumerate the above sub-
families have growth constants? (For these sub-
families, we cannot apply concatenation arguments
since the concatenation of pairs of minimal or sat-
urated TC polyominoes always result in polyomi-
noes which do not belong to these subfamilies, and
the concatenation of pairs of primitive TC polyomi-
noes might result in TC polyominoes which are not
primitive.)

6. Design efficient algorithms for counting members of
the above subfamilies. (At a first glance, it seems
that extending Jensen’s algorithm for any of the
above subfamilies is unlikely since the properties
defining the subfamilies are global.)

Further research directions involve more general set-
tings of the problem.

7. Consider polyominoes in which each row and col-
umn contains at least k > 2 (say, 3) maximal se-
quences of occupied cells.

8. Explore similar problems in other planar lattices
(e.g., the triangular or hexagonal lattice).

9. Investigate similar problems for polycubes (face-
connected sets of cells on cubical lattices) in higher
dimensions. (Note the two possible different defi-
nitions of total concavity in a higher dimension d:
A “weak” total concavity would require that every
line parallel to one of the coordinate axes cross the
polycube in either 0 or at least two maximal se-
quences of cells; A “strong” total concavity would
require recursively (for d > 2) that the intersection
of every (d—1)-dimenisonal hyperplane, perpendic-
ular to one of the coordinate axes, be either empty
or a (d—1)-dimenisonal TC polycube, where total
concavity in two dimensions is as defined in this

paper.)
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Skeletal Cut Loci on Convex Polyhedra*

Joseph O’Rourke

Abstract

For a point x on a convex polyhedron P, the cut locus
C(x) is the closure of the set of points on P joined to
x by at least two geodesic segments (shortest paths) on
P. Tt forms a tree of geodesic segments that includes
every vertex of P. We say that P has a skeletal cut locus
if there is some x € P such that C(x) C Sk(P), where
Sk(P) is the 1-skeleton of P. At a first glance, there
seems to be very little relation between the cut locus and
the 1-skeleton, as the first one is an intrinsic geometry
notion, and the second one specifies the combinatorics
of P.

In this paper we study skeletal cut loci, obtaining
four main results. First, given any combinatorial tree
T without degree-2 nodes, there exists a convex poly-
hedron P and a point z in P with a cut locus that lies
in Sk(P), and whose combinatorics match 7. Second,
any (non-degenerate) polyhedron P has at most a finite
number of points z for which C(z) C Sk(P). Third, we
show that almost all polyhedra have no skeletal cut lo-
cus. Fourth, we provide a combinatorial restriction to
the existence of skeletal cut loci.

Because the source unfolding of P with respect to
x is always a non-overlapping net for P, and because
the boundary of the source unfolding is the (unfolded)
cut locus, source unfoldings of polyhedra with skeletal
cut loci are edge-unfoldings, and moreover “blooming,”
avoiding self-intersection during an unfolding process.

1 Introduction

Our focus is the cut locus C(x) on a convex polyhedron,
and the relationship of C(x) to the 1-skeleton of P—
the graph of vertices and edges—which we denote by
Sk(P). The cut locus C(z) of x € P is the closure of
the set of points on P to which there is more than one
geodesic segment (shortest path) from z. C(x) is a tree
whose leaves are vertices of P. Nodes of degree k > 3 are
ramification points to which there are k distinct geodesic
segments from x. Nodes v of degree 2 in C(x) can also
occur, if v is a vertex of P. For details, see Section 2.1.

The 1-skeleton of a non-degenerate polyhedron is
a 3-connected graph by Steinitz’s theorem. We call
a doubly-covered convex polygon a degenerate convex
polyhedron, for which the 1-skeleton is a cycle. We say

*The full version of this paper is [OV24b].
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that P has a skeletal cut locus if there is some x € P
such that C(z) C Sk(P).

The edges of C(x) are known to be geodesic seg-
ments [AAOS97], so it is at least conceivable that an
edge of C(x) lies along an edge of P. Theorem 1 shows
that, for certain polyhedra P and points = € P, all of
C(z) lies in the 1-skeleton of P: C(xz) C Sk(P). As a
simple example, we will see in Lemma 7 that the three
edges incident to any vertex of a tetrahedron form C(z)
for an appropriate x, and are therefore a skeletal cut
locus.

Although Theorems 6 and 8 will show that skeletal
cut loci are “rare” in senses we’ll make precise, Theo-
rem 1 and its proof establish that uncountably many
polyhedra do admit skeletal cut loci, in a sense made
quantitatively precise by Proposition 4.

Theorem 1 can also be viewed as a companion to the
main result in [OV23], that any length (or metric) tree—
a tree with specified edge lengths—can be realized as
the cut locus on some polyhedron. Here we only match
the combinatorics of T, not its metrical properties, but
requiring additionally for T to be included in Sk(P).

Connection to Unfolding. It has long been known
that cutting the cut locus C(x) and unfolding to the
plane leads to the non-overlapping source unfolding: If
x is not itself at a vertex, then the unfolding arrays all
the shortest paths 27 around = (because x is surrounded
by 27 of surface), with the image of the cut locus form-
ing the boundary of the unfolding [Mou85] [SS86]. If x
is a vertex, then the shortest paths from = cover a wedge
of the total surface angle at . For the polyhedra in The-
orem 1, the source unfolding is an edge-unfolding. And
because it is known that the source unfolding can be
bloomed—unfolded continuously from R? to R? without
self-intersection [DDH*11]—Theorem 1 and its com-
panion Proposition 4 provide perhaps the first infinite
class of examples of blooming edge-unfoldings. It re-
mains unknown whether every non-overlapping edge-
unfolding can be bloomed.

A central open problem in our work asks for an ac-
counting of all the polyhedra P that support a skeletal
cut locus. All of these enjoy the property that source
unfoldings are also blooming edge-unfoldings.

2 Construction of Skeletal Cut Loci

Our first result is the following theorem.
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Figure 1: Tree T' with 7 leaves.

Theorem 1 Given any combinatorial tree T without
degree-2 nodes there is a convex polyhedron P and a
point x € P such that the cut locus C(x) is entirely con-
tained in Sk(P), and the combinatorics of C(x) match
T.

We first illustrate the main idea of the construction
before addressing details. Suppose the given tree T is
the 7-leaf tree shown in Fig. 1. We select a degree-
3 node as root a, which corresponds to the apex of a
regular tetrahedron avivovs. We fix x at the centroid
of the base @.

Fig. 2(a) show one possible construction of P. The
edges incident to a are clearly in C(x) with z at the
centroid of the base triangle. All three base vertices of
the tetrahedron are then truncated, with the truncation
of v being followed by a truncation of one of the two
base vertices created. Now T corresponds to all the
non-base edges of P.

The truncations are not arbitrary: the truncation
planes must have precise tilts in order for the edges
of each truncation to lie in C(z). Fig. 2(b) shows the
source unfolding of P, with a1, as, az the three images of
a. The red bisector rays from x through the truncation
vertices on the base @) suggest that indeed any point p
on a truncation edge is equidistant from x and therefore
on C(x).

Returning to the need for precise tilts of the tuncation
planes, let z be the point on the edge av; through which
the truncation plane passes, creating a truncation tri-
angle zt1ty. As indicated in Fig. 3, the tilt is uniquely
determined by the location of z: the placement of z
determines t1,ts, and the edge 1ty determines z.

2.1 Cut Locus Preliminaries

For the readers convenience, we list next several basic
properties of cut loci, sometimes used implicitly in the
following.

(i) C(x) is a tree drawn on the surface of P. Its leaves
are vertices of P, and all vertices of P, excepting z

(b)

a
Figure 2: (a) P is created from a regular tetrahedron
by four vertex truncations. C(x) consists of all non-

base edges, and is homeomorphic to the tree in Fig. 1.
(b) Source unfolding of P from z. Bisectors shown red.

1)

1

Vi

Figure 3: The tilt of the truncation plane is determined
by the position of z on av;.

(if it is a vertex) are included in C(z). All points
interior to C(x) of degree 3 or more are known as
ramification points of C(x). All vertices of P in-
terior to C(z) are also considered as ramification
points, of degree at least 2; see e.g. Fig. 7.

(ii) Each point y in C(z) is joined to z by as many
geodesic segments as the number of connected com-
ponents of C(x)\y. For ramification points in C(x),
this is precisely their degree in the tree.

(iii) The edges of C(z) are geodesic segments on P.

(iv) Assume the distinct geodesic segments v and 7/
from z to y € C(x) bound a domain D of P, which
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intersects no other geodesic segment from z to y.
Then there is an arc of C(z) at y which intersects
D and bisects the angle of D at y.

(v) The tree C(z) is reduced to a path, if and only if
the polyhedron is a doubly-covered (planar) convex
polygon, with z on the rim.

Further details and references can be found in [OV24a,
Ch. 2].

2.2 Construction Details

Throughout we assume 7' has no degree-2 nodes. Start
with P a pyramid with apex a centered over a regular n-
gon base @), with x the centroid of ). Label the vertices
of Q as vy,...,vp.

The construction does not depend on the degree of
apex a, so it is no loss of generality to assume a has
degree-3 so that P starts as a regular tetrahedron. Let
z be a node of T adjacent to a. (We will often use a and
z and other variables to both refer to a node of T" and
a corresponding vertex of P.) Let z have degree k + 2
in T. Truncation by k planes through z will create a
vertex at z of degree k + 2. E.g., if z is degree-3, k =1
plane through z creates a vertex of degree-3, as we've
seen in Fig. 3.

We aim to understand how to truncate by k& > 1
planes through z so that the k + 1 truncation edges
from z incident to the base @ are part of C(x). We
will illustrate in detail the case k£ = 2 shown in Fig. 4.
Looking ahead, if we know how to construct k planes
through z, then we can apply the same logic to construct
j planes through a child y of z. The 5 = 1 case is
illustrated in Fig. 5, with the red truncation triangle
incident to y. Then the same construction technique
can be used to inductively create the full subtree rooted
at z. We will show later that the subtrees rooted at
the other two children of a can be arranged to avoid
interfering with one another.

We express the construction as a multi-step algo-
rithm, and later prove that the truncation edges are
in C(x). Fix k > 1, and position z anywhere in the
interior of av;. The goal is to compute the truncation
chain t1,ta, ..., tk, tk+1 on base @), where ¢t € v1v3 and
tg+1 € vivg (e.g., t1,ta,t3 in Fig. 4). Each truncation
triangle is then zt;t;41.

The construction of the truncation chain is effected by
first computing the unfolded positions z;, the images of
z in the unfolding. It is perhaps counterintuitive, but we
can calculate z; without knowing ¢;¢;11; instead we use
z; to calculate ¢;t;11. The next construction depends
on our choice of several parameters; we’ll see later that
it provides a suitable polyhedron.

(1) 2o is the position of z after unfolding the left face
of the tetrahedron about v3v; to the base plane. zg
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can be determined by |v1z| = |v120]. Then zg41 is
the reflection of zy across zv;.

(2) Set r, = |z20| = |r2K11]-

(3) All the z;’s are chosen to lie on the circle C, cen-
tered on x of radius r,.

(4) Let A be the angle zozzgy1. Partition A into k41
angles a. This is another choice, to maximize the
symmetry of the construction.

(5) The z;’s lie on rays from z separated by «. Together
with C,, this determines the location of the z;’s.

(6) Set B; to bisect the angle at = between the z;_1, 2;
rays, i =1,...,k+ 1.

(7) We determine ¢, and tj4; using the first and last
bisector: t; = vivg N By, tgx+1 = v1v2 N Bi41. The
intermediate chain vertices to, . .., t; are not yet de-
termined.

(8) Let IT; be the mediator plane through zz;, the plane
orthogonal to zz; through its midpoint. It is these
planes that determine ¢;, i = 2,..., k.

(9) II; intersects the xy-plane in a line L; containing
titiia.

(10) t; = L; N B;.

First note that the mediator plane construction of
t;t;+1 guarantees that z unfolds to z;. Second, the an-
gles between edges t;z;_1 and t;z; are split by B; by
construction. So any point p on the interior of edge zt;
unfolds to two images in the plane equidistant from zx.

Lemma 2 FEach truncation edge zt; is an edge of C(x).

Proof. We first prove that zt; lies in C(z). Throughout
refer to Fig. 6.

Before truncation, the segment zt; lies on the face
avzvy of the polyhedron P, which is a regular tetrahe-
dron in this case.

Fix a point p € zt;. The unique shortest path ~
to p crosses edge vivs. After truncation, v remains a
geodesic arc. We aim to prove that it remains short-
est, and moreover there is another companion geodesic
segment 7', establishing that p € C(x).

Now we consider the situation after truncation. Let
é be a geodesic arc from x to p, approaching p from the
other side of zty; see Fig. 6(b). If § crosses the edge
tity, then we have |y| = [0| by construction, and we
have found ' = §.

Suppose instead that ¢ crosses edge t;t;11 for
¢ > 2, and then crosses the truncation triangles
ztitit1, 2ti—1ti, . .., zt1te (right to left, i.e., clockwise, in
Fig. 6(a)) before reaching p. To simplify the discussion,
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Figure 5: k = 2, j = 1. The y-truncation cuts the zt,
edge in Fig. 4.

we illustrate ¢ = 2, so 0 crosses tot3 and then triangles
thtg and Ztltz. See Fig. G(b)

Let g2 be the quasigeodesic' xtoz on P’; it must be
crossed by d to reach p. There are two triangles xtoz;
and ztszo bounding g2 to either side, congruent by the
construction. Thus the construction has local intrinsic
symmetry about g¢o.

Let s be the point at which & crosses tots, {s} =
6 Ntats. First assume that s lies in the triangle xtozs.
Then é remains in xtszo until it crosses ¢o. Then there
must be another geodesic arc ¢’ symmetric with § about
g2, as illustrated in (b). So § and ¢ meet at a point of
g2. Because § and ¢’ have the same length, neither can
be a shortest path beyond that point of intersection.
Therefore § cannot reach p as a geodesic segment.

Second, if s instead lies in the triangle xt3zs, then
it is clear from the planar image in (a) of the figure
that 0 cannot cross the segment zzs clockwise, which
it must to reach p from the right in the figures. So ¢
must head counterclockwise, crossing g3 = xt3z. Then

LA quasigeodesic is a path with at most 7 surface to either side
of every point.

V3

(b)

Figure 6: Proof that p € zt; is on C(z). (a) Quasi-
geodesic g2 = xtoz shown purple and congruent trian-
gles xtoz1 and wtozs shaded green. (b) Abstract picture
depicting geodesic segments 7, §, ¢’.

the same argument applies, based this time on the local
intrinsic symmetry about ¢3, and shows that § cannot
be a shortest path beyond g3.

We have established that every point p on zt; is on
C(x), and so zt; C C(z). The same argument applies to
ztk41, the rightmost truncation edge in the figures.

So now we know that two geodesic segments from x
to z cross t1to and titg1. These two segments deter-
mine a digon D within which the remaining segments of
C(x) lie. But within D we have local intrinsic symmetry
with respect to the quasigeodesics ¢; = zt;z, because g;
is surrounded by the congruent triangles xt;z; 1 and
xt;z;. Therefore, the previous argument shows that all
the edges zt; are included on C(x). O

We now return to the claim that the three subtrees
descendant from a do not interfere with one another.

Lemma 3 The truncations for one subtree descendant
of apex a do not interfere with another subtree descen-
dant.

Proof. First, as £k — oo, t; approaches the line xzg.
Thus the leftmost truncation triangle stays to the wvi-
side of the midpoint of vyvs, say by €. Second, subse-
quent truncations to all but the extreme edges zt; and
zti4+1 stay inside the ¢q,...,t; chain. The only concern
would be that truncation of the zt; edge crossed the
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midpoint of v1v3 (and so possibly interfering with trun-
cations of avs). However, as is evident in the earlier
Fig. 3, the position of ¢; moves monotonically toward
v1 as z moves down avy. Thus we can widen ¢ to ac-
commodate a truncation of zt; (or of ztg41). So the
entire subtree rooted at z stays between the midpoints
of v1v3 and vy vs. O

Further examples are shown in [OV24b].

Lemmas 2 and 3 together establish Theorem 1:
C(x) C Sk(P) matches the given T.

3 Theorem 1 Discussion

We mentioned in Section 1 that Theorem 1 leads to an
uncountable number of skeletal polyhedra. This follows
immediately from the freedom to place z at any point in-
terior to avy in the construction detailed in Section 2.2.
We can be more quantitatively precise, as follows.

Assume that T is a cubic tree without degree-2 nodes,
so it has n leaves and n — 2 ramification points. Aside
from one ramification point, which is chosen as the apex
of the starting tetrahedron, all others are free to vary on
their respective edges in our construction, which implies
n — 3 free parameters. Because C(z) is skeletal, each
ramification point of T is a vertex of P, so P has V =
2n — 2 vertices, and n = V/2 + 1. The space Py of all
convex polyhedra with V' vertices, up to isometries, has
dimension 3V — 6 (see for example [LP22]), hence the
starting tetrahedron provides another 6 free parameters
and we have the next result.

Proposition 4 The set of convex polyhedra admitting
skeletal cut loci—and hence blooming edge-unfoldings—
contains a subset of dimension > V/2+4 in the (3V —6)-
dimensional space of all convex polyhedra with V wver-
tices, up to isometries.

Recall we restricted Theorem 1 to trees T' without
degree-2 nodes. Our construction can be viewed as real-
izing degree-2 nodes of T' with flat “vertices” on Sk(P)—
points interior to edges of P. We are currently extend-
ing the construction to match degree-2 nodes of T' with
non-flat vertices of P.

Our construction for Theorem 1 results in a dome, a
convex polyhedron P with a distinguished base face @,
with every other face sharing an edge with Q. It was
already known that domes have edge-unfoldings [DOO07,
p. 325], although the proof of non-overlapping for our
domes is almost trivial—the source unfolding does not
overlap.

Although our previous construction results in domes,
there are many other polyhedra with skeletal cut loci,
see e.g. Fig. 7 and Theorem 9. Which leaves us with this
central open problem: Characterize all convex polyhedra
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Figure 7: P: pentagonal dipyramid. C(z): red and blue
edges of Sk(P).

P which admit skeletal cut loci. The remainder of the
paper addresses and partially answers this problem.

Several natural questions now suggest themselves:

(1) For a fixed P, how many distinct points z can lead
to skeletal cut loci? (Theorem 6).

(2) Can all of Sk(P) for a given P be covered by skeletal
cut loci? (Proposition 5).

(3) How common / rare are skeletal cut loci in the
space of all convex polyhedra? (Theorem 8).

(4) Are there restrictions for the existence of skeletal
cut loci? (Proposition 5, Theorems 6 and 10).

Due to space limitations, we cite next lemmas and
theorems often without motivations or proofs, all of
which may be found in [OV24Db].

4 Existence of Several Skeletal Cut Loci

In the first two questions in the list above, degenerate
P play a special role:

Proposition 5

(a) There exists infinitely many points x with C(x) C
Sk(P) if and only if P is degenerate.

(b) There exists two points x1,x2 on P whose cut loci
together cover Sk(P) if and only if P is degenerate.

Example 1 Consider a regular dipyramid P over a
convezr 2m + 1-gon; see Fig. 7. One can see that, for
every midpoint x of a “base edge” e, C(x) is included
in Sk(P). More precisely, C(xz) contains all base edges
other than e, and the two “lateral edges” opposite to
x. In particular, this provides 2m + 1 such points, for
V = 2m + 3 vertices.

Theorem 6 For any non-degenerate convex polyhedron
P with E edges, there are at most 2(]23) flat points x of
P such that C(x) C Sk(P).
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5 Absence of Skeletal Cut Loci

Lemma 7 FEvery tetrahedron T has four points x € T
such that C(x) C Sk(T).

Proof. For each vertex v;, denote by x; the ramification
point of C(v;). It follows, from cut locus Property (ii),
that v; is the ramification point of C(x;). Then, by (i)
and (iii), C(x;) consists of the three edges incident to
V;. O

Theorem 8 For almost all?> convex polyhedra P with
V' > 4 vertices, there exists no point © € P with C(z) C
Sk(P).

Proof. Notice first that almost all convex polyhedra P
are non-degenerate.

Assume, for the simplicity of the exposition, that ev-
ery face of P is a triangle and Sk(P) is a cubic graph.

Case 1. Assume there exists a flat point x interior to
some face F of P, such that C(z) C Sk(P).

Repeating the notation in Theorem 6, denote by v;,
1 =1,2,3, the vertices of F, and by e; the edges of
P incident to v; and not included in F. Moreover,
denote by ~; the geodesic segment from z to v;.

As in Theorem 6, it follows that e; C C(x) so,
together, v; and e; bisect the complete angle at v;.
In other words, the straight extensions F; into F
by all the e; are concurrent: they all intersect at
the same point.

Now we perturb the vertices of P to destroy this
concurrence. If P were a tetrahedron, then per-
turbing the apex would simultaneously move the
edges incident to it. But the assumption that V' > 4
means that there are at least two vertices outside
the 3-vertex face F' containing x. Perturbing these
two vertices independently moves the edges inci-
dent to F' independently, breaking the concurrence
at .

Because there are at most finitely many such points
2 by Theorem 6, the conclusion follows in this case.

Case 2. Assume there exists a flat point x interior to
some edge e of P, such that C(x) C Sk(P). Denote
by v;, i = 1,2, the vertices of e, and by e; the edges
of P incident to v; included in C(z). As above, it
follows that the straight extensions of e, es coin-
cide with e. Now, small perturbations of the ver-
tices of P destroy this coincidence. Note that if
e,e1, ey form a triangle, then ep, ey will move to-
gether. But still, perturbations at other vertices of
P (not vy, vy, €1 Nesg) will destroy the concurrence.

2I.e., polyhedra in an open and dense subset of Ly .

Case 3. Assume finally there exists a vertex v of P,
such that C(v) C Sk(P). Here we obtain again
that the straight extensions of two edges contain
(other) edge-pair extensions, and small perturba-
tions of the vertices of P destroy this coincidence.

O

6 Every Vertex a Skeletal Source

Theorem 9 Assume that every vertex of P has a skele-
tal cut locus. Then the following statements hold.

1. Every face of P is a triangle.
2. Every vertex of P has even degree in Sk(P).

3. The edges at every vertex v split the complete angle
at v into evenly many sub-angles, every two oppo-
site such angles being congruent.

4. If, moreover, every vertex of P has degree 4 in
Sk(P) then P is an octahedron:

e with three planar symmetries, and

e all faces of which are acute congruent (but not
necessarily equilateral) triangles.

Example 2 Suitable dipyramids over convex 2m-gons,
stmilar to Example 1, provide non-octahedron polyhedra
whose the cut loci of the vertices cover the 1-skeleton.

7 A Combinatorial Restriction

Already mentioned in the Abstract, at a first glance
there seems to be very little relation between the cut
locus and the 1-skeleton, as the first one is an in-
trinsic geometry notion, and the second one specifies
the combinatorics of P. A background connection be-
tween the two notions can however be established in two
steps: Alexandrov’s Gluing Theorem connects the in-
trinsic and the extrinsic geometry of P, while Steinitz’s
Theorem relates the combinatorics to the extrinsic ge-
ometry.

In this section we provide an easy combinatorial re-
striction to the existence of skeletal cut loci, comple-
menting the first part of Theorem 9.

Lemma 2.8 in [OV24a] shows that, at a vertex v of
P of degree-3 in Sk(P), the sum of any two face angles
incident to v is strictly larger than the third angle. We
now argue that such a v cannot be a degree-2 node in a
cut locus. Assume otherwise. Then there are precisely
two geodesic segments from x to v, and they form two
angles around v. By (iv), each of the two edge-branches
of C(z) starting at v will bisect one of those angles.
Then the angles at v to the left and to the right of C(x)
are equal, impossible by the mentioned Lemma 2.8.
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In the literature, a spanning tree without degree-2
nodes is called a HIST.? So every spanning tree of a
HIST-free graph has a degree-2 node. Because a degree-
3 vertex cannot be a degree-2 node in a cut locus, we
have the following combinatorial restriction.

Theorem 10 A HIST-free cubic polyhedral graph can-
not be realized with skeletal cut loci.

One can check straightforwardly that, among the Pla-
tonic solids, the cube and the dodecahedron graphs are
HIST-free, hence these polyhedra do not admit skeletal
cut loci.

Acknowledgements. We benefited from the sugges-
tions of three reviewers, and we thank Joseph Malke-
vitch for information on HISTs.

SHIST abbreviates “homeomorphically irreducible spanning
tree.” See, e.g., [GNRZ24] and the references therein.
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Dispersive Vertex Guarding for Simple and Non-Simple Polygons*

Sandor P. Feketef Joseph S. B. Mitchell*

Abstract

We study the DISPERSIVE ART GALLERY PROBLEM
with vertex guards: Given a polygon P, with pairwise
geodesic Euclidean vertex distance of at least 1, and a
rational number ¢; decide whether there is a set of ver-
tex guards such that P is guarded, and the minimum
geodesic Euclidean distance between any two guards
(the so-called dispersion distance) is at least £.

We show that it is NP-complete to decide whether
a polygon with holes has a set of vertex guards with
dispersion distance 2. On the other hand, we provide an
algorithm that places vertex guards in simple polygons
at dispersion distance at least 2. This result is tight, as
there are simple polygons in which any vertex guard set
has a dispersion distance of at most 2.

1 Introduction

The ART GALLERY PROBLEM is one of the fundamen-
tal challenges in computational geometry. It was first
introduced by Klee in 1973 and can be stated as follows:
Given a polygon P with n vertices and an integer k; de-
cide whether there is a set of at most & many guards,
such that these guards see all of P, where a guard sees
a point if the line segment connecting them is fully con-
tained in the polygon.

Chvétal [4] and Fisk [8] established tight worst-case
bounds by showing that |7/3] many guards are some-
times necessary and always sufficient. On the algorith-
mic side, Lee and Lin [11] proved NP-hardness; more
recently, Abrahamsen, Adamaszek, and Miltzow [1]
showed JR-completeness, even for simple polygons.
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In this paper, we investigate the DISPERSIVE AGP
in polygons with vertex guards: Given a polygon P and
a rational number /, find a set of vertex guards such
that P is guarded and the minimum pairwise geodesic
Euclidean distance between each pair of guards is at
least ¢. (Note that the cardinality of the guard set does
not come into play.)

1.1 Our Contributions

We give the following results for the DISPERSIVE ART
GALLERY PROBLEM in polygons with vertex guards.

e For polygons with holes, we show NP-completeness
of deciding whether a pairwise geodesic Euclidean
distance between any two guards of at least 2 can
be guaranteed.

e For simple polygons, we provide an algorithm for
computing a set of vertex guards of minimum pair-
wise geodesic distance of at least 2.

e We show that a dispersion distance of 2 is worst-
case optimal for simple polygons.

1.2 Previous Work

Many variations of the classic ART GALLERY PROBLEM
have been investigated [13, 15, 16]. This includes vari-
ants in which the number of guards does not play a role,
such as the CHROMATIC AGP [6, 7, 10] as well as the
CoNFLICT-FREE CHROMATIC AGP [2, 3, 9].

The DISPERSIVE AGP was first introduced by
Mitchell [12], and studied for the special case of poly-
ominoes by Rieck and Scheffer [14]. They gave a method
for computing worst-case optimal solutions with disper-
sion distance at least 3 for simple polyominoes, and
showed NP-completeness of deciding whether a poly-
omino with holes allows a set of vertex guards with dis-
persion distance of 5.

1.3 Preliminaries

Given a polygon P (possibly with holes), we say that
two points p,q € P see each other, if the connecting
line segment pq is fully contained in P. A (finite) set of
points G C P is called a guard set for P, if all points
of P are seen by at least one point of G. If G is a subset
of the vertices of P, we are dealing with vertex guards.
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Distances between two points p,q € P are measured
according to the Euclidean geodesic metric, i.e., that is
the length of a shortest path between p and ¢ that stays
fully inside of P, and are denoted by d(p, ¢). The small-
est distance between any two guards within a guard set
is called its dispersion distance.

2 First Observations

We start with two easy observations; the second resolves
an open problem by Rieck and Scheffer [14], who raised
the question about the ratio of the cardinalities of guard
sets in optimal solutions for the DISPERSIVE AGP and
the classical AGP.

2.1 Shortest Polygon Edges Are Insufficient as
Lower Bounds

To see that an optimal dispersion distance may be con-
siderably shorter than the shortest polygon edge, con-
sider Figure 1. Every edge in the polygon has similar
length (say, between 1 and 1+ ¢). To guard the colored
regions, one of each of the same colored vertices needs
to be in the guard set. This results in two guards that
are arbitrarily close to each other.

Figure 1: A polygon in which edges have similar length.

This motivates our assumption that the geodesic dis-
tance between any pair of vertices is at least 1.

2.2 Optimal Solutions May Contain Many Guards

Even for a polygon that can be covered by a small num-
ber of guards, an optimal solution for the DISPERSIVE
AGP may contain arbitrarily many guards; see Fig-
ure 2. An optimal solution for the classical AGP con-
sists of 2 guards placed at both ends of the central edge
of length £. On the other hand, we can maximize the
dispersion distance in a vertex guard set by placing one
guard at the tip of each of the (2—2)/2 spikes. These two
sets have a dispersion distance of € and 2(, respectively,
and the ratio 2¢/e can be arbitrarily large.

Figure 2: A polygon for which the optimal guard num-
bers for AGP and DISPERSIVE AGP differ considerably.

3 NP-Completeness for Polygons with Holes

We now study the computational complexity of the Dis-
PERSIVE AGP for vertex guards in non-simple polygons.

Theorem 1 [t is NP-complete to decide whether a poly-
gon with holes and geodesic vertex distance of at least 1
allows a set of vertex guards with dispersion distance 2.

We first observe that the problem is in NP. For a po-
tential guard set G, we can check the geodesic distance
between any pair of vertices ¢1,g92 € G as follows. Be-
cause any two polygon vertices have mutual distance of
at least 1, a shortest geodesic path between ¢g; and g
consisting of at least two edges has a length of at least 2.
This leaves checking the length of geodesic paths con-
sisting of a single edge, which is straightforward.

3.1 Overview and Gadgets

For showing NP-hardness, we utilize the NP-complete
problem PLANAR MONOTONE 3SAT [5], which asks for
the satisfiability of a Boolean 3-CNF formula, for which
the literals in each clause are either all negated or all
unnegated, and the corresponding variable-clause inci-
dence graph is planar.

To this end, we construct gadgets to represent (i) vari-
ables, (ii) clauses, (iii) a gadget that splits the respective
assignment, and (iv) gadgets that connect subpolygons
while maintaining the given truth assignment.

Variable Gadget. A wvariable gadget is shown in Fig-
ure 3. Its four vertices vy, vs,v3,v4 are placed on the
vertices of a thombus (shown in grey) formed by two ad-
jacent equilateral triangles of side length 1. We add two
sharp spikes by connecting two additional vertices (vs
and vg) to the two pairs v1,vs and v, v4, respectively;
the edges {vs, v5}, {va, v6} have unit-length. (The func-
tion of these spikes is to impose an upper bound of 2
on the achievable distance.) We also attach two narrow
polygonal corridors to two other pairs of vertices, indi-
cated in green for the pair vi, v, and in red for vz, vy.
These corridors have appropriate width, up to 1, at the
other end, to attach them to other gadgets.
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Figure 3: A variable gadget.

Lemma 2 FEzactly four wvertex guard sets realize a
dispersion distance of 2 to guard the subpolygon
Py = (v1, v2, Vg, V4, V3, V5,v1) of a variable gadget.

Proof. Asshown in Figure 3, at least one guard has to
be placed on one of {v1,va,v3,v4} to guard the rhombus
that represents the variable. Conversely, it is easy to see
that the dispersion distance is less than 2 if more than
one guard is chosen from {vy,ve,vs,v4}. Furthermore,
if we choose vy or vs, the spike at vs is guarded, and
we can choose vg (which has distance 2 from both vy
and v3) to guard the other spike; conversely, a guard at
v or vy covers the spike at vg and allows a guard at vs.

Now a guard from {vq,v2} also covers the green por-
tion of the polygon; this will correspond to setting the
variable to true. On the other hand, a guard from
{vs,v4} also covers the red portion of the polygon, cor-
responding to setting the variable to false. O

Clause Gadget. A clause gadget is depicted in Fig-
ure 4. Its three vertices lie on the vertices of an equi-
lateral triangle of side length 1; attached are narrow
polygonal corridors, which are nearly parallel to the tri-
angle edges, each using two of the triangle vertices as
end points. These corridors have appropriate width, up
to 1, at the other end, to attach them to other gadgets.

Figure 4: A clause gadget.

Observation 1 As the vertices {v1,v2,v3} have a pair-
wise distance of 1, only a single guard can be placed
within a clause gadget, if the guard set have to realize a
dispersion distance of at least 2. A direct consequence
is that no more than two of the incident corridors can
be guarded by a guard placed on these vertices; hence,
at least one corridor needs to be seen from somewhere
else, which in turn corresponds to satisfying the clause.
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Split Gadget. A split gadget is illustrated in Figure 5.
It has one incoming horizontal polygonal corridor, end-
ing at two vertices (v; and vy) within vertical distance 1.
These vertices form an equilateral triangle with a third
vertex, v4, where the polygon splits into two further cor-
ridors, emanating horizontally from vertices vs, vg, and
vy, U7, respectively. For the upper corridor, the vertices
v1, U3, U4, Vg form slightly distorted adjacent equilateral
unit triangles: We move vz and vg slightly upwards,
such that the edges {v1,v3} and {vy, v} as well as the
distances between v, and v4 and between vs and vg re-
main 1, but the distance between v3 and v, increases to
1+ e. An analogous construction yields the lower out-
going horizontal corridor. Both of these corridors start
with a height smaller than 1, but can end with a height
of 1 or a very small height.

Figure 5: A split gadget.

Lemma 3 The split gadget correctly forwards the re-
spective variable assignment.

Proof. We refer to Figure 5 and distinguish two cases.
First, assume that the variable adjacent to the left is
set to true, implying that the connecting corridor is
already guarded. Therefore, two guards placed on wvg
and v7 guard the whole subpolygon, and in particular
both corridors to the right.

Now assume that the variable is set to false, im-
plying that the corridor to the left is not fully guarded
yet. Because this corridor is constructed long enough
to contain the intersection of the (dotted) lines through
v1,vg and vg, v7, we need to place a guard at one of the
vertices in {v1,vs,v4}. Then no further guard can be
placed in a distance of at least 2, and the corridors to
the right are not guarded, as claimed. O

Connector Gadget. The connector gadget is depicted
in Figure 6. The distance between all pairs of vertices
is at least 1 and less than 2. Furthermore, a guard on
either v; or vy cannot see the horizontal corridor, while
a guard on wvsg or vy does not see the vertical one.

Observation 2 The gadget is designed such that only
a single guard can be placed on its vertices while main-
taining a distance of at least 2. If a previously placed
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Figure 6: A connector gadget.

guard already sees the vertical corridor, we can place an-
other one to see the horizontal corridor as well. On the
other hand, no guard sees both corridors simultaneously.
Thus, we propagate a truth assignment.

3.2 Construction and Proof

We now describe the construction of the polygon for the
reduction, and complete the proof.

Theorem 1 It is NP-complete to decide whether a poly-
gon with holes and geodesic vertex distance of at least 1
allows a set of vertexr guards with dispersion distance 2.

Proof. To show NP-hardness, we reduce from PLANAR
MONOTONE 3SAT. For any given Boolean formula ¢,
we construct a polygon P, as an instance of DISPERSIVE
AGP as follows. Consider a planar embedding of the
variable-clause incidence graph of ¢, place the variable
gadgets in a row, and clause gadgets that only consist of
unnegated literals or entirely of negated literals to the
top or to the bottom of that row, respectively, as illus-
trated in Figure 7. Furthermore, connect variables to
clauses via a couple of connector gadgets, and introduce
split gadgets where necessary.

| x1 V25V xg |

| xr1 VI3V Ty |

|$1\/$2V$3|| 3V s |
[ [ [1] [
Lo | Loz [ ] [oa] [ [ ]
[ [

| —xo V 12y |

| -1V xy VX |

Figure 7: Rectilinear embedding of a PLANAR MONO-
TONE 3SAT instance.

Claim 1 If ¢ is satisfiable, then P, has a vertex guard
set with dispersion distance 2.

Proof. Given a satisfying assignment, we construct a
set of vertex guards with a dispersion distance of 2:

For every variable that is set to true, we place guards
on {v1, v}, and for every variable that is set to false,
we place guards on {vs,v5} within the respective vari-
able gadget. Furthermore, we place guards for split and
connector gadgets to maintain the given assignments.
As we have a satisfying assignment, each clause is sat-
isfied by at least one literal, i.e., at least one corridor
incident to the clause gadget is already guarded. There-
fore, we can place one guard in each clause gadget. This
yields a guard set with a dispersion distance of 2. W

Claim 2 If P, has a vertex guard set with dispersion
distance 2, then ¢ is satisfiable.

Proof. As we have a set of vertex guards with a disper-
sion distance of 2, there is only a single guard placed
within each clause gadget. Furthermore, no guard set
can have larger dispersion distance within a variable
gadget. As argued before, there is no guard set with a
dispersion distance larger than 2 in the split and connec-
tor gadgets. Therefore, the vertex guards placed within
the variable gadgets provide a suitable variable assign-
ment for . |

Given that the problem is in NP, these two claims
complete the proof. O

4 Worst-Case Optimality for Simple Polygons

In this section we prove that a guard set realizing a
dispersion distance of 2 is worst-case optimal for simple
polygons. In particular, we describe an algorithm that
constructs such guard sets for any simple polygon.
First, we observe that there are polygons for which
there is no guard set with a larger dispersion distance.

Observation 3 There are simple polygons with
geodesic vertex distance at least 1 for which every guard
set has a dispersion distance of at most 2.

Refer to Figure 8. Bold edges have length 1. One of
the three vertices (with pairwise distance 1) incident to
the gray triangle A must be picked to guard A, so no
guard set can have a dispersion distance larger that 2.

Figure 8: Godfried’s favorite polygon.

From this, we can easily obtain polygons with any
number of vertices of dispersion distance at most 2: Sim-
ply modify the polygon at the end of each spike.
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In the remainder of this section, we provide a
polynomial-time algorithm that constructs a guard set
with dispersion distance of at least 2.

We start with a useful lemma that provides some
structural properties for the analysis. Refer to Figure 9
for visual reference.

Lemma 4 Let P = (v1,ve,...,v7) be a simple polygon
with seven wvertices labeled in counterclockwise order.
Assume that the pairwise (geodesic) distance between
all pairs of vertices is at least 1 and further that the
following properties are satisfied:

1. The distance between v1 and vs is 0(vy,vs) < 2.

2. va,vy, and vy are reflex, i.e., the interior angle at
these vertices is strictly larger than 180°.

Then the geodesic distance between the two vertices vs
and vg is 6(vs,vg) > 2.

Us

U1
Us

U3

Figure 9: Schematic layout of P.

Proof. Throughout the proof, we will frequently make
use of the assumption that (v;,v;) > 1 for any i # j.

As a first step, we argue that v; and vs must be mutu-
ally visible (along line segment S), as shown in Figure 9:
Otherwise, a shortest geodesic path from v, to vs must
visit one of the reflex vertices vg, v4, or v7, implying the
contradiction (v, vs) > 2.

By a similar argument, we claim that v3 and vg are
mutually visible (say, along segment L); otherwise we
can conclude that 6(vs, vg) > 2, and we are done.

In the following, we prove that L has length at least 2,
by establishing the following two auxiliary claims.

(a) The geodesic distance from vg to S is at least v3/2.

(b) The geodesic distance from vz to S is at least
2 —V3/2=1.13397....

To this end, assume that the cord S lies horizon-
tally, with v; = (0,0) and vs = (x5,0), and par-
titions P into two subpolygons: (a) the quadrangle
P’ = (v1,vs,v6,v7) above S, and (b) the pentagon
P" .= (v1,v9,v3,v4,v5) below S. Because vy is reflex, it
must lie inside the convex hull of P’, which is spanned
by the three remaining vertices vy, vs, vg. Analogously,
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Figure 10: Subpolygons for the proof of the two aux-
iliary claims: (a) The quadrangle P’ = (vy,vs, vg, V7).
(b) The pentagon P = (vy, vs, v3, V4, Us).

vy and v4 must lie inside the convex hull of P”, which
is spanned by the three remaining vertices vy, vs, vs.

For the auxiliary claim (a), refer to Figure 10(a).
If v¢ = (x6,y6) lies outside the vertical strip defined
by 0 < x < x5, then its closest point on S is vs (for
xe > x5) or a point ¢ for which the geodesic to S runs
via vy (for 26 < 0), so the minimum distance of vg
is 0(vi,v6) > 1, (or 6(vs,ve) > 1, respectively). There-
fore, the convex hull of P’ must lie within the strip,
including v7. Furthermore, vg must have the largest
vertical distance from S, so vy must lie within the axis-
aligned rectangle R’ of height v3/2 above S. Consider
the three circles C, C5, and C7 of unit radius around
v1, U5, and vy. It is straightforward to verify that R’ is
completely covered by Cy, Cs, and C7, implying that vg
cannot lie inside R’, and the first claim follows.

For the auxiliary claim (b), refer to Figure 10(b).
Without loss of generality, assume that the vertical dis-
tance —yo of vy from S is not smaller than the vertical
distance —y, of vy. Consider the horizontal positions
To, T3, T4 Of Vo, v3,v4. Because vs lies inside the convex
hull of P”, the assumption xo < 0 (which differs from
the figure) implies that x5 < x5 < 0; then the shortest
distance from vy to S is d(ve,v1) > 1, and (because v
is reflex), a shortest geodesic path from v3 to S passes
through ve, s0 0(v3,v1) = §(vs,v2)+d(ve,v1) > 2. Anal-
ogously, we can assume that x4, < x5. Furthermore,
the assumption on the relative vertical positions of wvg
and v4 implies that v, must also lie to the right of vy,
ie., xqg > 0.
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Consider x5 > s and refer to Figure 11.

y= -3/

Figure 11: Estimating §(ve, v4).

Then the assumption —ys < V3/2 (together with
0(ve,vs) > 1) implies that x5 > x5 + 1/2. Furthermore,
v4 must lie above the edge (vy,vs).

We now consider the point ¢ = (x5 — 3/4,7,). Be-
cause x5 < 2, we conclude —y, < —vz2/2 < V3/4. There-

fore, 6(q,v5) < \/(%)2 + (%)2 = 0.96824... < 1. Be-

cause vy must lie outside of the circle with radius 1
around vs, we conclude that x4 < x5—3/4, implying that
0(v2,v4) > 8/4 = 1.25. Furthermore, vy cannot lie on the
convex hull of P”, thus, x5 > x2 and y3 < y2, implying
0(vs,vq4) > 8(v2,vq). As the geodesically shortest path
from v3 to S passes through vy, we conclude that the
length of this path, d(vs,v4) —ys > §(v3,v4) > §(va, v4)
is bounded from below by 1.25. Thus, we can assume
that —zo > V3/2 in this case.

Alternatively, consider x5 < x5. Then an argument
for vy, vs,v4, vs analogous to the one from claim (a) for
v1, Vs, Vg, U7 also implies that —zy > V3/2.

Consider the vertical distance h := —y3 + y2 between
vs and vg, and refer to Figure 12.

v = (0, 0)

Figure 12: Angles and vertical distances at v; and vs.

To this end, note that the angle ¢; at v; between
(v1,v2) and S satisfies tan ¢y = —v2/z, > V3/4 = 1 be-
cause of —yy > \/5/2 and xzo < x5 < 2. Because vy is
reflex, the angle ¢3 between (vs, v2) and a horizontal line
at v3 satisfies ¢35 > ¢1; moreover, sin ¢3 = (S(Th,vg)7 with
0(vg,v3) > 1, so h > sinarctann = \/117 =0.3973....

This implies that the vertical distance —y3 of wv3
to S (and thus the distance of vz to S) is at least
V3/2 4+ 0.3973 = 1.26338... > 1.13397... = 2 — V3/a,
as claimed. O

We now show the main result of this section.

Theorem 5 For every simple polygon P with pairwise
geodesic distance between vertices at least 1, there exists
a guard set that has dispersion distance at least 2.

Proof. Refer to Figures 13 and 14 for visual orienta-
tion. By triangulating P, we obtain a triangulation T
whose dual graph is a tree 77. We consider a path II
between two leaves (say, t; and tx) in 7", and obtain
a caterpillar C' by adding as feet all vertices adjacent
to IT; let C be the corresponding set of triangles (shown
in dark cyan in Figure 13).

Now the idea is to place guards on vertices of C
(that is a subset of the vertices of P), aiming to see
all of C. We then consider a recursive subdivision of P
into caterpillars, by proceeding from foot triangles of
covered caterpillars to ears, until all of P is covered; this
corresponds to the colored subdivision in Figure 13.

o
\§/
|/

-

Figure 13: Polygon P in black, triangulation 7" in gray,
and a partition into (colored) caterpillars.

To cover C, we start by placing a guard on a ver-
tex v of an ear triangle (say, t1). If C' is a path (i.e.,
a caterpillar without foot triangles), we can proceed in
a straightforward manner: Either the next triangles on
the path are visible from the guard on vy, or there is
a reflex vertex v, obstructing the view to a triangle ¢;.
In the latter case, we can place the next guard on an
unseen vertex v; of ¢;, i.e., v; is not seen by any of the
previously placed guards; by assumption, the distance
of vg and v, is at least 1, as is the distance of v, and v;.
Because v, is reflex, a shortest path from vy to v; has
length at least 2 by triangle inequality.

This leaves the case in which we have foot triangles,
which is analyzed in the following. Assume that we al-
ready placed a guard on a vertex incident to the path
of the caterpillar. We argue how we proceed even if all
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path triangles have incident foot triangles, that is, we
show that we can place a set of guards that together
monitor all caterpillar triangles, while ensuring a dis-
tance of at least 2 between any pair of guards. Further-
more, whenever we place a guard in a foot triangle, then
this guard is never needed to cover any path triangles,
hence, even if not all path triangles have incident foot
triangles, we yield a feasible guard placement.

Figure 14: Vertices and triangular faces of a caterpillar
for the proof of Theorem 5.

In the recursive call, we also take into account what
previously placed guards see; note that unseen vertices
are feasible guard locations with a distance of at least 2
to all previously placed guards.

To indicate that a vertex v is reflex in the polygonal
chain w,v,w, we say that v is reflex w.r.t. u— w; note
that the polygonal chain u,v,w must not be the poly-
gon boundary. The line segment uv contained in P is
denoted by uw; it is either a diagonal or a polygon edge.

Now we consider the situation in Figure 14 and as-
sume that a guard on a has been placed to monitor the
triangle to the left of ab. We aim to monitor triangles
1,2,...,8. The guard on a sees the triangles 2, 3 and 4.
If a sees ¢, then a sees triangle 1 as well. If a does not
see ¢, we place a guard on ¢ (in this case either b or d is
reflex w.r.t. a — ¢, thus, ¢ has distance at least 2 to a).

We now provide a case distinction on the next place-
ment(s) of guards. In case we placed a guard on ¢ in
addition to the guard on a, whenever we consider a see-
ing vertices, this also includes vertex c.

1. If 7 is reflex w.r.t. a — g, we place a guard on g;
together these guards see triangles 5,7, and 8.

(a) If a or g see e, then they also see triangle 6.

(b) Otherwise, we place another guard on e (which
has distance of at least 2 to all guards placed
before), which then monitors triangle 6.

2. Otherwise, i.e., i is not reflex w.r.t. a — g:

(a) If d is reflex w.r.t. a —e:
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i. If §(a, f) > 2, we place a guard on f to see
triangles 5,6, and 7. If h is seen by a or f,
then also triangle 8 is seen. Otherwise, we
place a guard on h to see triangle 8.

ii. Else if §(a,g) > 2, we place a guard on g,
then a and g also see triangles 5,7, and 8.
If e is seen by a or g, then also triangle 6
is seen. Otherwise, we place a guard on e
to see triangle 6.

In the remaining cases ii.— vi., we have §(a, f) < 2,
0(a,g) < 2, thus, a sees both f and g.

iii. Else if e does not see either g or i (which
implies d(e, h) > 2, d(e, g) > 2):
If a does not see h, we place a guard on h,
which covers triangle 8. Moreover, we also
place a guard on e (which is neither seen
from a or h), and the guards then also
cover triangles 5,6, and 7. Otherwise, i.e.,
a sees h, we place a guard on e to guaran-
tee that triangles 5,6,7, and 8 are seen.

iv. Else if e sees g, but does not see h:
If a does not see h, we place two guards
on e and h, the guards together then
guard triangles 5,6,7, and 8. Otherwise,
a sees d, f,g,h,i and with that also tri-
angles 5,7, and 8; we place a guard on e,
which sees triangle 6.

v. Else if e sees h, but does not see g:
If §(e, h) > 2, we place a guard on each e
and h, and thereby cover triangles 5,6, 7,
and 8. If d(e,h) < 2, Lemma 4 yields a
contradiction to d(a,g) < 2 with v; = e,
vg=d, v3 = a, Vg =1, v5 = h, Vg = ¢,
and vy = f.

vi. Else if e sees g and h:
If a sees h, we place a guard on e, and
the guards then cover triangles 5,6,7,
and 8. Otherwise, we place a guard on h,
and if h sees f, triangles 5,...,8 are
seen. If not, we place a guard on e if
d(e,h) > 2 and cover triangles 5,...,8;
otherwise, Lemma 4 yields a contradic-
tion to d(e,h) < 2 with vy = a,vy = 1,
v = h,vy = g,v5 = f,vg = e, and vy = d.

(b) Otherwise, a also sees f, hence, triangles 5, 6,
and 7 are covered.

i. If a sees h, it also sees triangle 8.

ii. If a does not see h, we place a guard on h,
which then sees triangle 8.

The guards we place in foot triangles are never needed
to cover path triangles, hence, if some of the foot tri-
angles did not exist, we can simply proceed along the
caterpillar path (and place a guard there if a triangle is
not (completely) seen). O
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5 Conclusions and Future Work

We considered the DISPERSIVE ART GALLERY PROB-
LEM with vertex guards, both in simple polygons and
in polygons with holes, where we measure distance in
terms of geodesics between any two vertices. We es-
tablished NP-completeness of the problem of deciding
whether there exists a vertex guard set with a disper-
sion distance of 2 for polygons with holes. For sim-
ple polygons, we presented a method for placing vertex
guards with dispersion distance of at least 2. While we
do not show NP-completeness of the problem in simple
polygons, we conjecture the following.

Conjecture 1 For a sufficiently large dispersion dis-
tance £ > 2, it is NP-complete to decide whether a sim-
ple polygon allows a set of vertex guards with a disper-
ston distance of at least £.

Another open problem is to construct constant-factor
approximation algorithms. This hinges on good lower
bounds for the optimum.

Both our work and the paper by Rieck and Schef-
fer [14] consider vertex guards. This leaves the problem
for point guards (with positions not necessarily at poly-
gon vertices) wide open. Given that the classical AGP
for point guards is IR-complete [1], these may be sig-
nificantly more difficult to resolve.
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Guarding Points on a Terrain by Watchtowers *

Byeonguk Kang?

Abstract

We study the problem of guarding points on an z-
monotone polygonal chain, called a terrain, using k
watchtowers. A watchtower is a vertical segment whose
bottom endpoint lies on the terrain. A point on the
terrain is visible from a watchtower if the line segment
connecting the point and the top endpoint of the watch-
tower does not cross the terrain. Given a sequence of
point sites lying on a terrain, we aim to partition the
sequence into k contiguous subsequences and place k
watchtowers on the terrain such that every point site in
a subsequence is visible from the same watchtower and
the maximum length of the watchtowers is minimized.
We present efficient algorithms for two variants of the
problem.

1 Introduction

A terrain is a graph of a piecewise linear function
f A CR — R that assigns a height f(p) to every
point p in the domain A of the terrain. In other words,
a terrain is an z-monotone polygonal chain in the plane.
A watchtower is a vertical segment whose bottom end-
point lies on the terrain. A point on the terrain is visible
from a watchtower if the line segment connecting the
point and the top endpoint of the watchtower does not
cross the terrain. If a point is visible from a watchtower,
we say that the point is guarded by the watchtower. We
say that a set of points is guarded by a watchtower if
every point in the set is guarded by the watchtower.

In this paper, we study the following problem of
guarding point sites on a terrain using k& watchtowers:
Given a sequence of point sites on a terrain, partition
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it into k£ subsequences and place k watchtowers on the
terrain such that every point site in a subsequence is
guarded by the same watchtower and the maximum
length of the watchtowers is minimized. We call it the
contiguous k-watchtower problem for point sites on a
terrain. We also consider the problem with an addi-
tional condition on the placement of watchtowers: a
watchtower guarding a subsequence of point sites must
be placed in the z-range Ty < Ty < Tmax Of the point
sites in the subsequence, where z,, is the z-coordinate
of the watchtower and @i, (resp. Tmax) is the mini-
mum (resp. maximum) z-coordinates of the point sites
in the subsequence. This is the in-place version of the
contiguous k-watchtower problem for point sites on a
terrain. For both problems, we call those k watchtowers
satisfying the conditions and minimizing the maximum
length the optimal k watchtowers. See Figure 1 for an
illustration for the problems.

-

D
p1 D3 P s

P2 P2
(a) (b)

Figure 1: (a) Optimal watchtowers for the contiguous
2-watchtower problem. The red tower guards p; and
p2, and the blue tower guards ps and ps. (b) Optimal
watchtowers for the in-place version. The red watch-
tower guards p; and po, and it is placed in the z-range
of p; and ps. The blue watchtower guards p3 and py,
and it is placed in the z-range of p3 and p4s. To guard
point sites including both p; and p3 using one watch-
tower, the watchtower must be at least as long as the
gray watchtower.

The k-watchtower problems we consider have applica-
tions in several domains, including geographic informa-
tion system, communication tower locations, and mili-
tary surveillance [4].

1.1 Related works

A fair amount of work has been done on minimizing the
number of guards in various settings. The art gallery
problem [10] asks for the minimum number of point
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guards that together guard the whole art gallery, repre-
sented by a simple polygon. The art gallery problem was
first posed by Klee in 1973 [10]. Chvétal and Fisk [5, 8]
gave an upper bound |[n/3]| on the minimum number of
point guards for a simple polygon with n vertices.

The terrain guarding problem [9] asks for the mini-
mum number of point guards lying on the terrain that
together guard the terrain. Cole and Sharir [6] showed
that finding the minimum number of guards for a poly-
hedral terrain in 3-dimensional space is NP-complete.
Later, Chen et al. [3] showed that the same problem for
a terrain in 2-dimensional space is also NP-complete.

The k-watchtower problem for a terrain with n ver-
tices in 2-dimensional space is to minimize the maxi-
mum length of k watchtowers that together guard the
whole terrain. The 2-watchtower problem was first stud-
ied by Bespamyatnikh et al. [2]. They presented an
O(n?log® n)-time algorithm for the variant, called the
discrete version, in which every watchtower must be
placed at a vertex of the terrain. They also gave an
O(n*log® n)-time algorithm for the continuous version
in which the two watchtowers can be placed anywhere
in the terrain. Agarwal et al. [1] improved the results
by an O(n?log* n)-time algorithm for the discrete ver-
sion and by an O(n3a(n) log® n)-time algorithm for the
continuous version.

There are also a few results for the k-watchtower
problem for a 2-dimensional terrain with n vertices
in 3-dimensional space. Agarwal et al. [1] presented
an O(n''/?polylog(n))-time algorithm for the discrete
version of the 2-watchtower problem. Recently, Tri-
pathi et al. [12] gave an algorithm for the discrete
version of the k-watchtower problem that runs in
O(n*F*3k2a?(n)log? n + n’a®(n)logn) time.

To the best of our knowledge, little is known about
guarding a finite set of input points lying on a terrain,
not the whole terrain, except the one by Agarwal et
al. [1]. They considered the 2-watchtower problem for
guarding a finite set of m point sites on a terrain with
n vertices in 2-dimensional space where every point site
must be guarded by at least one of the two watchtowers.
The watchtowers can be placed anywhere in the terrain.
They presented an O(mn log* n)-time algorithm for the
problem. One may wonder if this algorithm extends to
the k-watchtower problem for & > 3. It seems to us that
it does, but the running time becomes exponential in k&
for m point sites lying on a terrain with n vertices.

1.1.1 Our results.

We consider the contiguous k-watchtower problem and
the in-place contiguous k-watchtower problem for m
point sites lying on a terrain with n vertices in the
plane. For ease of the description, we may call the
in-place contiguous k-watchtower problem the in-place
k-watchtower problem. If k& > m (resp. k > n), we

place one watchtower with zero length on every point
site (resp. on every vertex of the terrain). Considering
the cost of watchtowers, it is desirable to use a small
number of watchtowers for point sites. Therefore, we
assume that k < min{n, m}.

For k = 1, we present an algorithm with running time
O(m + n) for both problems. Observe that the running
time is linear to the complexity of the input. This is an
improvement upon the previously best algorithm with
running time O(mn) [1].

For the contiguous k-watchtower problem, the watch-
towers can be placed anywhere in the terrain. We show
a monotonicity on the minimum length of a watch-
tower, and present an O((m + n) log m)-time algorithm
for k = 2. For k > 3, we can solve the problem in
O(k(n + m)log/°2*1 ;) time. Our algorithm runs in
O((m + n)log"°&*1 ;m) time for any fixed k.

For the in-place k-watchtower problem, a watchtower
guarding a contiguous subsequence of point sites must
be placed in the z-range of the subsequence. We ob-
serve that the monotonicity shown for the contiguous
k-watchtower problem does not hold for this problem.
We present an O((m + n)log(m + n))-time algorithm
for k = 2 and an O(km? + (mn + m?)log(m + n))-
time algorithm for & > 3. Our algorithm runs in
O((mn + m?)log(m + n)) time for any fixed k > 3.

1.1.2 Sketch of our algorithms.

We devise an efficient algorithm for the contiguous k-
watchtower problem for £ = 1 that runs in O(m + n)
time. The wisibility region of a point site is the set
of points visible from the point site. To find an opti-
mal watchtower, we need to compute the intersection of
the visibility regions of point sites. The previous algo-
rithm takes O(mn) time in computing visibility regions
of point sites and their intersection [1]. To do this ef-
ficiently, we define a region W (p,q) for a pair of point
sites (p, q) such that W(p,q) contains the intersection
of the visibility regions of p and q. We show that the
intersection of visibility regions of all point sites can be
computed in O(m + n) time using the intersection of
W (p, q)’s for all pairs of point sites (p, ¢). From this, we
can compute an optimal watchtower for m point sites
lying on a terrain with n vertices in O(m + n) time.
For k > 2, we show a monotonicity stating that the
length of an optimal watchtower for a subsequence P;
of point sites is at least the length of an optimal watch-
tower for any subsequence of P;. Based on the mono-
tonicity, our algorithm for the contiguous k-watchtower
problem uses binary search to find an optimal partition
of the point site set that minimizes the maximum length
of the watchtowers. In each step of the binary search,
we partition the point site sequence into two contiguous
subsequences. Then, we compute the optimal length of
the watchtowers for each subsequence using half of the
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watchtowers. If the optimal length of the watchtowers
for the left subsequence is larger than the right subse-
quence’s, then we find an optimal partition index in the
left half of indices of the point site set. When the num-
ber of the watchtower is one, we can compute the opti-
mal length of the half of the watchtowers in O(m + n)
time by using the algorithm for one watchtower.

In the in-place k-watchtower problem, the mono-
tonicity used for our algorithm for the contiguous k-
watchtower problem does not hold. So we consider ev-
ery possible partition of the sequence into & contiguous
subsequences. For k = 2, there are O(m) different par-
titions. A naive approach is to compute the optimal
tower-length for every partition in O(m? + mn) total
time by applying the algorithm for the contiguous 1-
watchtower problem. We compute optimal watchtowers
efficiently as follows. For every prefix of the input se-
quence of point sites, we compute the intersection of
W (p, q)’s for every pair of point sites (p,q) in the pre-
fix. We compute those intersections incrementally in
the length of the prefixes in O((m+n)log(m+n)) total
time. Using those intersections, we can compute opti-
mal two watchtowers in O((m + n)log(m +n)) time.

For £ > 3, a nalve approach is to consider
O(m*~1) different partitions, compute their optimal
tower-lengths, and then return the minimum one among
them. To compute optimal k watchtowers efficiently, we
compute the minimum length of one watchtower for ev-
ery contiguous subsequence incrementally in O((m? +
mn)log(m + n)) total time in the preprocessing. Then
we find an optimal partition by dynamic programming
that has O(km?) subproblems.

Most proofs are omitted and they will be given in a
full version.

2 Preliminaries

For a point p in the plane, we use z(p) and y(p) to denote
the z- and y-coordinates of p. For two distinct points
p and ¢ in the plane, let pg denote the line segment
connecting p and ¢, and let pg denote the line passing
through both p and ¢. For a nonvertical line L, we use
L7 to denote the set of points in R? that lie on or above
L, and L~ to denote the set of points in R? that lie on
or below L.

A region A is x-monotone if for every line L per-
pendicular to the z-axis, A N L is connected. A region
A is unbounded vertically upwards if any vertically up-
ward ray emanating from a point in A is contained in
A. A polygonal chain B is x-monotone if for every line
L perpendicular to the z-axis, either BN L = ) or it
is a point. We use T' = (v1,...,v,), a sequence of
vertices with z(v;) < x(v;) for any 1 < ¢ < j < n,
to denote an z-monotone polygonal chain which we
call a terrain in 2-dimensional space. Without loss
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of generality, we assume n > 2. For any two points
p,q € T with z(p) < z(q), let T'(p,q) denote the sub-
chain of T from p to ¢, and let T (p, q) denote the set
of points z € R? such that z(p) < z(z) < z(q) and
y(z) = y(7'), where 2’ is a point in T with z(2) = z(2’).
We simply use T to denote T (vq,v,). We denote by
P = (p1,...,pm) a sequence of m point sites lying on
T such that z(p;) < z(p;) for 1 < i < j < m. We de-
note by P(i,j) the contiguous subsequence (p;,...,p;)
of P for 1 < ¢ < j < m. For ease of description, we as-
sume that m > 2, and let pg = v1 and py4+1 = v,. We
use T'(i,7) to denote T'(p;,p;), and T (4,7) to denote
T+ (pi, pj)-

A point p € R? is wisible from a point ¢ € R? if
and only if pg is contained in TF. For a point g € T,
let V(q) denote the wisibility region of g, which consists
of the points in T visible from ¢. For a point site
p; € P, we use V(i) to denote V(p;). Observe that
V(i) is connected and unbounded vertically upwards.
Let V(i,7) = (N;<o<; V(pe). The following observation
is straightforward.

Observation 1 The point sites in P(i,j) are visible
from a watchtower if and only if the top endpoint of
the watchtower is contained in V(i, j).

For any two real values a, b with a < b, we use S(a, b)
to denote the vertical slab between the lines z = a and
2 = b. In other words, it is the set of points z € R2
such that a < x(z) < b. For any two points p,q € R?
with z(p) < z(q), we abuse the notation so that S(p, q)
denotes S(z(p), z(q)). We use S(i, j) to denote S(p;, p;).
For a set A C R?, we use S(A) to denote the smallest
vertical slab containing A.

For any two sets A and B of points, let d,(A, B) de-
note the minimum vertical distance between A and B,
that is, dy(A, B) = minp,capyen [Y(pa) — y(pp)| sub-
ject to x(pa) = x(pp). If there are no two points p4 € A
and pp € B with z(pa) = z(pg), we set dy (A, B) = oc.
We say that A lies left to B if the rightmost point p of
A and the leftmost point of ¢ of B satisfy z(p) < z(q).

3 Contiguous k watchtowers

In this section, we present an O(k(n +m)log182*1 m)-
time algorithm for the contiguous k-watchtower prob-
lem for point sites P on a terrain 7. In Section 3.1,
we present an O(m + n)-time algorithm for comput-
ing an optimal watchtower for P = (p1,...,pm). We
use the algorithm for one watchtower together with bi-
nary search in computing the optimal k watchtowers for
k > 2 in Sections 3.2 and 3.3. For any constant k, the
algorithm runs in near-linear time: O((m + n)logm)
time for k = 2, and O((m + n)log!°&2¥1m) time for
any fixed k.
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3.1 An optimal watchtower for a site sequence

We consider the problem of placing a shortest watch-
tower that guards all point sites of P. Let F(1,m) de-
note the minimum length of a watchtower that guards
all point sites in P. By Observation 1, any watchtower
guarding point sites in P must have its top endpoint
contained in V(1,m). Thus, F(1,m) = d,(T,V(1,m)).

A straightforward way to compute an optimal watch-
tower for the sequence is to compute V(¢) for all £ =
1,...,m, compute their intersection V(1,m), and then
compute F(1,m). Observe that it already takes O(mn)
time for computing V' (¢) for all £ =1,...,m [11].

We show how to compute V(1,m) = (1, </c,, V(£)
efficiently, in O(m + n) time. Before showing this, we
need to define a region R(1,m) for P(1,m). Let L be
line pipy, if pn, is visible from pq. If p,, is not visible
from py, let L be line wo, where uv is the edge of V(1)
with z(u) < z(pm) < z(v). If p,, lies on a vertex of
T, let R(1,m) be the set of points z € LT satisfying
x(2) =2 x(pm). If py is contained in the interior of an
edge e of T, let R(1,m) be the set of points z € Lt Nne*
satisfying z(z) > z(pn). See Figure 2 for an illustration
for four possible cases. We define the region R(m,1)

symmetrically.
Pm
P P1Pm
T
= x(pm)
(a) (b)
T = z(pm) z = (pm)

(c)

Figure 2: R(1,m) in gray region. (a) p, lying on a
vertex of T' and visible from p;. (b) p,,, lying on a vertex
of T' and not visible from p;. (c) py, lying in the interior
of an edge e of T and visible from p;. (d) p,, lying in
the interior of an edge e of T" and not visible from p;.

By definition, R(1,m) is the intersection of two or
three closed half-planes. Thus, R(1,m) is convex. More-
over, it is unbounded vertically upwards.

Combining R(1,m), R(m,1), and V(1) N V(m) re-
stricted to S(1,m), we define W(1,m) as follows. See

R(m,1)

Figure 3: The purple region is V(1) NV (m) N S(1,m).
W (1,m) is the union of the purple region and the right
gray region from R(1,m) and the left gray region from
R(m,1).

Figure 3 for an illustration.
W(1,m) = R(1,m)UR(m,1)U(V(1)NV (m)NS(1,m)).

By definition, W(1,m) is connected and unbounded
vertically upwards.

Observation 2 The followings hold by the definition of
W(1,m).

(a) W(L,m)NnS(1,m)=V(1)NV(m)NS(1,m).

(b) W(1,m)n5(0,1) = R(m,1) N 5(0,1).

(c) W(1,m)NnS(m,m+1)=R(1,m)NS(m,m+1).

(d) For q € {p1,pm}. y(a) < y(2) for all z € W(1,m)
with x(z) = x(q).

Based on Observation 2, we can compute W (1, m)
efficiently.

Lemma 1 We can compute W(1,m) in time linear to
the complezity of T'(1,m).

By Lemma 1, W(¢,¢ + 1) can be computed in time
linear to the complexity of T'(¢,¢ + 1). Thus, we can
compute W(¢, £+ 1) for all £ = 1,...,m in O(m + n)
time. We show a few properties useful for computing
V(1,m) efficiently.

Lemma 2 V(1,m) Micocmy W —=1,6) 0 V(1) N
V(m).
Let X1 =, pc, R(E=1,0), Xo =, Ly B4, £-1),

X =V (r)nV(r+1)NV(1)NV (m), and X4 = S(r,r+1).
By Lemma 2 and Observation 2(c),
V(l,m)ﬂS(r,r—l—l):X10X2HX30X4. (1)

We need the following lemma to show that V(1,m)
can be computed in O(m + n) time.

Lemma 3 We can compute (), _,c, R(€=1,0)NS(r, 7+
1) for allr =2,...,m in O(m +n) time.
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Theorem 4 We can compute a minimum-length
watchtower that guards m point sites lying on an x-
monotone polygonal chain with n vertices in O(m + n)
time.

Proof. Note that F'(1,m) = dy(T,V(1,m)). First, we
show how to compute V(1,m) in O(m + n) time. We
can get V(1,m) by gluing V(1,m) N S(0,2), V(1,m) N
S(2,m —1),and V(I,m)NS(m —1,m+1).

We compute V(1,m)NS(r,r+1) forallr =2,... ,m—
1 which is defined in Equation 1. By Lemma 3, we
can compute (), _,c, R({ —1,£) N S(r,r +1) for all r =
2,...,m—1in O(m+n) time. Their total complexity is
O(m + n). Similarly, we can compute (1, _,¢,, R({,£ —
HNS(r,r+1) forallr =2,...,m—11in O(m-+n) time.
Their total complexity is O(m + n). By Lemma 1, we
can compute V(r) NV (r+1)N S(r,r+1) for all r =
2,...,m—11in O(m + n) time. Their total complexity
is O(m + n). Recall that we can compute V(1) and
V(m) in O(n) time [11]. Observe that every region that
we compute is x-monotone. Thus, we can compute the
intersections V(1, m)NS(r,r+1) of those regions for all
r=2,...,m—1in time linear to their total complexity
O(m++n) by linear scan. Similarly, V(1,m)NS(0,2) and
V(1,m)NS(m—1,m+1) can be computed in O(m+n)
time.

We glue V(1,m)NS(0,2), V(1,m)NS(2,m—1), and
V(1,m) N S(m — 1,m + 1) together and get V(1,m).
Since the complexity of V(1,m) is O(m + n), we can
compute F(1,m) = d,(T,V(1,m)) in O(m + n) time
by linear scan. We compute the location of an optimal
watchtower during the scan. O

3.2 Two watchtowers

We consider the contiguous k-watchtower problem for
k = 2: Partition P into 2 subsequences and place 2
watchtowers on T such that every point site in a sub-
sequence is guarded by the same watchtower and the
maximum length of the watchtowers is minimized.

Recall that P(i,7) denotes the contiguous subse-
quence (p;,...,p;) of P = (p1,...,pm) for 1 <i<j <
m. Let F(i,j) denote the minimum length of a watch-
tower that guards point sites in P(i,j) lying on T. We
have the following lemma stating the monotonicity on
F(i, ) obtained by V(¢/,5") C V(3 ).

Lemma 5 For indicesi', i, j and j' satisfying 1 <14’ <
i<j<j <m, F(i,j) < F(',j").

For an index i with 1 < i < m, let Fi(i) = F(1,4)
and F5(i) = F(i + 1,m). Then the minimum length
for two watchtowers is ming ;< {max{Fi (), F2(7)}}.
By Lemma 5, Fi(i) increases monotonically and F5(7)
decreases monotonically as i increases from 1 to m — 1.
Therefore, we find the index that achieves the minimum
length by binary search. Since P consists of m point
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sites, the number of binary search steps is O(log m). By
Theorem 4, the comparison in each step can be done
in O(m + n) time. In other words, we can compute
both Fy(i) and Fy(i) for any index i = 1,...,m — 1 in
O(m + n) time. Also, we can compute the location of
an optimal watchtower for P(i, 7) for any index 1 < i <
j < min O(m+ n) time by Theorem 4. Therefore, we
can compute the optimal two watchtowers in O((m +
n)logm) time.

Theorem 6 We can compute optimal two watchtowers
for the contiguous 2-watchtower problem with m point
sites lying on an x-monotone polygonal chain with n
vertices in O((m + n)logm) time.

3.3 Lk watchtowers

In this section, we present an O(k(n +m) log/1°82 ¥l 1n)-
time algorithm for computing the contiguous k watch-
towers of minimum length for & > 3. Roughly speaking,
we partition P into two contiguous subsequences and
compute the minimum tower-length for one subsequence
using | k/2| watchtowers and the minimum tower-length
for the other subsequence using [k/2] watchtowers. We
repeat this recursively.

For indices 1 < i < j < m, let opt(s,j,k') de-
note the minimum tower-length for P(i,j) using k'
watchtowers with &' > 1. Obviously, opt(i,j,k) >
opt(4, 4, k" + 1). Observe that opt(i,4,1) = F(i,5). For
k' > 2, opt(i, 4, k") equals to

4I<n[in‘{max{opt(i,€, |k'/2]),0pt(¢ + 1,4, [K'/2])}}.
1<6<y

Lemma 7 opt(1,i,k") < opt(1,j, k') for 1<i<j<m
and k' > 1.

The minimum tower-length for P(1,m) using k
watchtowers is opt(1,m, k). By Lemma 7, we can find an
index ¢ = argminjgs<,, max{opt(1,¢, |k'/2]),opt(¢ +
1,m, [k’/2])} by binary search. Therefore, we conclude
this section with Theorem 8.

Theorem 8 We can compute optimal k watchtowers
for the contiguous k-watchtower problem with m point
sites lying on an x-monotone polygonal chain with n
vertices in O(k(n +m)log 2%l m) time.

4 In-place contiguous k watchtowers

In this section, we present algorithms for the in-place k-
watchtower problem for P lying on T'. In this problem,
a watchtower that guards a subsequence P(3, j) must be
placed in T'(i,j). By the problem definition, no watch-
tower cannot be placed on T'(0,1) UT (m,m+ 1). Thus,
for ease of discussion, we assume that p; lies on v; and
Pm lies on v,.
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In Section 4.1, we present an O((m + n)log(m + n))-
time algorithm for & = 2. The algorithm works in
incremental fashion in computing an optimal solution
using a balanced binary search tree based on the seg-
ment tree [7]. In Section 4.2, we present an O(km? +
(mn + m?)log(m + n))-time algorithm for k > 3. The
algorithm uses dynamic programming in computing an
optimal solution, using the O((m + n) log(m + n))-time
algorithm for k = 2 for the base case.

p3

P4
D1 D2

Figure 4: The vertical red line segments, left to right,
are the shortest watchtowers for P(1,2), P(1,3), and
P(1,4). We have Fy(2) > F1(3) and F1(3) < Fy(4).

4.1 Two watchtowers

Let F(i,j) denote the minimum length of one watch-
tower placed on T'(4, j) for P(i,j) with 1 <i < j < m.
Let Fy(i) = F(1,i) and Fs(i) = F(i + 1,m). Then our
goal is to compute ming ;< {max{F;(z), F2(7)}}.

Observe that the monotonicity in Lemma 5 does
not hold for the in-place k-watchtower problem due
to the in-place requirement. For two indices ¢,j with
1 < i < j < m, the watchtower for P(1,j) can be
placed anywhere in T'(1,5) = T(1,4) UT(i,5) while the
watchtower for P(1,4) must be placed in T'(1,4). So it
is possible that Fy (i) > Fi(j). See Figure 4.

We use an incremental algorithm for computing F7 (7)
and Fy(7) for all ¢ = 1,...,m — 1 that runs in O((m +
n)log(m+n)) time. Recall that we can compute W (i —
1,7) for all i = 2,...,m in O(m+n) time by Lemma 1.
Thus, we compute their intersection incrementally.

Let W(i) = [, .pc; W(€—1,€). Recall that W(£—1,¢)
is connected and unbounded vertically upwards. Thus,
W (i) is connected and unbounded vertically upwards.

Lemma 9 V(1,4) N S(1,7) = W) N S(1,14).
Corollary 10 d,(7T'(1,7),V(1,¢)) = d,(T(1,7), W(2)).

By Observation 1, Lemma 9, and Corollary 10,
Fi(i) = dy(T(1,4),W(i)). Our algorithm starts with
trivial base case F1(1) = 0 and computes Fj () for all
t=2,...,m — 1 one by one incrementally.

First, we show that W(i) for all ¢ = 2,...,m can be
computed in O((m + n)log(m + n)) time in total. We

can compute W(2) = W(1,2) in O(m + n) time. We
show how to compute W(i + 1) = W(i) N W(i,i + 1)
from W(i) efficiently. To do this, we show that the
boundary of W (i,i+ 1) intersects the boundary of W(%)
in O(|T(¢,i + 1)|) connected components. In specific,
each edge of W (i,7+ 1) intersects the boundary of W(%)
at most twice.

Lemma 11 We can compute Fy(i) and Fy(i) for all
i=1,...,m—1in O((m+n)log(m+n)) time.

Recall that the minimum tower-length is
ming ;<m{max{F1(7), F»(i)}}. By Lemma 11, we
can compute Fi (i) and Fy(i) in O((m + n)log(m + n))
time for all 4 = 1,...,m — 1. Then, we can find
ming ;< m{max{Fi(¢), F»(i)}} in O(m) time. Recall
that we can compute an optimal watchtower that
guards P(i,j) in O(m + n) time by Theorem 4. In
conclusion, we can compute the minimum tower-length
and the locations of the optimal watchtowers in
O((m + n)log(m + n)) time.

Theorem 12 We can compute optimal two watchtow-
ers for the in-place contiguous 2-watchtower problem
with m point sites lying on an x-monotone polygonal
chain with n vertices in O((m + n)log(m + n)) time.

4.2 [k watchtowers

Now we consider the in-place contiguous k watchtower
problem for k > 3. By the definition of the problem,
the minimum tower-length is

1<i1<-r.p<1£1k71<m{maX{F(l, i1)y.., Flig—1+1,m)}}.
A nalve approach is to consider all combinations of k—1
point sites with indices 1 <41 < ... < ip_1 < m among
m point sites, compute their maximum tower-lengths
max{F(1,41), F(i1+1,42),..., F(ig—1+1,m)}, and then
return the minimum one among the tower-lengths. This
takes O(m*~1(m +n)) time.

We can improve the running time using dynamic
programming as follows. For an index 1 < i < m,
let opt(%, k') denote the minimum tower-length for the
in-place k’-watchtower problem for P(1,7). Then (1)
opt(i,1) = F(1,3), (2) opt(é, k') =0if &' > 1 and ¢ < ¥/,
and (3) opt(4, k') = min; ¢, {max{opt(j, k' — 1), F(j +
1,9)}}if & >1and i > K.

The optimal length is opt(m, k) and the number of
subproblems is O(km?). To obtain opt(m, k), we need to
compute F(i,7) for all 1 <4 < j < m. By Theorem 12,
for a fixed index 1 < ¢ < m, we can compute F'(i,j) for
all i <7 <min O((m+n)log(m+n)) time. Therefore,
we have the following lemma.

Lemma 13 We can compute F(i,j) for every 1 < i <
j <m in O((mn +m?)log(m +n)) time.
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After O((mn+m?)log(m+n))-time preprocessing by
Lemma 13, we can compute the minimum tower-length
in O(km?) time using dynamic programming.

Theorem 14 We can compute optimal k watchtowers
for the in-place contiguous k-watchtower problem with
m point sites lying on an x-monotone polygonal chain
with n vertices in O(km?+ (mn+m?)log(m+n)) time.

We would like to mention that the algorithm pre-
sented in this paper also work with little modification
and without increasing the running time for minimizing
the sum of the tower-lengths for k watchtowers.
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Multirobot Watchman Routes in a Simple Polygon

Joseph S. B. Mitchell*

Abstract

The well-known WATCHMAN ROUTE problem seeks a
shortest route in a polygonal domain from which every
point of the domain can be seen. In this paper, we study
the cooperative variant of the problem, namely the k-
WATCHMEN ROUTES problem, in a simple polygon P.
We look at both the version in which the k& watchmen
must collectively see all of P, and the quota version in
which they must see a predetermined fraction of P’s
area.

We give an exact pseudopolynomial time algorithm
for the k-WATCHMEN ROUTES problem in a simple or-
thogonal polygon P with the constraint that watchmen
must move on axis-parallel segments, and there is a
given common starting point on the boundary. Fur-
ther, we give a fully polynomial-time approximation
scheme and a constant-factor approximation for uncon-
strained movement. For the quota version, we give a
constant-factor approximation in a simple polygon, uti-
lizing the solution to the (single) QUOTA WATCHMAN
ROUTE problem.

1 Introduction

In 1973, Victor Klee introduced the ART GALLERY
problem: given an art gallery with n walls (a poly-
gon P), determine the minimum number of stationary
guards at points within P such that every point of P can
be seen by at least one guard point. The ART GALLERY
problem and its many variants have since been the sub-
ject of a large body of research in computational geom-
etry and algorithms.

When guards are mobile, a single guard suffices to see
a connected domain; thus, we are interested in finding
routes for one or more guards that optimize some as-
pects of the guard(s)’ movement (e.g., path lengths, the
number of turns, etc). The problem of minimizing the

*Department of Applied Mathematics and Statistics, Stony
Brook University, joseph.mitchell@stonybrook.edu

fDepartment of Applied Mathematics and Statistics, Stony
Brook University, 1inh.nguyen. 1@stonybrook.edu
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distance that one guard must travel to see the entire
polygon is the WATCHMAN ROUTE problem (WRP).
Chin and Ntafos [3] introduced the WRP, proved NP-
hardness in polygons with holes (see [6]) and gave an
O(n) algorithm for simple orthogonal polygons. In
(general) simple polygons, there are exact polynomial-
time algorithms; the current best running times are
O(n®logn) for the anchored version (a starting point
s which the route must pass through is given) and
O(n*logn) for the floating version (no starting point
is given) [5].

In some settings, complete coverage might not be fea-
sible or necessary, thus we are also interested in comput-
ing a shortest route that sees at least an area of A > 0
within P. This is known as the QUOTA WATCHMAN
ROUTE problem (QWRP), introduced in [8]. In contrast
to the tractable WRP, the QWRP is (weakly) NP-hard,
but a fully polynomial-time approximation scheme (FP-
TAS) is known. Any results about the QWRP can be
adapted to the WRP by simply letting A be equal to
the area of P.

We consider the generalization to multiple agents
of both the WRP and the QWRP, namely the
k-WATCHMEN ROUTES problem (k-WRP) and the
QuoTA k-WATCHMEN ROUTES problem (Qk-WRP),
with the objective of minimizing the length of the
longest path traveled by any one watchman. Even in
a simple polygon, when no starting points are specified
(so, we are to determine the best starting locations),
both problems are NP-hard to approximate within any
multiplicative factor [12].

We thus focus on the (boundary) anchored version, in
which a team of robots or searchers enter a domain P
through a door on its boundary to search for a station-
ary target, which may be randomly distributed within
the domain; the objective is to plan for an optimal col-
lective effort to guarantee at least a certain probability
of detection (1 in the k-WRP and some p € [0,1] in
the Qk-WRP). We consider the number, k, of robots
to be fixed and relatively small, as in most practical
situations it is infeasible to employ arbitrarily many
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watchmen /robots/agents. We present, for any fixed k,
a pseudopolynomial-time (polynomial in the number n
of vertices of P and the length of the longest edge of
P) exact algorithm to solve the anchored k-WRP in a
simple orthogonal (integral coordinate) polygon P un-
der L1 distance. The pseudopolynomial-time exact al-
gorithm is the basis for the FPTAS for L1 distance and
the (v/24-¢)-approximation for L2 distance. For the Qk-
WRP, we give polynomial-time constant-factor approxi-
mations in a simple polygon. While we restrict ourselves
to the anchored version, we achieve better approxima-
tion factors for any (fixed) k than the ones Nilsson and
Packer proposed for the case k = 2 in [11].

2 Preliminaries

Let P be a simple polygon, i.e. a simply connected sub-
set of R2. Denote by P the boundary of P, a polygonal
chain that does not self-intersect consisting of n vertices
V1, V2, ..., VU, Which we assume to have integer coordi-
nates. A simple polygon is orthogonal if the internal
angle at every vertex is either 90 (convex vertex) or 270
degrees (reflex vertex).

For a point x € P, its wvisibility region, denoted by
V(x), is the set of all points y such that the segment
xy does not intersect with the exterior of P: we say x
and y and see each other. For an arbitrary set X C P,
the visibility region of X, V(X), is the set of all points
that are seen by some point in X. When X is either
a point or a line segment, V' (X) is necessarily a simple
subpolygon of P with at most n vertices and can be
computed in O(n) time [7, 13]. We use | - | to denote
Euclidean measure of geometric objects (e.g., length or
area).

The first problem we investigate is the anchored k-
WRP, where the polygon P is orthogonal and move-
ments of the watchmen are rectilinear (L1 distance).
Given a simple orthogonal polygon P and a starting
point s € OP, we compute k tours {v;} within P con-
sisting of horizontal and vertical segments, all starting

from s such that |J V(y) = P and _Erllaxk|%| is

i=1,....k
minimized. We also assume that the coordinates of

the vertices of P are integers. It is known that even
for k = 2, the general k--WRP in a simple polygon is
(weakly) NP-hard via a simple reduction from PARTI-
TION [10]. The reduction can be easily modified to show
that our version is also NP-hard. The second problem,

‘ U Vin)

i=1,....k

Qk-WRP, generalizes the first to > A for

some 0 < A < |P|. The fraction of area seen, \%I’ can
be interpreted as the probability that the watchmen de-
tect a target uniformly distributed in P. We consider
the Qk-WRP in a simple polygon, where the watchmen
have unrestricted movement (not limited to horizontal
and vertical).

3 k-Watchmen in a Simple Orthogonal Polygon

Dynamic programming exact algorithm A wvisibility
cut ¢; with respect to the starting point s is a chord
obtained from extending the edge e incident on a reflex
vertex, v;, where e is the edge whose extension creates
a convex vertex at v; in the subpolygon containing s.
The other subpolygon (not containing s) is the pocket
induced by ¢;. Not all reflex vertices induce a visibility
cut. An essential cut is a visibility cut whose pocket
does not fully contain any other pocket (Figure 1). In

general, essential cuts may intersect with each other.

Figure 1: The essential cuts (dashed).

Lemmal |J V(y) =P if and only if {7;} collec-
i=1,...k
tively visit all essential cuts of P.

Proof. The lemma is simply an extension of the well
known fact: a single tour sees all of P if and only if it
visits all essential cuts [2, 4, 5]. O

Denote by C; the set of essential cuts visited by ~;.

Corollary 2 There exists an optimal solution {~;}
such that for any i, v; is the shortest route to wvisit
all cuts in C; and s in the order in which they appear
around OP.

Consider the decomposition of P into rectangular
cells by the maximal (within P) extensions of all edges,
as well as a horizontal and vertical line through s; this
is known as the Hanan grid (Figure 2).

Lemma 3 There exists an optimal solution {~;} within
the Hanan grid.
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|

1

==

Figure 2: The Hanan grid formed by extensions of all

edges in P.

Proof. Given an optimal solution {v;}, let C; =
{ci1, .. ,pij be
the point where ~; first makes contact with ¢;q, ...

.,Cij} (in order around OP) and p;, ...
) Cig-
Denote by Llp(z,y) a geodesic L1 shortest path be-
tween x and y, a rectilinear shortest path constrained
to stay within P. (For an overview of geodesic shortest
paths in both L1 and L2 metrics, see [9].)

First, note that for every i, we may replace v; with
a concatenation of geodesic L1 shortest paths, namely
vi = L1,(s,ps1) UL1p(pi1, pi2) U...ULlp(pij, s) with-
out increasing . :nllaxk{m\} while maintaining visibility
coverage of P. o

We argue that L1,(s,p;1) is a geodesic L1 short-
est path from s to ¢;. Suppose to the con-
trary, that geodesic L1 shortest paths from s to
at ply # pia (all
geodesic L1 shortest paths from a point to a seg-

c;1 make contact with ¢

ment have the same endpoint). Due to orthogonal-
ity [L1p(s,piy)| + [piipii] = |L1p(s,pi1)|, which means
|L1p(s,pi)|+[L1p(pit, pi2)| = [L1p (s, pir)| + |pipir| +
|LLp(pir. pia)| > |LLp(s,ply) |+ L1p (9l pio)]. This im-
plies v; should take a geodesic L1 shortest path from s
to ¢;1, and it suffices to find such a path within the
Hanan grid. By a straightforward inductive argument,
we can show the same for any portion of v; between any
two essential cuts. O

Corollary 2 and Lemma 3 allow us to reduce the prob-
lem to that of finding a set of grid points on the es-
sential cuts for which each route is responsible. Then,
each route is simply the concatenation of L1 short-
Let {c1,¢2,...,¢m}
be the set of essential cuts in order around OP (s

est paths between those points.

lies between ¢; and ¢,,). We define each subproblem

(Cj7p17lla cee
points p1, ...

, Dk, i) by an essential cut ¢;, k Hanan grid
, P on essential cuts ¢1,...,¢; (and s) and
., 1. Refer to Figure 3 for an illustra-
, Dk, k) = TRUE if and

k integers [y, ..
tion. Subproblem (¢;,p1,1l1,. ..
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only if there exists a collection of k paths I'y,...,T'x col-
lectively visiting all essential cuts from ¢; up to ¢; such

that

e ['; starts at s, ends at p;,

o Tl =1;.

[Ta| =2

Ly =0 s '

Figure 3: An example subproblem (cs, p1, 11, p2,l2).

The recursion is as follows. For each Hanan grid point
peEcjandi=1,...,k
y Pk lk)

(Cj7p17l1a"'ap’i ::pvli7"'

:\/(cj—17p17l17 P = p/ali - |L1P(p7p/)|a e apkalk)
p/

(1)

where p’ is taken from the set of all Hanan grid points
on the cuts cy,...,cj—1 such that geodesic L1 shortest
paths from p’ to ¢; make contact with ¢; at p (Lemma 3).
s,0) = TRUE. Af-
ter tabulating all subproblems, we take the subproblem
(¢msP1,01, -+, Pry lk) (such that (¢, 01,01, .- Dk, k) =
TRUE) with the minimum i_nllaxk{li +|L1p(pi, s)|} and

The base case is simply (s, s,0,...,

return the tours {v; :=T; U L1p(p;, s)}
Proof of correctness Our proof of correctness relies
on two arguments:

e Since the paths associated with subproblem

(cj—1,p1: 105 s pi =P Li— |L1p(p, p)|s - - ks Ii)
visit all essential cuts up to cj_i, the paths
yDi =
, Pk, l) also visit all essential cuts up to

associated with subproblem (c¢j,p1,l1,...
D, lia s
¢j since p € ¢j. By induction, the tours returned
hence visit all essential cuts.

e 7; consists of geodesic L1 shortest paths be-
tween contact points with essential cuts (proof of
Lemma 3). If we identify two consecutive contact
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points on -y;, say p’ and p in that order, then the
length of the portion of ; from s to p is I; if and
only if the length of the portion of v; from s to p’
is i — |L1p(p,p')-

Analysis of running time There are O(n) essential
cuts, O(n) Hanan grid points on each cut. Each tour
~; must be no longer than nD, where D is the length
of the longest edge of P, therefore [; is bounded by nD.
In total, there are O[n-n2* - (nD)k] = O(n**+1DF) sub-
problems. We pre-compute geodesic L1 shortest paths
between Hanan grid points, as well as between Hanan
grid points and essential cuts, which equates to solving
the ALL PAIRS SHORTEST PATH problem in the embed-
ded graph of the Hanan grid. Then, we can solve each
subproblem by iterating through at most O(n?) previ-
ously solved subproblems. Thus, the total running time
is O(n3*+3DF), which is pseudopolynomial for fixed k.
This is in congruence with the weak NP-hardness from
PARTITION, for which there exists a pseudopolynomial
(polynomial in the number of input integers and the
largest input integer) time algorithm. A tighter time
bound is O(n?**3Lk) where L is the length of a shortest
single orthogonal watchman route of P, which is com-
putable in O(n) time if P is simple and orthogonal [3].

.....

est single watchman route and k —1 routes of length 0 is
a feasible solution to the k-WRP). In addition, we need
not consider any L1p(p,p’) whose length is greater than
L for recursion (1) of the dynamic programming.

Fully polynomial-time approximation scheme To
achieve fully polynomial running time for fixed k, we
bound the number of subproblems by “bucketing” the
lengths of paths in P. Let {v;} be an optimal collection
Consider that L < > |y (the con-

i=1,....k
catenation of {v;} can be considered a single watchman

of k routes.

route) hence

< max |y| < L. (2)
i=1,...k

EEREE)

|

Given any ¢ > 0, we divide L into [ %] uniform inter-
vals, each no longer than % The length of any geodesic
L1 shortest path we take into consideration for recur-
sion (1) must fall into one of the intervals, we round
it down to the nearest interval endpoint. Then, ap-
ply the dynamic programming algorithm to the new in-
stance with subproblems defined instead by intervals’

endpoints. Let the solution returned be {v/}. For clar-
ity, we denote by d(.) distance/length in the “rounded
down” instance. Then

> N > .
.maxk\%l > .:Hllfr?fkd(%) > .maxkd(%) (3)

i=1,..., 5 s i=1,...,

The first inequality follows simply from the fact that
we round down any distance from the original instance,
the second inequality is by definition, since {7/} is an
optimal solution of the new instance. Now, any route
in {7/} must consist of at most n geodesic L1 short-
est paths between Hanan grid points on essential cuts,
the length of each differs by no more than % between
the original instance and the “rounded down” instance.

Thus, for any 4

L
N —d(~)) < s
[vil —d(v;) <n -

therefore

eL

!
igffkd(vi) + 2

> il 4
2 max, || (4)
Combining all three inequalities (2), (3), (4), we get

1 | > /
( +E)i:rgl?§klvzl fi:rrllﬁfklml

. . A
with a running time of O <n2k+3 (nk) )

€

Remark The FPTAS for
(L1 distance) gives a polynomial time (v2 + &)-

orthogonal movement

approximation to unrestricted movement (L2 distance).

Theorem 4 For any fized k, the anchored k-WRP in
a simple orthogonal polygon has an FPTAS for the L1
metric and a polynomial-time (\/5 + ¢&)-approzimation
for the L2 metric.

4 Quota k-Watchmen in a Simple Polygon

In this section, we assume P is a general simple polygon
and the watchmen can move in any direction within P.

Constant factor polynomial-time approximation Let
{7} be an optimal collection of quota k-watchman
routes to achieve the visibility area quota of A and let
OPT = ,max |7i|. Denote by Cy(r) the geodesic disk
of radius  centered at s, i.e. the locus of all points
within geodesic distance (length of the geodesic short-
est path) of r from s. Let r = 7y, where 7y, is

the smallest value of 7 such that |V(Cy(r))| > A; rmin
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can be computed in O(n?logn) time using the “visibil-
Clearly, mpin < %
Cy (%) encloses {7;} and must see an area no smaller
than A.

,

point we must have § < % < r, suppose we have

reached this point. Then, Cy(r) contains {7;}. Let v be

ity wave” methods in [1]. , since

If we repeatedly multiply r by 2, at some

a shortest single route contained within C,(r) such that
|V (7)| > A (note that 7 is not necessarily the shortest
single quota watchman route overall in P).

Lemma 5 % < OPT < |y|.

Proof. Recall that in Section 3, we proved two sim-
ilar inequalities for watchman routes with orthogonal
movement seeing the whole polygon. The same holds
here since orthogonality and quota did not play a part
in the argument. O

We show how to approximate v (it is NP-hard to exactly
compute ), and that the number of times we multiply
r by 2 is polynomial in n.

Lemma 6 /8, Section 3] Given a budget B > 0 and any

e > 0, there exists an O (Z—g) algorithm that computes
a route of length at most (1 4+ ¢)B seeing as much area

as any route of length B within Cy(r).

We briefly describe the algorithm, and refer the readers
to [8] for more details. First, triangulate P, including
s as a vertex of the triangulation. Then, overlay onto
the triangulation a regular square grid of side lengths
0 =0 (%) within an axis aligned square of size B-
by-B centered at s. We consider the set of (convex)
cells that overlap (both fully and partially) with Cy(r)
and their vertices, Ss,. Let yvp be the B-length route
within Cy(r) that achieves the most area of visibility.
There exists a route of length at most (1 + £)B with
vertices coming from S, enclosing g, i.e. the bound-
ary of the relative convex hull (the minimum-perimeter
connected superset within P, see [8, 9]) of the cells con-
taining vertices of g, thus seeing at least as much area
as vp (Figure 4). If |y] < B < a|y| for some o > 1,
using dynamic programming, the algorithm in [8, Sec-
tion 3] computes a route 4’ of length no longer than
a(l+¢)|vy| with vertices in Ss, that sees the most area,
which must be no smaller than |V (vg)| > |[V(v)] > A.
Using Lemma 7, we acquire a polynomial-sized set of
values from which we can search for an appropriate B.

Lemma 7 ryin < |y| < 6nrmin.
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Figure 4: Left: ~p (red) is a tour no longer than B
within Cy(r) (blue) that sees the most area. Right:
enclosing yp with a tour whose vertices are in S5 - seeing
everything vp sees (green).

Proof. The first inequality is straightforward, rp, <
OPT < |y|.

For the second inequality, first note that if a single
watchman travels from s to OCy(rmin ), follows along the
whole of OC(rmin) then goes back to s, he sees an area
of A, thus [0C,(7min)|+ 27 min is an upper bound on |7|.
We show that [0C,(rmin)| + 2 min < 6n7pmin. Observe
that OCgy(rymin) consists of polygonal chains that are
portions of QP and circular arcs; the circular arcs have
total length no greater than 277,,;,. Each segment in
the polygonal part of C,(7mn) has length bounded
by the sum of geodesic distances from its endpoints to
s (triangle inequality), which is no more than 2r,,;,.
There are at most n segments in the polygonal portions
of Cy(Tmin), therefore their total length is no greater
than 2n7ryin, implying [0C(Fmin)| + 27 min = 20Tmin +
2T min + 2T min < 60T in.- O

We divide 6n7,:, into (6?”] uniform intervals so that
each is no longer than er,,;,: the smallest interval
endpoint that is no smaller than |y| must also be no
larger than (1 + €)|v|, and hence is the value of B that

we desire. We perform a binary search on the values
0. 87T min
Wil

gorithm in Lemma 6, and seek out the smallest value

s ooy 6NTin ¢ as the input budget for the al-
for which the output route 7’ sees an area no smaller
than A. Clearly, |[7/| < (1+¢)2|y|.

Lemma 7 also implies that the number of times
we double 7 is polynomially bounded, in particular,
O(logn), since Tyin < OPT < 607 0.

We are now ready to describe the approximation al-
gorithm for the Qk-WRP as follows:
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e Step 1: Set 7 := ryin.
e Step 2: Compute 7/, a (1+¢)?-approximation to 7.

e Step 3: Divide v’ into k subpaths of equal length,
each of which is bounded by a;,a;11 €7 (a1 =s =
ak+1) and denoted by 75,4, , -

e Step 4: For each i, we obtain «} by traversing the
geodesic shortest path from s to a;, 75,4,,, and the
geodesic shortest path from a;y; back to s.

e Step 5: Set r := 2r, then repeat from Step 2, until
r > 6NTmin-

Finally, we return the collection of routes {7;} that min-
imizes max |v;| out of all collections from all values of
1=

r in the dgﬁ’l)ling search.

Analysis of running time For each choice of B, we ex-
ecute the O ("—5)

“s ) algorithm, thus computing an approx-
imation to 4" for each value of r takes O (’;—g log (g))
time. This step dominates both computing ry;, and
deriving the collection {7,}. Since there are O(logn) it-
erations of the doubling search for r, the overall running
time is O (Z—s log (g) log n)

Theorem 8 The algorithm described above has an ap-
proxzimation factor of 3 + €.

Proof. Since all our choices for B are no larger than
6n7rmin, we can choose an appropriate § = O (%) SO
that the geodesic distance from any point on 4’ to s is no
longer than r+¢r. Thus, when 5 < O% < r, any one of
the k routes returned by the algorithm is no longer than
h—k/l +2r+2er < [(1+¢)24+2+2¢]OPT = (3+¢')OPT,
where ¢’ = 4¢ + 2. Note that 1 = © (%) as ¢ and &’
approach 0, so the running time is in the same order

when written in terms of £’. O

Improving the approximation factor In the approx-
imation algorithm earlier, we gradually expand Cj(r)
until Cy(r) contains an optimal {v;}. If in each itera-
tion, we instead multiply r by a smaller factor, namely
o < %5 < The
distance from each point on 4’ to s is then no greater
than r+er < (1+ 5)2%. Hence, the length of any of
the k routes returned by the approximation algorithm
is bounded by ‘7—,;' + (1 +¢)22LT ¢+ (14 ¢)22T <
(2 + &')OPT, where ¢’ = 4e + 2¢2.

(1 4+ ¢), then at some point

There is however, a trade-off between the approxima-
tion factor and the number of iterations of the multi-
plicative search for r. If we multiply » by (1 + &) each
time, the search requires O(log, . n) iterations. Note
that

In2 1
log,,.n= lognm = log nO <€> .

In summary, we can achieve an approximation ratio
of (2+¢’) with a running time of O (’EL—; log () log n) =

0 (;’% log (%) logn> (since 1 =© (4)).

References

[1] Esther M. Arkin, Alon Efrat, Christian Knauer,
Joseph S. B. Mitchell, Valentin Polishchuk, Glnter
Rote, Lena Schlipf, and Topi Talvitie. Shortest
path to a segment and quickest visibility queries.
Journal of Computational Geometry, 7(2):77-100,
2016.

[2] Svante Carlsson, Hakan Jonsson, and Bengt J. Nils-
son. Finding the shortest watchman route in a sim-
ple polygon. Discrete €& Computational Geometry,
22:377-402, 1999.

[3] Wei-Pang Chin and Simeon Ntafos.
watchman routes. In Proceedings of the 2nd Annual

Optimum

Symposium on Computational Geometry, pages 24—
33, 1986.

[4] Wei-Pang Chin and Simeon Ntafos.  Shortest
watchman routes in simple polygons. Discrete €
Computational Geometry, 6(1):9-31, 1991.

[6] Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph
S. B. Mitchell. Touring a sequence of polygons. In
Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, pages 473-482, 2003.

[6] Adrian Dumitrescu and Csaba D. Téth. Watch-
man tours for polygons with holes. Computational
Geometry, 45(7):326-333, 2012.

[7] Leonidas Guibas, John Hershberger, Daniel Leven,
Micha Sharir, and Robert Tarjan. Linear time al-
gorithms for visibility and shortest path problems
inside simple polygons. In Proceedings of the 2nd
Annual Symposium on Computational Geometry,
pages 1-13, 1986.

54



CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

8]

[13]

Kien C. Huynh, Joseph S. B. Mitchell, Linh
Nguyen, and Valentin Polishchuk. Optimiz-
ing visibility-based search in polygonal domains.
In Proceedings of the 19th Scandinavian Sympo-
stum and Workshops on Algorithm Theory (SWAT
2024 ), volume 294 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 27:1-27:16,
2024.

Joseph S. B. Mitchell. Geometric shortest paths
and network optimization. Handbook of Computa-
tional Geometry, 334:633-702, 2000.

Joseph S. B. Mitchell and Erik L. Wynters. Watch-
man routes for multiple guards. In Proceedings
of the 3rd Canadian Conference on Computational
Geometry, pages 126-129, 1991.

Bengt J. Nilsson and Eli Packer. Approximation
algorithms for the two-watchman route in a simple
polygon. arXiv preprint arXiw:2309.13428, 2023.

Eli Packer. Computing multiple watchman routes.
In FExperimental Algorithms: 7th International
Workshop, WEA 2008 Provincetown, MA, USA,
May 30-June 1, 2008 Proceedings 7, pages 114-128.
Springer, 2008.

Csaba D. T6th, Joseph O’Rourke, and Jacob E.
Goodman. Handbook of Discrete and Computa-
tional Geometry. CRC press, 2017.

55



56



CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

An Improved Algorithm for Shortest Paths in Weighted Unit-Disk Graphs*

Bruce W. Brewer!

Abstract

Let V be a set of n points in the plane. The unit-disk
graph G = (V, E) has vertex set V and an edge e,,, € E
between vertices u,v € V if the Euclidean distance be-
tween u and v is at most 1. The weight of each edge ey,
is the Euclidean distance between u and v. Given V and
a source point s € V', we consider the problem of com-
puting shortest paths in G from s to all other vertices.
The previously best algorithm for this problem runs in
O(nlog?n) time [Wang and Xue, SoCG’19]. The prob-
lem has an Q(nlogn) lower bound under the algebraic
decision tree model. In this paper, we present an im-
proved algorithm of O(nlog®n/loglogn) time (under
the standard real RAM model). Furthermore, we show
that the problem can be solved using O(nlogn) compar-
isons under the algebraic decision tree model, matching
the Q(nlogn) lower bound.

1 Introduction

Let V be a set of n points in the plane. The unit-
disk graph G = (V, E) has vertex set V and an edge
eww € FE between vertices u,v € V if the Euclidean
distance between u and v is at most 1. Alternatively, G
can be seen as the intersection graph of disks with radius
5 centered at the points in V' (i.e., two disks have an
edge in the graph if they intersect). In the weighted
graph, the weight of each edge e,, € E is the Euclidean
distance between u and v. In the unweighted graph, all
edges have the same weight.

Given V and a source point s € V, we study the sin-
gle source shortest path (SSSP) problem where the goal
is to compute shortest paths from s to all other vertices
in GG. Like in general graphs, the algorithm usually re-
turns a shortest path tree rooted at s. The problem
in the unweighted graph has an Q(nlogn) lower bound
in the algebraic decision tree model since even deciding
if G is connected requires that much time by a reduc-
tion from the max-gap [2]. The unweighted problem has
been solved optimally in O(nlogn) time by Cabello and
Jejéié [2], or in O(n) time by Chan and Skrepetos [4] if

*This research was supported in part by NSF under Grant
CCF-2005323.

tKahlert School of Computing, University of Utah, Salt Lake
City, UT 84112, USA. bruce.brewer@utah.edu

fKahlert School of Computing, University of Utah, Salt Lake
City, UT 84112, USA. haitao.wangQutah.edu
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the points of V' are pre-sorted (by both the z- and y-
coordinates). Several algorithms for the weighted case
are also known [2, 8, 11, 13, 15]. Roditty and Segal [13]
first solved the problem in (n*/3+%) time, where § > 0 is
an arbitrarily small constant. Cabello and Jej¢i¢ [2] im-
proved it to O(n'*?) time. Subsequent improvements
were made by Kaplan, Mulzer, Roditty, Seiferth, and
Sharir [8] and also by Liu [11] by developing more effi-
cient dynamic bichromatic closest pair data structures
and plugging them into the algorithm of [2]. Wang and
Xue [15] proposed a new method that solves the prob-
lem in O(nlog?n) time without using dynamic bichro-
matic closest pair data structures. It is currently the
best algorithm for the problem.

1.1 Our result

We present a new algorithm of O(nlog®n/loglogn)
time for the weighted case and, therefore, slightly im-
prove the result of [15]. Our algorithm follows the
framework of Wang and Xue [15] but provides a more
efficient solution to a bottleneck subproblem in their
algorithm, called the offline insertion-only additively-
weighted nearest neighbor problem with a separating line
(or IOAWNN-SL for short). Specifically, we are given
a sequence of n operations of the following two types:
(1) Insertion: Insert a weighted point to P (which is
() initially); (2) Query: given a query point g, find the
additively-weighted nearest neighbor of ¢ in P, where
the distance between ¢ to any point p € P is defined to
be their Euclidean distance plus the weight of p. The
points of P and all the query points are required to be
separated by a given line (say the z-axis). The goal of
the problem is to answer all queries.

Wang and Xue [15] solved the IOAWNN-SL prob-
lem in O(nlog?n) time using the traditional logarith-
mic method of Bentley [1]. This is the bottleneck of
their overall shortest path algorithm; all other parts
of the algorithm take O(nlogn) time. We derive a
more efficient algorithm that solves IOAWNN-SL in
O(nlog®n/loglogn) time (see Theorem 1 for details).
Plugging this result into the algorithm framework of
Wang and Xue [15] solves the shortest path problem in
O(nlog®n/loglogn) time.

Theorem 1 Let P be an initially empty set of n
weighted points in the plane such that all points of P lie
below the x-axis €. There exists a data structure D(P)
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of O(n) space supporting the following operations:

1. Insertion: Insert a weighted point p below £ to P in
amortized O(log® n/ loglogn) time.

2. Query: Given a query point q above £, find the
additively-weighted nearest neighbor to q in P in
worst-case O(log® n/loglogn) time.

Our algorithm for Theorem 1 needs to solve a sub-
problem about merging two additively weighted Voronoi
diagrams. Specifically, let S, and S} each be a subset
of n weighted points in the plane such that all points
of S, U S, are below the z-axis ¢. Let VD(S,) de-
note the additively-weighted Voronoi diagram of S, and
VD, (S,) denote the portion of VD(S,) above ¢. Sim-
ilarly, define VD(Sy) and VD, (S,) for Sy, and define
VD(S, U Sy) and VD4 (S, U Sp) for S, U Sp.  Given
VD, (S,) and VD, (Sy), our problem is to compute
VD, (S, U Sp). We solve the problem in O(n) time by
modifying Kirkpatrick’s algorithm for merging two stan-
dard Voronoi diagrams [9] and by making use of the
property that VD, (S, U Sp) and all points of S, U Sy
are separated by ¢. Note that directly applying Kirk-
patrick’s algorithm does not work (see Section 3 for
more details). It would be more interesting to have a
linear time algorithm to compute the complete diagram
VD(S, USy) by merging VD(S,) and VD(S}). Our tech-
nique, however, does not immediately work because it
relies on the separating line ¢. Nevertheless, we hope
our result will serve as a stepping stone towards achiev-
ing that goal. We summarize our result in the following
theorem.

Theorem 2 Let S, and Sy each be a set of n weighted
points in the plane such that all the points of S, U Sy
are below the x-axis €. Given VD4 (S,) and VD4 (Sy),
VD, (S, U Sp) can be constructed in O(n) time.

Algebraic decision tree model. The above result holds
for the standard real RAM model. Under the algebraic
decision tree model in which we only count comparisons
toward the time complexity, using a technique recently
developed by Chan and Zheng [5], we show that the
problem IOAWNN-SL can be solved using O(nlogn)
comparisons. This leads to an O(nlogn) time algo-
rithm for the shortest path problem in weighted unit-
disk graphs under the algebraic decision tree model,
matching the Q(nlogn) lower bound [2].

Outline. The rest of the paper is organized as follows.
We describe the shortest path algorithm framework in
Section 2, mainly by reviewing Wang and Xue’s algo-
rithm [15]. In Section 3, we introduce our data struc-
ture for IOAWNN-SL and thus prove Theorem 1. Sec-
tion 4 presents our Voronoi diagram merging algorithm
for Theorem 2. We describe the algebraic decision tree
algorithm in Section 5.

Figure 1: Illustrating O, (the central highlighted
square) and B, (the gray area).

2 The shortest path algorithm

In this section, we describe the shortest path algorithm.
We begin with reviewing Wang and Xue’s algorithm [15]
and explain why the IOAWNN-SL problem is a bottle-
neck (we only state their algorithm and refer the in-
terested reader to their paper [15] for the correctness
analysis). We will show how our solution to IOAWNN-
SL in Theorem 1 can lead to an O(nlog®n/loglogn)
time algorithm for the shortest path problem.

Given a set V of n points in R? and a source point
s € V, we wish to compute shortest paths from s to
all vertices in the weighted unit-disk graph G = (V| E).
We use e, € FE to denote the edge between two points
u,v € V and w(ey,) to denote the weight of the edge.
Recall that w(ey,) = ||[u—v|| < 1, where ||u—wv|| denotes
the Euclidean distance between u and v. The algorithm
will compute a table dist[-] such that after the algorithm
finishes, dist[v] is the length of a shortest path from s
to v for all v € V. Using a predecessor table, we could
also maintain a shortest path tree, but we will omit the
discussion about it.

We overlay the plane with a grid I" of square cells with
side lengths 1/2. For any point a € R?, denote by [J,
the cell of T" such that a € [J,, and H, the 5 x 5 patch
of cells in T' centered around [, (see Figure 1). For a
set of points A C R? and a € A, we use Ag, = An0,
and Am, = ANH,. The algorithm makes use of the
following properties: (1) For any two points a,b in the
same cell of T', ||a — b]] < 1 holds; (2) if ||a — b]] < 1,
then b is in H, and a is in H,.

Wang and Xue’s algorithm is summarized in Algo-
rithm 1. It can be understood by contrasting with Di-
jkstra’s algorithm, which we write in Algorithm 2 us-
ing similar notation. In particular, a subroutine Up-
DATE(A, B) is used to “push” the current candidate
shortest path information from A to B where A, B C V.
Specifically, for each point b € B, we find:

argmin dist[a] + w(eqp)- (1)
{a€A:eq,€E}

Py =

We then update dist[b] to min{dist[b], dist[ps]+w(ep,s)}-
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Algorithm 1: Wang and Xue’s algorithm [15]

dist[a] - oo for alla € V
dist[s] < 0
A<V
while A # () do
¢+ argmin,c 4 {dist[a]}
UPDATE(Ag,, An,)
UPDATE(AQ_, Am,)
A A\ Ap,
return dist[]

// First Update
// Second Update

© 0w N o A W N -

Algorithm 2: Dijkstra’s algorithm

dist[a] - oo for alla € V
dist[s] «+ 0
A<V
while A # () do
¢ < argmin, ¢ 4 {dist[a]}
UPDATE({c}, A)
A+ A\A{c}

return dist[-]

N o ok W N =

The main difference between Wang and Xue’s algo-
rithm and Dijkstra’s is that instead of operating on sin-
gle vertices, Wang and Xue’s algorithm operates on cells
of T'. Generally speaking, the first update (Line 6) in Al-
gorithm 1 is to update the shortest path information for
the points in A, using the shortest path information of
their neighbors. The second update is to use the short-
est path information for the points in Vg, to update the
shortest path information of their neighbors. Wang and
Xue prove that after the first update, the shortest path
information for all points of Vg, is correctly computed.

Wang and Xue give an O(nlog?n) time solution for
the second update, i.e., Line 7. The rest of Algorithm 1
takes O(nlogn) time. We will improve the runtime for
the second update to O(nlog®n/loglogn) using Theo-
rem 1, which improves the runtime for Algorithm 1 to
O(nlog®n/loglogn). The details are discussed in the
following.

2.1 The second update

To implement the second update UPDATE(AQ,, Am,),
since Ag_ has O(1) cells, it suffices to perform Up-
DATE(AQ,, Ag) for each cell O € B, individually.

If O is O, then Ag, = Ap. Since the distance be-
tween two points in . is at most 1, UPDATE(AQ_, An)
can be performed in O(|Ag,|log|AD,|) time (and
O(|An,|) space) by constructing the additively-weighted
Voronoi diagram for An_ [7].

If O is not 0., a useful property is that (0 and O,
are separated by an axis-parallel line. To perform Up-
DATE(AQ,, An), Wang and Xue [15] proposed Algo-
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rithm 3 below.

Algorithm 3: UPDATE(A, B) from [15]

1 dist’[a] < dist[a] for a € A
2 Sort the points in A = {a4, ..
dist’[aq] < ... < dist[a)4]

.,aja} so that

3 fori=1,...,|A|l do
4 Bi<{beB:eqp€ Eandeg; ¢
E for all j < i}
5 U<+ 0
6 for i =|A|,...,1do
7 U+~UuU {ai}
8 for b € B; do
9 p = argmin, ¢ {dist'[u] + w(ey)}
10 dist[b] < min{dist[b], dist'[p] + w(ey)}

The correctness of Algorithm 3 hinges on the fact that
p found by Line 9 is the same as p;, in Equation (1). This
is seen by arguing that p, € U and ey, € F.

We now analyze the runtime of Algorithm 3. Sorting
A takes O(]A]log|A|) time. Computing the subsets B;,
1 <i < |A4], can be done in O((|A|+ |B|) log(|A| +|B|))
time (and O(]|A| + |B|) space) [15]. The for loop (Lines
6-10) is an instance of the IOAWNN-SL problem intro-
duced in Section 1. Indeed, if we assign each point u in
U a weight equal to dist’[u], then p in Line 9 is essen-
tially the additively-weighted nearest neighbor of b in
U. The set U is dynamically changed with point inser-
tions in Line 7. As such, by Theorem 1, the for loop can
be implemented in O(klog® k/ loglog k) time (and O(k)
space) with k = |A|+|B|. Therefore, UPDATE(AQ_, An)
can be performed in O(klog? k/loglog k) time and O(k)
space, with k = |Ag_| + |Ag)-

In summary, since Ag, has O(1) cells, the sec-
ond update UPDATE(AQ,, Am,) can be implemented
in O(|Am, |1og? |Am, |/ loglog | A, |) time and O(|A, |
space as Ag, C Am_. As analyzed in [15], the total sum
of |Ag,| in the entire Algorithm 1 is O(n). This leads
to the following result.

Theorem 3 Given a set V' of n points in the plane and
a source point s, shortest paths from s to all other ver-
tices in the weighted unit-disk graph G = (V, E) can be
computed in O(nlog® n/loglogn) time and O(n) space.

3 The offline insertion-only additively-weighted
nearest neighbor problem with a separating line
(IOAWNN-SL)

In this section, we prove Theorem 1. We follow the no-
tation in Section 1. In particular, for any subset P’ C P,
VD, (P') denotes the portion of the additively-weighted
Voronoi diagram of P’ above the z-axis /.

Our data structure D(P) for Theorem 1 consists of
two components: D(P’) and VDy(P \ P’') for some



36" Canadian Conference on Computational Geometry, 2024

subset P/ C P; we maintain the invariant |P/| <
|P|/log |P|. We also build a point location data struc-
ture on VD, (P \ P’) so that, given a query point, the
cell of VD, (P \ P’) containing the point can be found
in O(log|P\ P’|) time [6, 10]. As such, D(P) is a recur-
sive structure: D(P) is defined in terms of D(P’) which
in turn is defined in terms of D(P”) and so on. As the
base case, if | P| < ¢ for some constant ¢, then we simply
let D(P) = VD4 (P). Similar recursive data structures
have been used before in the literature, e.g., [3, 12].

In the following, we discuss how to handle the two
operations: insertions and queries.

Queries. Given a query point g above ¢, we first find
the nearest neighbor of ¢ in P\ P’ using a point loca-
tion query on VD4 (P \ P’). Then, we find the nearest
neighbor of ¢ in P’ using D(P’) recursively. Among the
two “candidate” neighbors, we return the one nearer
to q as the answer. For the query time, since a point
location query on VD4 (P \ P’) takes O(log|P \ P'|)
time, the query time Q(n) satisfies the following recur-
rence: Q(n) = Q(n/logn) + O(logn), which solves to
Q(n) = O(log® n/loglogn). Therefore, each query op-
eration takes worst-case O(log®n/loglogn) time.

Insertions. To insert a point p below £ to P, we first
insert p to P’ recursively. We then check if the invari-
ant |P’| < |P|/log|P| still holds. If not, we set P’ = 0,
and then construct VD, (P) as follows. First, we con-
struct VD4 (P’) recursively. Recall that VD, (P \ P’)
is already available. We compute VD4 (P) by merging
VD, (P') and VD, (P \ P’), which takes O(|P|) time by
Theorem 2. Finally, we construct a point location data
structure on VD, (P) in O(|P]) time [6, 10]. This fin-
ishes the insertion operation.

We now analyze the insertion time. First, suppose
that we need to construct VD, (P) due to the insertion
of p. Then, the construction time T'(n) for VD, (P)
satisfies the following recurrence: T'(n) = T'(n/logn) +
O(n), which solves to T'(n) = O(n).

Since P’ = () once VD, (P) is constructed, we only
need to construct VD (P) every ©(n/logn) insertions.
As constructing VD, (P) takes O(|P|) time, the amor-
tized time for constructing VD, (P) per insertion is
O(logn). As such, if I(n) is the amortized time
for each insertion, we have the following recurrence:
I(n) = I(n/logn) + O(logn). The recurrence solves
to I(n) = O(log®n/loglogn). We conclude that each
insertion takes O(log® n/loglogn) amortized time.

Note that the space S(n) of D(P) satisfies the follow-
ing recurrence: S(n) = S(n/logn)+ O(n), which solves
to S(n) = O(n). This proves Theorem 1.

Figure 2: Illustrating an additively-weighted Voronoi
diagram. The dashed horizontal line is the z-axis /.

4 Merging two additively-weighted Voronoi dia-
grams

In this section, we prove Theorem 2. For completeness,
we first introduce the formal definition of additively-
weighted Voronoi diagrams and then present our merg-
ing algorithm.

4.1 Additively-weighted Voronoi diagrams

Let S = {s1,82,...,5,} be aset of n points in the plane
such that each point s; has a weight w; that can be
positive, zero, or negative. Following the literature, we
refer to points of S as sites. We define the additively-
weighted Euclidean distance (or weighted distance for
short) of a point p € R? to a site s; as d(s;,p) = ||s; —
pll +wi.

The additively-weighted Voronoi diagram of S, de-
noted by VD(S), partitions the plane into Voronoi re-
gions, Voronoi edges, and Voronoi vertices; see Figure 2.
Each Voronoi region R; is associated with a site s; and is
defined to be the set of points that are closer to s; than
to any other site measured by the weighted distances:

Ri={pe R?: d(s;,p) < d(sj,p),Vj #i}.

Each Voronoi edge E;; is associated with two distinct
sites s; and s; and is defined to be the set of points that
are equidistant to s; and s; and closer to these sites
than any other sites:

Eij = {p € RQ : d(slvp) = d(sj’p) < d(Sk,p),Vk 7& 7’;]}

Each Voronoi vertex is associated with three or more
distinct sites and is defined to be the point that is
equidistant to these sites and closer to these sites than
any other site.

We will also talk about the bisector between two sites,
which is defined to be the set of points in the plane that
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Figure 3: Illustrating the contour between two sets of
points. The dashed horizontal line is the z-axis 4.

are equidistant to the two sites:
B(si,s;) = {p € R? : d(si,p) = d(s;,p)}-

B(s;,s;) is a hyperbolic arc whose foci are s; and s;.
Note that a Voronoi edge associated with two sites is a
subset of their bisector.

Observation 1 states some properties about VD(S)
that are well known in the literature; we will use these
properties in our algorithm.

Observation 1 ([7])

1. Every Voronoi region of VD(S) must contain its as-
sociated site.

2. Each Voronoi region R; of VD(S) is star-shaped
with respect to its site s;, that is, the line segment
5;p is inside R; for any point p € R;.

3. The combinatorial size of VD(S) is O(]S]).

4.2 Merging algorithm for Theorem 2

We follow the notation introduced in Section 1, e.g., £,
1y Sa, Spy VD(S4), VD(Ss), VD4 (S4), VD4 (Sh), etc. Let
S = 5,USp. Given VD, (S,) and VD (S;), our goal is to
compute VD4 (S) in O(n) time. For ease of exposition,
we make a general position assumption that no point in
the plane is equidistant to four points of S.

Our strategy is to identify the contour which con-
sists of edges in the complete Voronoi diagram VD(S)
that are associated with a site in S, and a site in Sp;
see Figure 3. Note that the contour may have multi-
ple connected components. The contour partitions the
plane into regions C'R; such that VD(S) N CR; is either
VD(S,) N CR; or VD(Sp) N CR; (we show in Lemma 4
later that each contour component has the topology of
a line or a circle). As such, once we have identified the
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Figure 4: Illustrating the additively-weighted Voronoi
diagram of four points {p1, p2, p3, p4} for Observation 2.

contour, computing VD(S) is straightforward. To com-
pute the contour, the idea is to first find a point on
each contour component and then trace the component
by traversing VD(S,) and VD(S,) simultaneously. This
strategy follows Kirkpatrick’s algorithm [9] for merg-
ing two standard Voronoi diagrams. However, we can-
not directly apply Kirkpatrick’s algorithm because his
method for finding a point in each contour component is
not applicable to the weighted case. More specifically,
his method relies on the property that the Euclidean
minimum spanning tree of a point set in the plane must
be a subgraph of the dual graph of its standard Voronoi
diagram. However, this is not true anymore for the
additively-weighted Voronoi diagrams. We make it for-
mally as an observation below.

Observation 2 The FEuclidean minimum spanning tree
of a set of points in the plane is not necessarily a
subgraph of the dual graph of the additively-weighted
Voronoi diagram of the point set.

Proof. Figure 4 gives an example for the observation
with S = {p1,p2,p3,p4}. It is obtained by setting p; =
(0,4), p2 = (3,0), p3 = (0,—4), and py = (—3,0) with
weights wy = —4, we = 0, wg = —4, and wy = 0.
Since (p2,p4) is the closest pair among the four points
of S, paps must be an edge in the Euclidean minimum
spanning tree of S. However, there is no edge between
p2 and p4 in the dual graph of the additively-weighted
Voronoi diagram of S because their Voronoi regions are
not adjacent. O

In our problem, we are interested in merging VD (S,)
and VD, (Sp) into VD, (S), so it suffices to compute the
portions of the contour above £. With the help of /, it is
relatively easy to find a point on each contour compo-
nent using the following property proved in Lemma 5:
Every contour component above £ must intersect ¢.
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At a high level, our algorithm has two main proce-
dures. The first one is to identify the intersections be-
tween the contour and ¢. The second procedure is to
start at these intersection points and trace each compo-
nent of the contour above /.

The first main procedure: Finding intersections be-
tween the contour and /. By definition, ¢ is divided
into segments by its intersections with VD, (S,), which
we call £-edges of VD (S,); similarly, we define £-edges
for VD, (Sp). We sweep £ from left to right, looking for
places where the contour intersects £. We start with
the leftmost ¢-edge of VD, (S,) and the leftmost ¢-edge
of VD, (Sy). At each step, we are on some f-edge e, of
VD, (S,) and some ¢-edge e, of VD (Sp). Let s, € S, be
the site associated with the cell of VD, (S,) containing
eq; define s, € S similarly. We compute the bisector
B(sq, sp) and determine where it intersects ¢. The bi-
sector is a hyperbolic arc and £ is a straight line, so they
have at most two intersections p; and ps. If p; € e, Ney,
then p; is a point of intersection between the contour
and ¢. In this way, we can compute all intersections be-
tween ¢ and the contour. Since the combinatorial sizes
of VD1 (S,) and VD (Sp) are O(n), this procedure com-
putes O(n) intersections between ¢ and the contour in
O(n) time.

The second main procedure: Tracing the contour.
We trace the contour components from the intersection
points computed above. Specifically, for each intersec-
tion p, we trace the contour component containing p as
follows. Suppose that p is on an ¢-edge e, of VD, (S,)
and an f-edge ey, of £ in VD, (Sp). These edges are asso-
ciated with sites s, € S, and s, € Sp. Our trace begins
at p and continues above ¢ along the bisector B(s,, Sp).
This bisector enters a Voronoi region R, of VD, (S,) and
aregion Ry, of VD, (Sy). We find which edge of R, or Ry
the bisector intersects first. If no intersection exists or
the bisector first intersects £, then we finish the trace by
reporting that the portion of B(s,, sp) past p is an edge
of the contour. Otherwise, assume that we intersect an
edge e, of R, before an edge of R} (the case where we
intersect an edge of Ry first is handled the same way)
and denote this point of intersection by p’. We rule out
the case where B(s,, sp) intersects a vertex instead of
an edge because if we were to intersect a vertex, this
vertex would be equidistant to three sites in S, and one
site in Sy, which would contradict our general position
assumption that no point is equidistant to four sites of
S = 5,US,. We report that the portion of B(s,, sp)
between p and p’ is an edge of the contour. Then, we
rename R, to be the Voronoi region of VD, (S,) on the
other side of e/, and update p <— p’. We then continue
the tracing from p following the same process as above.

Our tracing algorithm is similar to the well-known
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Figure 5: The dotted segments are spokes. Our algo-
rithm only uses the portions of these spokes above ¢,
the dashed line.

algorithm for merging the standard Voronoi diagrams
of two sets of points separated by a line [14]. One
difficulty with our algorithm is efficiently determining
which edges of R, and R, the contour intersects first.
This may not be a constant time operation since R,
and R, may have many edges. The merge algorithm
by Shamos and Hoey [14] takes advantage of the fact
that the contour in their problem is monotone so that
they can find all contour edges in a region by a single
scan of the boundary of that region. In our problem,
the contour may not be monotone. To resolve the is-
sue, we follow the same technique used by Kirkpatrick
[9] for merging standard Voronoi diagrams of two arbi-
trary sets of points. Specifically, before our tracing al-
gorithm, we subdivide Voronoi regions of VD, (S,) and
VD (Sp) each into sub-regions of at most four edges by
drawing segments between each site and each vertex of
the Voronoi region of the site (see Figure 5; we can do
this because each Voronoi region is star-shaped by Ob-
servation 1); as in [9], we refer to these segments as
spokes. Because each sub-region only has at most four
edges, finding where a bisector intersects a sub-region
can be done in O(1) time. We then apply our above
tracing algorithm using these subdivisions of VD, (S,)
and VD4 (S,). Each tracing step now finds an intersec-
tion between the contour and either a spoke or a Voronoi
edge in constant time. As such, the total time of the
tracing procedure is linear in the number of such inter-
sections. By Lemma 6, the number of such intersections,
and hence the runtime of the tracing procedure, is O(n).
Therefore, the total time of the algorithm for merging
VD, (S,) and VD (Sp) is O(n). This proves Theorem 2.

4.3 Useful lemmas

Our algorithm relies on Lemmas 4, 5 and 6. These are
stated below.
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Recall that the contour also includes its portions be-
low ¢, i.e., it is defined with respect to the complete
Voronoi diagram VD(S). We first have the following
lemma, which is also needed in the proof of Lemma 5;
a similar result on the standard Voronoi diagrams is
already used in [9)].

Lemma 4 Fach contour component never terminates
or splits; that is, it has the topology of an infinite line
or a circle.

Proof. A contour component is made up of edges in
VD(S5), so if it were to terminate or split, it would be at
a Voronoi vertex of VD(S). Due to our general position
assumption that no point is equidistant to four sites,
each Voronoi vertex in VD(S) is adjacent to three sites
in S. If the contour hits a Voronoi vertex v, then at
least one of these sites must be in S, and at least one
must be in S,. Without loss of generality, let these sites
be s1, s3, and s3 with s1,s9 € S, and s3 € S;. The
Voronoi edge between s; and sz and the Voronoi edge
between s, and s3 will be on the contour, so the contour
will not terminate at v. The edge between s; and s, will
not be on the contour, so the contour will not split at
V. O

Lemma 5 If a contour component contains a point
above £, then the contour component must intersect {.

Proof. Lemma 4 establishes that a contour component
divides the plane into two regions, called contour re-
gions. Notice that because a contour component is made
up of edges in VD(SS), each contour region must contain
at least one Voronoi region of VD(S) and thus contains
at least one site of S by Observation 1.

Now assume to the contrary that a contour compo-
nent C' contains a point above £ but C' does not intersect
£. Then, the entire C is above £. As such, one of the
contour regions divided by C' must be entirely in the
halfplane above ¢; let R be the region. This implies
that the sites of S contained in R must be above £, but
this contradicts the fact that all sites of S are below
L. O

Lemma 6

1. The total number of intersections between the con-
tour and the Voronoi edges of the complete Voronoi
diagrams VD(S,) and VD(Sy) is at most O(n).

2. The total number of intersections between the con-
tour and the spokes of the complete Voronoi dia-

grams VD(S,) and VD(Sy) is at most O(n).

Proof. We adapt the proof from [9] for a similar lemma
on standard Voronoi diagrams.

Notice that the intersection between the contour and
a Voronoi edge in VD(S,) or VD(S},) is a vertex in VD(S).
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There are O(n) vertices in VD(.S), so the total number of
intersections between the contour and the Voronoi edges
of VD(S,) and VD(S,) is at most O(n). This proves the
first lemma statement.

To prove the second lemma statement, we show that
the contour can intersect each spoke at most once. We
exploit the fact that Voronoi regions are star-shaped
(Observation 1). If the contour intersects a spoke of
the Voronoi region for site s in VD(S,,) or VD(S;), then
the open segment between s and this intersection will
lie in the Voronoi region of s in VD(S). Because this
segment is in the Voronoi region for s in VD(S), the
contour cannot intersect this segment.

Now, assume for the sake of contradiction that the
contour were to intersect a spoke twice. This would
mean the closer to s of the two intersections would lie on
the segment between s and the further of the two inter-
sections, which we have shown above to be impossible.
Therefore, the contour can only intersect each spoke at
most once, and there are O(n) spokes in VD(S,) and
VD(Sp), so the total number of intersections between
the contour and the spokes is at most O(n). O

5 Algebraic decision tree algorithm

Under the algebraic decision tree model, where the time
complexity is measured only by the number of compar-
isons, we show that the IOAWNN-SL problem can be
solved using O(nlogn) comparisons. Consequently, we
can solve the shortest path problem in weighted unit-
disk graphs in O(nlogn) time under the algebraic de-
cision tree model. In the following, we first describe an
O(n log? n) time algorithm under the conventional com-
putational model and then show how to improve it to
O(nlogn) time under the algebraic decision tree model.

Let p1,p2,...,pn be the points to be inserted in this
order; each point has a weight. Let P denote the set of
all these points. Let @ be a set of O(n) query points,
such that all points of P are above the x-axis ¢ while all
points of @ are below £. For each query point ¢ € Q,
we know the timer when the query is conducted, i.e.,
we know the index ¢ such that the query looks for the
nearest neighbor of ¢ among the first ¢ points of P. Our
goal is to answer all queries for the points of Q).

We construct a complete binary tree T whose leaves
from left to right correspond to points pi1,pa,...,p, in
this order. For each node v € T, let P, denote the set
of points that are in the leaves of the subtree rooted at
v. Let VD(P,) be the additively-weighted Voronoi dia-
gram for the weighted points of P,; let VD, (P,) be the
portion of VD(P,) above ¢. We construct VD4 (P,). If
we construct VD, (P,) for all nodes v of T in a bottom-
up manner and use our linear time merge algorithm in
Theorem 2, constructing the diagrams VD (FP,) for all
nodes v € T can be done in O(nlogn) time. In ad-
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dition, we construct Kirkpatrick’s point location data
structure [10] on VD4 (P,) for each node v € T, which
takes O(|P,|) time. ! Note that we use Kirkpatrick’s
point location data structure instead of others such as
the one in [6] because we will need to apply a technique
from [5] that requires Kirkpatrick’s data structure. Con-
structing the point location data structures for all nodes
of T takes O(nlogn) time.

Consider a query point g € ). Suppose we are looking
for the nearest neighbor of ¢ among the first ¢ points
P1,P2,--.,p; of P. Let v; be the leaf of T' corresponding
to p;. Following the path in T from the root to v;, we
can find a set V, of nodes of T' such that the union of
P, for all v € V, is exactly {p1,p2,...,pi}. Assuch, the
query can be answered after performing O(logn) point
location queries on VD4 (P,) for all v € V,. As each
point location query takes O(logn) time, answering the
nearest neighbor query for ¢ can be done in O(log® n)
time. Therefore, the total time for answering the queries
for all points of Q is O(nlog®n).

The above solves the problem in O(nlog®n) time.
To improve the time to O(nlogn), the bottleneck is to
solve all O(nlogn) point location queries. For this, we
resort to a technique recently developed by Chan and
Zheng [5] under the algebraic decision tree model. We
can simply apply [5, Theorem 7.2] to solve all our point
location queries using O(nlogn) comparisons (specif-
ically, following the notation in [5, Theorem 7.2], we
have t = O(n), L = O(nlogn), M = O(nlogn),
and N = O(n) in our problem; according to the the-
orem, all point location queries can be solved using
O(L+ M + N log N) comparisons, which is O(nlogn)).
Note that the theorem statement requires the input pla-
nar subdivisions to be triangulated. The triangulation
is mainly used to construct Kirkpatrick’s point location
data structure [10] on each planar subdivision. Since we
already have Kirkpatrick’s point location data structure
for each VD (P,) as discussed above, we can simply fol-
low the same algorithm of the theorem.

INote that Kirkpatrick’s data structure is originally for pla-
nar subdivisions in which each edge is a straight line segment.
However, as discussed in [10], the algorithm also works for ad-
ditively weighted Voronoi diagrams (and other types of Voronoi
diagrams) since each cell of the diagram is star-shaped. A sub-
tle issue in our problem is that VD4 (P,) is only the portion of
the complete diagram VD(P,) above ¢, and each cell of VD4 (Py)
does not contain its site. To circumvent the issue, we can enlarge
each cell of VD4 (P,) by including its site, as follows. For each
cell R € VD4 (Py), if ab is a maximal segment of RN £, then we
add the triangle Apab to R, where p is the site of R. Note that
Apab must be inside the cell of p in VD(P,), denoted by R’'. As
such, the enlarged region R is still star-shaped, contains its site p,
and is a subset of R’. We can then construct Kirkpatrick’s point
location data structure on the subdivision of all these enlarged
regions R.
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Grid-edge unfolding orthostacks with rectangular slabs*

Klara Pernicoval

Figure 1: a) A part of a net with an overlapping edge.
b) A part of a net with an overlapping vertex. ¢) A net
resulting from a simple unfolding. There is enough
space for glue regions.

Abstract

An orthostack with rectangular slabs is an orthogonal
polyhedron obtained by stacking axis-parallel boxes on
top of each other.

A grid-edge unfolding of an orthogonal polyhedron is
obtained by cutting the surface of the polyhedron along
segments in the intersection of axis-parallel planes pass-
ing through the vertices of the polyhedron and mapping
the cut surface isometrically into the plane with no in-
terior overlap.

We prove that orthostacks with rectangular slabs can
be grid-edge unfolded into a simple polygon so that no
faces, edges, or vertices overlap.

1 Introduction

A polyhedron is an orthogonal polyhedron if each face is
parallel to an zy, yz, or xz plane.

Let P C R3 be an orthogonal polyhedron. Let
20, 21, - - -, zp, be all distinct z-coordinates of its vertices
and assume that zg < 21 < 29 < -+ < z,. The slab S; is
the part of the polyhedron with z-coordinates between
z; and z;11, the bottom face of S; is the subset of points
of S; with z-coordinate z;, the top face of S; is the subset
of points of S; with z-coordinate z;41. The orthogonal
polyhedron P is called an orthostack if each slab is a
prism whose base is a simple polygon. In this paper, we
focus on orthostacks whose slabs are axis-parallel boxes
and call them orthostacks with rectangular slabs.

*This work is supported by Project 23-04949X of the Czech
Science Foundation (GACR).

fFaculty of Mathematics and Physics, Charles University,
klapernicova@gmail.com
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We aim to obtain a special form of a planar net of
a given orthostack P. We cut the surface of P along
a subset of segments that are intersections of the sur-
face of P with axis-parallel planes passing through the
vertices of P. Then a grid-edge unfolding of P is an iso-
metric mapping of the cut surface into the plane with
no interior overlap. The image of the unfolding is called
a net. A grid-edge unfolding is simple if no vertices (and
therefore no edges) overlap; in other words, the images
of the cutting segments form a simple closed curve after
flattening to the net; see Figure 1. A net created by a
simple unfolding is called a simple net. Simple nets are
more practical for constructing polyhedra from paper as
they leave some space for regions that can be used to
add glue.

Our main result is the following.

Theorem 1 Fwvery orthostack with rectangular slabs
has a simple grid-edge unfolding.

To prove Theorem 1 we provide an algorithm for the
unfolding in Section 3 and prove its correctness in Sec-
tion 4.

1.1 Related results

A long-standing open question by Diirer asks whether
every convex polyhedron can be edge-unfolded into a
single simple polygon, where the cuts are allowed only
along the edges of the polyhedron. The edge-unfolding
does not exist for some non-convex orthogonal poly-
hedra, for example, a cube with a small hole in the
middle of one face. We refer to survey papers by
O’Rourke [10, 11, 12] for a broader overview.

The following three papers, which study grid-edge un-
folding of orthostacks, are most related to our result.

Biedl et al. [1] proved that orthostacks could be un-
folded allowing the cuts along segments from grid-edge
unfolding and also along segments in horizontal planes
with z-coordinates (z; + zi+1)/2.

Damian and Meijer [7] studied orthostacks with or-
thogonally convex slabs. They found an algorithm for
grid-edge unfolding of such orthostacks with an addi-
tional restriction stating that the boundary of each face
within the top boundary of the slab S; has two orthogo-
nally incident edges that belong to the bottom boundary
of the slab S;;1; see Figure 2.

Chambers, Sykes, and Traub [2] showed that a grid-
edge unfolding exists for a special class of orthostacks



36" Canadian Conference on Computational Geometry, 2024

il S

a) F ______ b) i,

Figure 2: a) An orthostack with orthogonally convex
slabs considered by Damian and Meijer [7]. b) Or-
thostacks with rectangular slabs that do not satisfy the
requirements of Damian and Meijer [7].

Figure 3: a) A top view of an orthostack satisfying both
restrictions 1) and 2) considered by Chambers, Sykes,
and Traub [2]. b) An orthostack violating restriction
2); the blue line highlights an edge that partially lies
in the side boundary of the top slab and partially in
the side boundary of the bottom slab. ¢) Top views of
orthostacks with rectangular slabs violating restriction
1).

Figure 4: The new definition of faces for the purpose of
grid-edge unfolding.

satisfying the following conditions; see Figure 3: 1) All
top and bottom faces, except the top face of the top-
most slab and the bottom face of the bottommost slab,
are rectangles. 2) Every edge of every rectangular hori-
zontal face lies completely within a side boundary (left,
front, right, or back) of an adjacent slab.

If we allow arbitrary cuts on the surface of the poly-
hedron, then an unfolding exists for all convex polyhe-
dra [9, Theorem 24.1.2].

Let P be an orthogonal polyhedron. As it is common
in the literature we redefine the notion of a face as fol-
lows. We subdivide the surface of P with axis-parallel
planes passing through the vertices of P. We will call
the parts of the subdivision the faces of P. Note that in
this definition each face of P is a rectangle. See Figure 4
for an illustration.

One could further subdivide each face of the polyhe-
dron using an a x b orthogonal grid, allowing cuts along
these grid lines. This process is termed a refinement and
is characterized by the parameters a and b, which may
also depend on the number of vertices of the polyhedron
P. Tt has been demonstrated that all orthostacks can
be unfolded using 1 x 2 refinement [1] and all genus-0
orthogonal polyhedra can be unfolded using various lev-
els of refinement: exponential refinement [6], quadratic
refinement [4], and linear refinement [3]. More recently,
Damian, Demaine, Flatland, and O’Rourke have devel-
oped an unfolding method for all genus-2 orthogonal
polyhedra using only linear refinement [5].

2 Notation

Faces parallel to the xy plane are called horizontal, faces
parallel to the xz plane are called front-back, and faces
parallel to the yz plane are called left-right.

Since each slab S; is an axis-parallel box, we can ex-
press it as a Cartesian product

Si = [%‘,1,%‘,2} X [%‘,1,%,2] X [2iy 2ig1] -

Let E; be the union of all the horizontal faces of P
with z-coordinate z; (it consists of the top faces of the
slab S;_1 and the bottom faces of the slab S;). Let L; be
the union of the left-right faces in S; with z-coordinate
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Figure 5: The rectangles are the projections to the zy
plane of two adjacent slabs; the pictures do not distin-
guish which slab is above the other one. Dotted lines
show the subdivision of Ez into Ei,F7 Ei,R7 Ei,B; Ei,L
and are the only places where we cut across an original
face of the polyhedron. Pictures show only some cases
of how two consecutive slabs can interact.

x;,1 (it is the left rectangular boundary of S;). Similarly,
let R; be the union of the left-right faces in S; with a-
coordinate x; 2, let F; be the union of the front-back
faces in S; with y-coordinate ¥, 1, and let B; be the
union of the front-back faces in S; with y-coordinate
yi2. The surface of P is exactly the union of E; for
0<i<nandof L;, R;, F; and B; for 0 <i < n.

We subdivide F; for ¢ € {1,2,...,n—1}, only Fy and
E,, remain untouched. We denote by E; j, the following
subset of E; (see Figure 5):

Eir ={(z,y,2) € Ej;
x € min(z;—1.1, 1), max(z;_1,1, ;1))
ANY € [Yim11,Yi-1,2] NV [Yi1, Yi2l}-
Similarly we define F; g, E; r and E; p:
E;r={(z,y,2:) € E;;
x € min(z;—1,2, Zi2), max(x;_1,2, T;2)]

AN Y E [Yim1,1,Yi-1,2) N [Yi1,Yi2l}s

Eip = {(z,y,2) € Ey;
y € [min(y;—1,1,¥i,1), max(yi—1,1,¥i,1)]}»

Eip = {(z,y,2) € Ej;
y € [min(y;—1,2,¥i,2), max(yi—1,2, ¥i,2)] }-

Note that F; 1, E; r, Ei r, E; p are pairwise internally
disjoint. Observe that each of these sets is either empty
or a rectangle contained either in the top boundary of
S;_1 or in the bottom boundary of S;. The lines between
Eir,Eir, B r, E; g are the only places where we cut
across an original face of the polyhedron.
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Figure 6: a) An orthostack with three rectangular slabs.
b) All the faces unfolded during the back phase. ¢) All
the faces unfolded during the right-left phase. d) All
the faces unfolded during the front phase.
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Figure 7: An orthostack with three rectangular slabs
and its net resulting from the unfolding algorithm.

3 Unfolding algorithm

Let P be an orthostack with rectangular slabs. For a
given subset A of the surface of P, we will denote by A’
the corresponding subset in the constructed planar net.
We divide the algorithm into three phases, see Fig-
ure 6 for the division of faces into phases. We start
with projecting Ey orthogonally to the xy-plane. Each
phase unfolds a part of the orthostack. See Figure 7 for
the resulting net. The cutting segments will be clear
from the process and described in detail in Section 4.
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3.1 Right-left phase

In this phase we unfold all the rectangles R;, E; r, L;,
E; 1 and E,. Let RE be the union of all the rectangles
R; and E; g, and let LE be the union of E,, and all the
rectangles L; and E; 1.

We start with placing all rectangles from RE. We
place Ry to the right of Ej, then E4 g to the right of Ry,
then R; to the right of Ei,R’ and we continue placing R;
and E; g, for ¢ = 2,3,...,n — 1, always to the right of
the previous one. We then place to the right the whole
rectangle F,.

We continue placing the remaining rectangles from
LE. We place Ln—17 En—l,L; Ln_g, E71,_27L, NN ,LO in
this order, always to the right. Clearly, in the resulting
net no vertices, edges, or faces overlap so far.

Note that the y-coordinates of the rectangles are pre-
served in this phase; they are the same in the orthostack
and the net.

3.2 Back phase and front phase

Now we describe the second and the third phases. We
denote the union of all the rectangles B; and E; g by
BE and the union of all the rectangles F; and E; p by
FE.

In the second phase, the back phase, we will be plac-
ing the rectangles of BE in the direction of increasing
y-coordinate. We place By above E|. Then we pro-
ceed with E1,87 Bl, E]27B7 Bg, ey En—l,B7 Bn—l in this
order, placing each rectangle always above the previous
one. The rectangle F,, has already been placed in the
right-left phase.

In the third phase, the front phase, we will be plac-
ing the rectangles of F'E in the direction of decreasing
y-coordinate. We place Fy below E{. Then we pro-
ceed with ELF? Fl, E27F7 Fg, veey En—l,Fa Fn—l in this or-
der, placing each rectangle always below the previous
one.

In the second and third phases, the z-coordinates of
the rectangles are preserved.

4 Proof of non-overlap

Each phase on its own creates a simple non-overlapping
polygon because of the continuous one-directional pro-
cess. For a similar reason, rectangles from the back
phase and the front phase cannot overlap. We will prove
that no rectangle from the back phase can overlap or
touch with a rectangle from the right-left phase. The
proof for the rectangles from the front phase and the
right-left phase would be analogous.

We will define a piecewise linear curve C formed
by a subset of the cutting segments on the surface
of P, which will partially separate rectangles from
the right-left phase and the back phase, see Figure 8.

Figure 8: Orthostacks with a clear view of the right
and the back part, the cut C' and its images () and R.
In both pictures red lines separate B; from R; in the z
direction and blue lines separate B;UE; 1, gUB;41 from
R; UE;+1,r U R;41 in the z and y directions. a) Blue
lines separate Iy p from Ry in the y direction, E; p
from E; g in the z direction, and then separate E; p
from R; in the y direction and By from Ej g in the x
direction. b) Blue lines separate E; g from Ej g in the
x direction, Iy g from R; in the y direction, and then
separate By from F g in the z direction and Fy p from
R in the y direction.
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The curve C starts at (o2, Y0,2, 20), which is the bot-
tom right back corner of Sy, continues in the z di-
rection to (zo2,Yo,2,#1), which is the top right back
corner of Sy, then separates By U Eq p U B; from
Ry U E1 r UR; in the z and y directions, reaching
the point (z1,2, y1,2, 21), which is the bottom right back
corner of S7. The curve proceeds analogously until C
reaches (Tp_1,2,Yn—1,2,2n), which is the top right back
corner of the topmost slab S,,_1.

The curve C' maps onto two piecewise linear curves in
the net. One curve, denoted by @, forms the right part
of the perimeter of BE’, and the second curve, denoted
by R, forms the top part of the perimeter of RE’.

Our goal is to prove that the curves Q and R do not
intersect.

When the curve C cuts between B; and R;, the cor-
responding part of the curve R moves in the increasing
z-direction by z;11 — z; > 0 and the corresponding part
of the curve @Q moves in the increasing y-direction by
zi+1 — 2; > 0. If €' moves in the z-direction by d, then
R moves to the right by d and @ moves to the left or
right (preserving the former direction of C) by d. If C
moves in the y-direction by d, then R moves up or down
(preserving the former direction of C') by d and @ moves
up by d.

The curves R and @ start diverging just after their
common starting point when C' cuts between By and
Ry: the curve R moves by z; — zp in the increasing
z-direction and the curve ) moves by z; — zp in the
increasing y-direction.

For every point A on the curve C' we denote by A%
the image of A on the curve R and we denote by Ag
the image of A on the curve Q.

From the iterative process of constructing @ and R,
we deduce the following.

Observation 1 Let A be a point on the curve C' except
the starting point and assume that Ay = (zg,yr) and
Aq = (2q,yq). Then xr > zq and yr < yq-. O

Lemma 2 The curves R and Q do not intersect nor
touch, except at the starting point (zo2,Yo2)-

Proof. For a proof by contradiction suppose the curves
Q@ and R intersect, see Figure 9. Denote by I’ the point
of the first intersection of @ and R (except the starting
point). The point I’ corresponds to a point U on C
from the perspective of R and also corresponds to a
point V on C' from the perspective of @ (that is, Uy =
V4 =1I'). By Observation 1 we have U # V. Assume,
without loss of generality, that U appears on C before
V. Then Uy, is before V) on Q. From Observation 1 the
y-coordinate of Uy, is greater than that of Up. Since @ is
y-monotone and U is before V on C, the y-coordinate of
Uy, is smaller than or equal to the y-coordinate of U, =
Vc’g- These two inequalities imply a contradiction. O
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Figure 9: The cut C' and vertices for proof.

The rectangles of BE' are to the left of the curve
Q@ and the rectangles of RE’ are below the curve R.
Because the curve @ is to the left and upwards of the
curve R and the curves @ and R do not intersect or
touch, the rectangles of BE’ and RE’ cannot overlap.

Let S be a point on the curve C' such that S’Q is the
rightmost point of ). Then by Observation 1 the point
S’ 1s to the right of S;,. All the rectangles in LE' are to
the right of S}, so the rectangles in BE' cannot overlap
with the rectangles in LE’. This concludes the proof
that rectangles placed in the back phase cannot overlap
with the rectangles from the right-left phase.

5 Discussion

Our algorithm relies on connected faces within each
phase and simple path cuts that separate the rectan-
gles of different phases. It leaves no more space in the
net between the back part and the right part, and be-
tween the right part and the front part; however, placing
more faces next to the left part is possible. We plan to
improve our algorithm so that each slab’s left boundary
does not have to consist of only one rectangle.

If we closely inspect the cutting segments of our al-
gorithm, we can see that they form a single path. The
path starts with the cut C' separating the right part RE
from the back part BE, followed by the back edge of F,,,
a cut separating BE from LFE, the left edge of Ey, a cut
separating LE from F'FE, the front edge of E,,, and a
cut separating F'E from RE.

An edge-unfolding of a polyhedron that is obtained
by cutting the surface along a path is called a Hamil-
tonian unfolding [13] or an edge-unzipping [12]. There
exist orthogonal polyhedra with no edge-unzipping [8].
The characterization of orthogonal polyhedra that have
edge-unzipping remains open.
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On 3-layered Cornerhedra: Optimum Box Partitions for Niches

Laurie Heyer* William Lenhart?

Abstract

We define a family of orthogonal polyhedra we call
niches, which are certain unions of unit cubes (voxels)
in an octant of the 3D integer lattice. We seek to par-
tition the cubes into completely filled, interior-disjoint
rectangular boxes using the smallest possible number of
boxes. The number of extreme cubes, or peaks, provides
a known lower bound for the number of boxes needed.
We construct boxings (i.e., partitions into boxes) of op-
timum size, and characterize perfect niches, those niches
for which optimum boxings achieve the lower bound.

1 Introduction

In the 3D lattice of grid points with non-negative integer
coordinates, we consider orthogonal polyhedra that are
unions of unit grid cells, or voxels, which we call cubes.
A box is rectilinear, with 8 vertices at grid points, 6
rectangular faces, and 12 axis-aligned edges.

Figure 1: A cornerhedron with k = 23 corners, redrawn
from Winkler’s puzzle book [14].

A cornerhedron C (or corner polyhedron [2, 5]) is a
union of cubes with the property that, for each cube ¢
of C, the smallest box containing ¢ and the cube co at
the origin is completely filled with cubes of C (no “air”
inside the box). Any axis-aligned line intersects C in a
single segment with one endpoint on a coordinate plane.
See Figure 1 and Figure 3a, which we call a triskele.

*Mathematics & Computer Science, Davidson College,
laheyer@davidson.edu

fDepartment of Computer Science, Williams College,
wlenhart@williams.edu

fDepartment of Computer Science, University of Victoria,
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We partition the cubes of cornerhedron C into a set
of interior-disjoint boxes completely filled with cubes.
We call such a partition a bozing B of C, and we seek
boxings that minimize the size ||B]| of B.

A vertex of C is called a peak [2] if it is a local max-
imum in the (1,1,1) direction. If a cube has a peak
vertex, we call the cube a corner. We denote by k the
number of corners (equivalently, the number of peaks)
of C.

As no two corners or peaks can belong to the same
box, any boxing B must have at least as many boxes as
the number k of corners of C. If C has a boxing B that
achieves this lower bound, i.e., ||B|| = k, then we say
that C and B are perfect.

Motivating ezamples. When cornerhedron C has just
one layer (i.e., has height 1), then C is easily seen to
be perfect, which also follows from work on partition-
ing rectilinear polygons by Dielissen and Kaldewaij [4].
When cornerhedron C has exactly two layers, we prove
it is perfect in Theorem 2. For an example, see the
2-layer cornerhedron with 14 corners in Figure 4a and
its perfect boxing B with ||B|| = 14. When cornerhe-

Figure 2: A perfect boxing B consisting of |B| = 23
boxes of the (redrawn) cornherdron depicted on the
cover of Winklers puzzle book [14].
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Figure 3: a) triskele; b) and ¢) exploded views of two boxings of the triskele.

dron C has exactly three layers, the triskele (Figure 3a)
provides a fascinating instance. It has 13 cubes, includ-
ing three corners, ¢, ¢o, and ¢3. Hence at least three
boxes are required to pack up the cubes of the triskele.
We prove in Section 4 that the triskele requires at least
four boxes. Hence the triskele is not perfect, and both
boxings in Figure 3 are optimum. We claim that the
cornerhedron with 23 peaks shown in Figure 1 is per-
fect; Figure 2 shows the 23 boxes of our perfect boxing
of it.

Questions arising. What properties do imperfect 3-layer
cornerhedra share? Can we characterize perfect 3-layer
cornerhedra in a way that would lead to an efficient
recognition algorithm? If a 3-layer cornerhedron is not
perfect, can we at least find an optimum boxing for it,
minimizing the number of boxes used?

Our main results concern a subfamily of 3-layer cor-
nerhedra we call niches. In order to define niches and to
state our main results, we answer the first of the above
questions, after giving some notation.

Cubes. We identify a unit cube ¢, . by the z,y, 2-
coordinates (in a right-handed coordinate system) of the
vertex farthest from the origin @ = (0,0,0). The cube
c1,1,1 with one vertex at O is called the origin cube,
denoted co (see Figure 3b and c).

Layer-corners. Whether a cornerhedron C has one or
many layers, each layer z = i has at least one layer-
corner: a cube ¢ ; of layer 7 such that neither c; 1 44
NOT Cz y41,; €XiSts, i.e., ¢, 4 ; is an extreme cube in both
the x- and y-directions. Layer-corners may or not be
corners of C. When a layer-corner has a cube on top
of it, we call it a hidden layer-corner. We often denote
hidden layer-corners by ¢;, and layer-corners that are
corners of C by ¢;. We refer to corners of C that lie in
layer i as i-corners. They are both corners of C and
layer-corners of layer i. The triskele in Figure 3a has
two layer-corners ¢; = c32,1 and ¢; = c13,;1 in layer
z =1 (its lowest layer), two layer-corners éa = ¢1,3,2 and
Gz = C2,1,2 in layer 2, and one layer-corner é3 = cz1,3 in
layer 3. The cornerhedron in Figure 4 ahead has three

hidden layer-corners: €, ;.15 Cas,ys,1, aNd Cry ys.1-

Towers. A hidden layer-corner ¢ in layer 1 and the
cube above it together build a short tower S. A hidden
layer-corner ¢s in layer 2 and the cube above it together
build a tall tower T provided that layer 1 contains a
guard that serves as a witness, i.e, a corner with z-
and y-coordinates strictly greater than those of ¢5. The
triskele in Figure 3a has one short tower (¢; U é;) and
one tall tower (¢aUé3), with é; as a witness. The triskele
(or its mirror image) is the smallest cornerhedron that
has both a short and a tall tower.

With these definitions, we can now address our first
question with a theorem that motivates the definition
of niches. The definition follows the theorem.

Theorem 1 Any cornerhedron C that has 3 layers but
s not perfect has at least one short tower and at least
one tall tower.

Proof. Let C’ denote the subcornerhedron of C formed
by layers 2 and 3. If C has no short tower, then all layer-
corners of layer 1 are corners. To box C, we take the
boxes of a perfect boxing for layer 1 and the boxes of an
optimum boxing for C’. Since C’ is perfect (Theorem 2
ahead), this gives a perfect boxing of C.

Likewise, we can box C perfectly if it has no tall tower.
In this case, all layer-corners of layer 2 are corners, so we
take the boxes of a perfect boxing for layer 3 together
with the boxes of an optimum boxing for the first two
layers, which is a perfect subcornerhedron. This gives a
perfect boxing for C. (]

Niches. Based on Theorem 1, we define a niche N to
be a 3-layer cornerhedron C that, like the triskele, has
exactly one short tower and exactly one tall tower, such
that one of the towers lies against the z = 0 plane and
the other against the y = 0 plane; there are no ad-
ditional towers. Niches can be perfect (Figures 6-10).
Thus the family of niches, defined by two properties that
every 3-layer imperfect cornerhedron must have, is the
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smallest subfamily of cornerhedra where characterizing
and recognizing perfection arises.

Main contributions. Theorem 3, stated in Section 2,
characterizes perfect niches with a necessary and suffi-
cient condition involving corners and their alignment
properties. The proof of its sufficiency (Section 3)
uses what we call our anchored layer boxing (ALB)-
construction method, defined further on. The proof of
its necessity (Section 4) uses what we call our box(co)
method for analysing a given boxing. Theorem 4 gives
constructions for optimum boxings of niches. We believe
that the concept of niches, and our ALB and boxz(co)
methods can contribute to resolving many combinato-
rial and complexity questions for 3-layer cornerhedra
and possibly for cornerhedra in general.

Related work. In 1991, it was shown that the problem of
partitioning an orthogonal polyhedron into a minimum
number of boxes is NP-complete in 3D, while solvable
in polynomial time in 2D [4].

In 2018, Biedl et al. [2] considered the special case
of partitioning 3D-histograms into a minimum number
of boxes: the problem is NP-hard even for histograms
of height two. For partitioning what we call cornerhe-
dra here, they described a 2-approximation algorithm,
and they posed the problem of determining whether the
partitioning problem is polynomial or—at least—whether
there exists a PTAS.

Floderus et al. gave a 4-approximation for partition-
ing histograms and applied their result to matrix mul-
tiplication [7].

In two dimensions, a number of papers have given
polynomial time algorithms for partitioning a rectilin-
ear polygon into the minimum possible number of rect-
angles. See Lipski et al. 1979 [10], Ohtsuki 1982 [13],
and Ferrari et al. 1984 [6].

The representation of 3D objects as unions of cubes
(voxels) arises in other diverse areas of theory and ap-
plication. We give several examples below.

In combinatorial mathematics, the object we call a
cornerhedron arises as a representation by unit cubes
of a combinatorial object called a plane partition, de-
fined by P.A. MacMahon [12]. A plane partition is a
finite 2-dimensional array of non-negative integers such
that the entries in each row are non-increasing as the
column index increases (i.e., a; ; > a; j+1), and likewise
the entries in each column are non-increasing as the row
index increases (i.e., a;; > ait+1,;). A plane partition
can be represented by unit cubes. One regards each
entry a;; of the 2-dimensional array as the number of
unit cubes to be stacked at the cell labelled (¢, 7). This
representation is a cornerhedron, and any cornerhedron
gives rise to a plane partition. The main goal in the
literature on plane partitions and their various classes
is to count the number of plane partitions in the given
class as a function of the number n of unit cubes in the
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representation.

Agarwal et al. [1] investigated a problem arising, e.g.,
in motion planning, asking whether the complement of
a 3D object consisting of a collection of axis-aligned
cubes can be partitioned into a collection of axis-aligned
boxes.

Eppstein and Mumford [5] characterized which graphs
can be drawn on the skeletons of corner polyhedra,
which we call cornerhedra here (corner polyhedra of a
different kind were defined by Gomory [8] in the context
of linear programming).

When 3D printing a 3D object, it can be necessary
to partition a model of the object into printable parts
that are then assembled; see, e.g., Livisu et al. 2017
[11]. Similarly, a strategy for packing an object into a
box is to break the object into pieces for packing and
later reassembly; see, e.g., Chekanin 2020 [3].

Finally, as the cover of Winkler’s book [14] suggests,
cornerhedra are fascinating objects and suggest many
puzzles and problems.

2 Preliminaries

We begin with notation. Then, to introduce our an-
chored layer-bozing (ALB) method by way of an exam-
ple, we use it to prove, in Theorem 2, that all 2-layer
cornerhedra are perfect. We state our characterization
of perfect niches in Theorem 3. Based on Theorems 2
and 3, we then prove in Theorem 4 that an optimum
boxing of a niche has k£ boxes if the niche is perfect, and
k 4 1 boxes if it is not perfect.

Recalling the definitions of niche N, short tower S,
and tall tower 7, from now on we assume (WLOG) that
S lies against the plane x = 0 and that 7 lies against
the y = 0 plane as shown in Figure 3a.

Layer ¢ of cornerdron C consists of the cubes of C
between two horizontal planes z = ¢ — 1 and z = 1,
i > 1. Cubes in layer i have z-coordinate z = i; layer
i and its cubes have height i. A box with cubes in
exactly one, two, or three layers is called thin, thick, or
deep, respectively. The boxing in Figure 3b has two thin
boxes, two thick boxes, and no deep box; the boxing in
Figure 3c has two thin boxes, one thick box, and one
deep box.

A V-layer consists of the cubes of cornerhedron C be-
tween two vertical planes x = ¢—1 and x = ¢, or between
y=1—1and y =i, where i > 1. Each cube ¢z, 4,2, of
C belongs to two V-layers, the V-layer between planes
x =x9— 1 and x = xg, and the V-layer between planes
y =1vyo— 1 and y = yo. A V-layer that contains cor-
ners of layers 2 and 3 is called a Vj3s-layer, and similarly
for other subsets of {3,2,1}. Some corners in a V-layer
may not appear in the subscript: a Vaj-layer might also
be a V3s5-layer.

The V-layer between x = 0 and z = 1 is called the
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S-wall; the V-layer between y = 0 and y = 1 is the
T-wall. By assumption for niches, they contain S and
T, respectively. A V-layer that is perpendicular to the
T-wall or to the S-wall is called a Vy.-layer or a Vg.-
layer, respectively.

Given a corner ¢ in layer 3, we call the cube in layer 1
whose z- and y-coordinates are 1 greater than those of
¢ the key of é. The key may be filled by a cube cgey(€)
of C (¢ is keyed) or it may be empty (¢ is keyless).

We often denote the corner at the top of a tall tower
T by é7. By definition of tall tower T, layer 1 contains
a guard corner for 7, which implies that ¢y, (é7) exists.

Recalling the definition of layer-corner, we define be-
low a particular perfect boxing of a single layer, the
anchored layer-bozing (ALB). The single layer may be
all of the cornerhedron, or it may occur as just one layer.
We often construct perfect boxings by our ALB method:
we make an ALB for each layer of the given cornerhe-
dron to obtain an initial boxing and then modify the
boxing if necessary. For the definition of anchored layer-
boxing (ALB) below, refer to Figure 4b.

Definition [ALB anchored layer-boxing]. Given a layer
at height z > 1 of a cornerhedron C, let the coordi-
nates of the layer-corners be indexed (z;,y;, ), where
21 is the smallest of the x-coordinates and y; is the
largest of the y-coordinates. We choose one layer-corner
C;io»yio»z to be the anchor of the layer-boxing, and de-
fine the box containing it to be the box that contains
the two cubes c;io’yimz and c¢q,1,,. We denote this box
. The other boxes of the ALB are de-
fined as follows. Each box(cg, 4, ) such that z; > x;,
extends to the y = 0 plane and to the plane z = x;_;.
Each box(cy, y,.2) s.t. x; < x4y (Le., yi > y4,) extends to
the x = 0 plane and to the plane y = y;41.

by bo:z:(c;io Wig }Z)

The proof of our next result serves to introduce the
ALB construction method by way of an example. We
will use this method extensively in Section 3, which
gives a constructive proof of the sufficiency of our char-
acterization of perfect niches. For the proof of the fol-
lowing theorem, recall the definition of hidden layer-
corner.

Theorem 2 Fvery 2-layer cornerhedron C is perfect.

Proof. Let k denote the number of hidden layer-
corners, and let their coordinates be denoted (z;, y;, 1),
where 1 <7 < l;; here 21 is the minimum of the z;, and
y1 is the maximum of the y; (the index ¢ increases with
increasing distance from the plane z = 0). We choose
Cz, 4,1 and the corner é,, ,, 2 above it as anchors for
ALBs of layers 1 and 2. We refer to the resulting boxes
as the thin boxes. When k = 0 the thin boxes form a
boxing B that is perfect. If & > 0 the set of thin boxes
does not form a perfect boxing for cornerhedron C as the
boxes of hidden layer-corners do not contain corners of
C. Thus we modify this set of thin boxes as follows.

X+ -y
b) y ~

:

PTad
Cxl,)’hl

C

X3,Y35 X2:Y25

c)

S

-

Figure 4: a) a 2-layer cornerhedron with & = 14 cor-
ners; b) ALBs anchored at ¢, , 5 and ¢, , ;; and c)

a perfect boxing with 14 boxes. The three thick boxes,
in color, contain the hidden layer-corners.

We first thicken the thin box of ¢; . 5 by combining
it with the thin box of ¢;  , below it. Because these
anchors have the same x, y-coordinates, their thin boxes
have the same footprint on plane z = 0. Thus the thick
box contains the cube cop, and the remaining thin boxes
are not affected.

When k& > 1, for 1 < i < k, we thicken the box of
Cz;,y;,2 S0 that the box contains ¢, ,,,1. We extrude
this thick box to the thick box of ¢4, , 4, ,,2,1.e., to the
plane x = z;_;. Extruding the thick box for ¢, y, 2
truncates the thin boxes of non-hidden layer-corners
(i.e., corners) of layers 1 and 2 having z-coordinates
strictly between z;_1 and x;: these thin boxes no longer
abut the plane y = 0 but instead abut a face of the ex-
truded thick box for ¢, 4, 2 on plane y = y;.

Modifying the set of thin boxes as described gives a
perfect boxing for C. O

To obtain the perfect boxing B shown in Figure 4c, thick
boxes (in color) are created for the hidden layer-corners,
in order of increasing distance from the x = 0 plane.
The subcornerhedra (shown grey) have no hidden layer-
corners and so are perfect. The thick boxes and the thin
grey boxes together form a perfect boxing of size k.

Next we state our necessary and sufficient condition
for a niche to be perfect. Sufficiency is proved in Sec-
tion 3 and necessity in Section 4.
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Can3

X+«

Figure 5: For Lemma 5: k= = 2; Cf, Ch, C% (right to
left, grey). Large deep box (orange) contains keyless
3-corner ¢, ), 3. Small deep box (red) contains ¢, 4, 3

Theorem 3 (characterization of perfect niches)
A niche N is perfect if and only if N has at least one
of the following features:

i) a Vii-layer containing ér; or

i) a Vsi-layer perpendicular to the S-wall; or

iii) a ‘{gé—layer perpendicular to the T -wall; or R
iv) a 3-corner whose V-layers together contain a 2-
corner and a 1-corner; or

v) a keyless 3-corner.

We refer to the condition of Theorem 3 simply as the
Condition. A niche A/ may have none, or some, of fea-
tures i)-v) of the Condition. Two corners align if they
belong to the same V-layer. Features i)-iv) describe
alignments of corners. These alignments are crucial to
the ALB-constructions in the proof of sufficiency.

Theorem 4 (optimum boxing for niches) Fvery
niche N with k corners has an optimum bozing B
such that |B|| = k when N is perfect and such that
|B|| =k + 1 when N is not perfect.

Proof. When N is perfect, then by Theorem 3, it has
at least one of features i)-v). A perfect boxing B corre-
sponding to each feature is given in the proofs of Lem-
mas 5 and 6 in Section 3. When N is not perfect, i.e.,
when it fails to have any of the features i)-v), then we
obtain an optimum boxing B as follows.

We box the cubes of the T-wall into two boxes, a
box by containing ¢y and co, and a box by containing
the remaining cubes of the 7-wall. These remaining
cubes are all in layer 1 and include among them the
cube ¢, .11 with maximum z-coordinate in the 7-
wall. While this cube in box by is extreme in the x-
direction, it is not a corner because N, being imperfect,
cannot have feature i). Then we remove the T-wall from
N, leaving a subcornerhedron N’ with k — 1 corners
and only one tower, S. By Theorem 1, A/ has a perfect
boxing B’ (obtained by the ALB-method in Theorem 2),
which together with boxes b; and by, gives a boxing B
of M. Since ||B|| = k + 1 and N is not perfect, B is an
optimum boxing. 0
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3 Sufficiency: Boxing Perfect Niches Perfectly

First we prove that a niche having feature v) of Theo-
rem 3 is perfect. The proof considers keyless 3-corners
in order of increasing distance from plane z = 0, the
same order in which the proof of Theorem 2 considered
hidden layer-corners of a 2-layer cornerhedron.

Lemma 5 Niche N is perfect if it has at least one key-
less 3-corner.

Proof. Let k= denote the number of keyless 3-corners
of N, and let their coordinates be denoted (z;,;,3),
where 1 <4 < k7; x1 is the minimum of the z;, and y;
is the maximum of the y;. To create a perfect boxing
B for N, we first create a deep box for each keyless 3-
corner Cg, 4, 3 as shown in Figure 5 for £~ = 2. The
deep box for ¢, 4,.3, shown orange, contains co. The
deep box for each subsequent keyless 3-corner extends
to the plane y = 0 and to the side of the previous deep
box. This creates k~ + 1 subcornerhedra Cy, .. ., C,’C,H,
shown grey. Each C/ is perfect, whether it is empty, or
has height 1, or height 2 by Theorem 2, or height 3 by
Theorem 1. In any case, the ALB method of Theorem 2
applies. The perfect boxings of the C; together with the
deep boxes form a perfect boxing B for N. O

Having shown the sufficiency of feature v) in Lemma 5,
our strategy for proving the sufficiency of each of the
remaining features i)-iv) is this: we make an ALB for
each layer, using the corners of A/ in a given feature
of N as anchors, and choosing an arbitrary anchor if
no corner for that layer appears in the feature. This
gives an imperfect boxing for A/ if it has hidden layer-
corners; we then make this imperfect boxing perfect by
modifying some of these boxes, making thick or deep
boxes to contain hidden layer-corners. The alignment
properties ensure that the boxes that are thickened or
deepened downward truncate the boxes below them, so
that truncated boxes remain rectilinear.

Lemma 6 (Sufficiency) If a niche N satisfies at least
one of i)-v) in the Condition, then N is perfect.

Proof. By Lemma 5, which establishes the perfection
of any N with feature v), we can assume from now on
that A has no keyless 3-corner. For each of the remain-
ing features i)-iv), we provide a perfect boxing for AN/
when A has that feature.

case 1) Refer to Figures 6 and 7. Suppose A has a
Vsi-layer containing cube ¢, which is a VyL-layer or
a Vsi-layer. Let ¢3 = ¢y and ¢, denote the extreme
cubes at heights 3 and 1 in the 3i-layer of é;5. Let é
denote the cube just under ¢s. Cube é; is a layer-corner
of layer 2, but not a corner of N'. Using é3, ¢3, and ¢é; as
anchors, create an ALB for each layer of A/. The boxes
for ¢3, ¢éo, and ¢; reach both the S and T-walls, with
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Figure 6: Sufficiency case (i) when a) the Vjj-layer of é3 is a Vs.-layer. b) ALB’s for the layers; c¢) box of é3 = ér
extruded to z = 0 and to « = 0, making the deep orange box; d) box of ¢s extruded to z = 0 and to y = 1, making

the thick green box.
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Figure 7: Sufficiency case (i) when a) the Vi;-layer of é3 is a Vy.-layer. b) ALB’s for the layers; ¢) box of é7 extruded
to z = 0 and to = 0, making the deep orange box; d) box of és extruded to z = 0 and to y = 1, making the thick

green box.

box(¢9) exactly below box(és). Then extrude box(cs)
down to the plane z = 0, making a deep box containing
both ¢é3 and co. This deep box absorbs all the cubes
of box(éz) but does not affect any other boxes in the
anchored boxing of layer 2, which is anchored by ¢;. The
remaining boxes of this layer all extend to the S-wall
and lie beyond the plane y = 1. If the Vji-layer of ¢3 is
a Vri-layer, the deep box truncates by one unit the box
anchored by ¢; so that the box of ¢; now abuts the side
of the deep box on the plane y = 1; otherwise, if the Vj31-
layer of ¢3 is a Vg1 -layer, the deep box truncates box(¢;)
so that it abuts the deep box at the plane x = x(¢é).

To complete the construction of a perfect boxing for
N, make a thick box containing S and extrude this thick
box over to the plane y = 1, where the thick box abuts
the deep box. This extrusion truncates by one unit the
boxes of the ALBs for layers 1 and 2 that lie beyond the
plane y = 1; it does not affect any thin boxes in layer 3,
and it does not affect the deep box or any other boxes of
layer 1 that do not reach the S-wall. The thin, possibly
truncated, boxes of the ALBs together with the thick
box for § and the deep box(é3) make a perfect boxing
for N.

Examples of the two cases where the V3;-layer of ¢5 is
a Vsi-layer and a VL -layer, respectively, are illustrated
in Figures 6 and 7. In Figure 6a, the V3j-layer of ¢3 is
the T-wall. Figure 6b shows ALBs based on ¢3, é2, and

¢1. Figure 6c¢ illustrates the extrusion of box(¢é3) (shown
in color), which absorbs boz(é;) and truncates box(é;)
at = x(¢é3). Figure 6d shows the final extrusion of the
thick box of S.

In Figure 7a, the Vj;-layer of ¢3 is a VyL-layer. Fig-
ure 7b shows ALBs based on ¢3, ¢é3, and ¢;. Figure Tc
illustrates the downward extrusion of box(é3) (shown in
color), which absorbs box(és) and truncates box(é;) at
y = y(é3) = 1. Figure 7d shows the final extrusion of
the thick box of S.

case ) Refer to Figure 8. Suppose N has a V-
layer that is a Vgi-layer. Let ¢é; and ¢; denote the
corners of layers 2 and 1 in the Vsi-layer that is that is
a Vs.-layer, and let ¢3 denote an arbitrary corner of A/
in layer 3. Using ¢3, ¢, and ¢; as anchors, create an
anchored boxing for each layer of N'. Now make a thick
box containing the short tower S, and extrude it to the
plane y = y(é2) = y(¢1). This thick box truncates by 1
unit the boxes of the anchored boxings that lie in layer
1 or layer 2 on the S side of the plane y = y(é) =
y(¢1). These truncated boxes now end at the thick box
containing S rather than at plane x = 0. The boxes
of layer 3 are not affected. Similarly, create a thick box
containing the two cubes of 7 and extrude this thick box
to the plane z = 0. This truncates by one unit those
boxes in layers 2 and 3 that abut the plane y = 0. Boxes
in layer 1 are not affected. After these modifications, the
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a) N has a Vsi-layer that is a Vgi-layer. b) ALB’s for the layers; ¢) box of ¢s extruded

to z = 0 and to y = 2, making the thick green box; d) box of ¢r extruded to z = 1 and to « = 0, making the thick

orange box.

resulting set of boxes is a perfect boxing: each cube of
N belongs to a box containing a corner.

case iii) Refer to Figure 9. Suppose N has a Vj5-layer
that is Vo-layer. This case is analagous to ii) above.
Let ¢3 and ¢é; denote the corners of layers 3 and 2 in
the Vis-layer that is a V.-layer, and let ¢; denote an
arbitrary corner of A/ in layer 1. Using é3, é3, and é;
as anchors, create an anchored boxing for each layer of
N. Now make a thick box containing the tall tower T,
and extrude it to the plane = z(é3) = x(é3). This
thick box truncates by 1 unit the boxes of the anchored
boxings that lie in layer 2 or layer 3 on the T side plane
x = x(¢3) = z(é2). These truncated boxes now end at
the thick box containing 7 rather than at the 7-wall.
The boxes of layer 1 are not affected. Similarly, create
a thick box containing the short tower S and extrude
this thick box to the T-wall. This truncates by one unit
those boxes in layers 1 and 2 that abut the S-wall. Boxes
in layer 3 are not affected. After these modifications, the
resulting set of boxes is a perfect boxing: each cube of
N belongs to a box containing a corner of N.

case ) Refer to Figure 10. Suppose A contains a
3-corner Cs whose V-layers together contain a 2-corner
&y and a l-corner &;. If é and & belong to the same
V-layer of és, then either case ii) or case iii) applies.
Likewise, case ii) or case iii) applies if the V-layers are
distinct, and the 32-layer is a Vri-layer. Thus we need
only consider the situation in which the 32-layer is a
Vs.-layer and the 31-layer is a V. -layer.

Using anchor cubes €3, ¢2, and ¢, create an anchored
boxing for each layer of M. See Figure 10a and 10b.
Now extrude box*(¢3) to plane z = 0, creating a deep
box for corner ¢3. See Figure 10c.

This deep box truncates box*(és), which becomes a
smaller box that measures |z(é2) — x(é3)| in the a-
dimension. This smaller box, denoted box'(¢;), has one
face in plane y = 0 and abuts the deep box, on the plane
x = z(é3). Because z(é3) < z(é2) and y(é3) = y(éa),
box™*(éq) is the only box of the ALB for layer 2 affected
by the deep box.

Similarly, the deep box also truncates box*(¢;), which
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becomes a box that measures |y(é1) — y(és)| in the y-
dimension. This smaller box, denoted box'(¢1), has a
face on the plane x = 0 and abuts the deep box on the
plane y = y(é3). Because y(é1) > y(és) and z(és) =
x(¢é1), box*(¢1) is the only box of the anchored boxing
of layer 1 that is affected by the deep box.

Now box together the two cubes of S, making a thick
box for corner ¢s. Extrude this thick box to the plane
y = y(é3), so that the thick box abuts the deep box.
See Figure 10d. Also, box together the two cubes of
T, making a thick box for corner é7, and extrude this
thick box to the plane & = x(é3), so that it abuts the
deep box. See Figure 10e. The extrusion of the thick
box containing S truncates by one unit any boxes of the
anchored boxings for layers 1 and 2 (including box'(¢;))
that lie outside the deep box and that reach the plane
x = 0. The extrusion does not affect any boxes of layer
3. The extrusion of the thick box containing the cubes
of T truncates by one unit any boxes of the anchored
boxings for layers 3 and 2 (including box'(é)) that lie
outside the deep box and that reach the y = 0 plane.
The extrusion does not affect any boxes of layer 1.

The resulting boxing is a perfect boxing for N': each
cube belongs to the box of a corner of A/, and the inte-
riors of the boxes are pairwise disjoint.

This completes the constructions for cases i)-v) and
concludes the proof. O

4 Necessity: Alignments in Perfect Niches

Technical Lemmas 7-12 show how i)-v) of the Condition
can arise from a perfect boxing B of a niche /. Each
element of a perfect B is a box b, denoted b = bozx(c),
where ¢ is any cube inside the box, and the box must
contain a corner. A box is called an i—box, 1<4<3,if
it contains an i-corner.

The proof of Lemma 13 pulls Lemmas 7-12 together
and establishes the necessity of the Condition. The
proof, given a perfect boxing B, uses the box(co)-
method, which considers which 7-box contains ce.

We introduce our boz(cp)-method by using it to prove
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that the triskele is not perfect. In the proof, we say a
cube c is dominated by a corner if ¢ lies in the box deter-
mined by the corner and cp. Cubes that are dominated
by only one corner must lie in the box of that corner in
any perfect boxing.

The box(co)-method, used to prove triskeles are not
perfect. A triskele has only three corners, ¢é;, ¢o, ¢3, one
in each layer ¢, 1 <4 < 3. Each ¢; has two more cubes
that must belong to box(¢;) as those cubes are uniquely
dominated. Since each box(é;) is convex, it contains a
fourth cube (see Figure 3b and Figure 3c). If ¢o belongs
to box(¢;), that box contains six cubes. Thus the triskele
must have at least 14 cubes, a contradiction. Hence the
triskele is not perfect. Optimum boxings B with || B||=4
are shown in Figure 3b, where co is boxed by itself, and
Figure 3c, where boz(co) is deep.

We give some notation. Cube ¢y 4 . is a lower neigh-
bor, or simply a neighbor, of corner ég, . if @' = x,
y =y+1, and 2’ < z, and similarly if 2’ = z + 1,
y =y, and 2’ < z. The 3-corner é; of the triskele in
Figure 3 has two neighbors in layer 1 and no neighbors
in layer 2.

For each of Lemmas 7-12, we assume that niche N
has a perfect boxing 5.

Lemma 7 If box(ér) € B is deep, N has feature i).

Proof. By definition of tower 7, the key cube cye, of
Gz 1,3 = C7 exists. At least one of the layer 1 neighbors
of ér is not boxed with cgey , as otherwise, boz(ckey)
would intersect box(ér). If crey ¢ box(cpri+1,1,1) then

the corner of this box lies in the 7-wall, which is thus
a Vii-layer of ér. If cpey & box (¢ 2,1) then the corner
of this box lies in the Vi .-layer of ér. 0

Lemma 8 If B has a 2-box that contains a cube of the
T -wall, then N has feature iii).

Proof. Let ' be the maximum z-coordinate of a cube
in the 7T-wall that belongs to a 2-box. Since 2’ < zT,
cube ¢, 1 3 exists and its box is thin. We claim that the
3-corner of box(cys 13) lies in the same Vi -layer that
contains the 2-corner of box(cz.2.1), by the maximality
of 2’: otherwise, the z-coordinate 2’ of the 3-corner of
box(cy 1,3) would be greater than #’, and would contain
a cube ¢y 1 3 in the T-wall, contradicting the maximal-
ity of ’. This V1 V-layer is thus a Vjs-layer that is a
Vyi-layer so N has feature iii). O

The niche in Figure 5 has one regular 3-corner, ¢;. This
regular 3-corner has four neighbors, two in each of its
V-layers. The layer 2 neighbor & in its Vyi-layer is a
2-corner, as is the layer 2 neighbor ¢, in its Vi layer.

The next definition is used for the analysis of deep
boxes and the corner alignments that arise from them.

Definition [regular 3-corner]. A 3-corner é,, 3 is reg-
ular if: 1) it has a key cube, and ii) ¢;,,3 # é7.

The niche in Figure 5 has one regular 3-corner, ¢5. This
regular 3-corner has four neighbors, two in each of its
V-layers. The layer 2 neighbor ¢; in its V. -layer is a
2-corner, as is the layer 2 neighbor ¢&, in its Vg.-layer.

Figure 9: Sufficiency case (iii). a) A has a Vjs-layer that is a Vyi-layer. b) ALB’s for the layers; ¢) box of ér
extruded to z — 1 and to x = 2, making the thick orange box; d) box of és extruded to z = 0 and to y = 0, making

the thick green box.
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Figure 10: Sufficiency case (iv). a) N has a 3-corner ¢3 whose V-layers together have a 2-corner ¢é; and a 1-corner
¢é1. b) ALB’s for each layer; ¢) box of é5 extruded to z = 0, creating the deep orange box; d) box of és extruded to
z =0 and to y = 2, creating the thick green box; e) box of é7 extruded to z = 1 and & = 2, creating the thick red

box.

Lemma 9 If ¢, 3 is regular and box(Cyy3) € B is
thick or deep, then ¢,y 3 has a Vis-layer.

Proof. Since cube key(¢é, . 3) exists, the layer 1 neigh-
bors of ¢, 4,3 also exist. Since é;,,3 # ¢, and since
there are no other tall towers in N, corner ¢, 4,3 has at
least one layer 2 neighbor. If there is a cube in layer 2
over the key, then the regular 3-corner has two neigh-
bors in layer 2. They cannot belong to the same box, as
such a box would intersect the thick or deep box(éz . 3).
A neighbor of layer 2 that is not boxed with the cube
above the key is boxed with a 2-corner in a V-layer of
Cz,y,3, Which is a V3s-layer. Likewise, if there is no cube
in layer 2 over the key, then any layer 2 neighbor of ¢, 4 3
is boxed with a 2-corner in a Vss-layer of ¢y 4 3. O

The proof of the next lemma is similar.

Lemma 10 If ¢, 3 is regular and box(éqy3) € B is
deep, then one of the neighbors of ¢ 43 in layer 1 be-
longs to a box whose corner lies in a V-layer of ¢,y 3,
where this V -layer is a Vas-layer or a Vai-layer of ¢, 3.

Proof. The key cube exists, so ¢;,,,3 has two neighbors
in layer 1. They cannot belong to the same box, as this
would intersect box(é; . 3), so at least one neighbor in
layer 1 is not boxed with the key cube; hence, the corner
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of the box of this neighbor, where the box can be thick
or thin, belongs to a V-layer of ¢, 3. This V-layer is
thus a V3s-layer or a Vii-layer of ¢, 4 3. O

Lemma 11 If é,, .3 is a regular 3-corner with a V-
layer, and if box(Ezy.y,,3) € B is deep, then N has fea-
ture ii), i), or i) of the Condition.

Proof. By Lemma 9, the regular corner ¢, ,,3 has a
V-layer containing a 2-corner. If this V-layer contains
a I-corner, then the V-layer is a Vs;-layer. If this Via;-
layer is a Vi -layer, then A has feature iii) of the Con-
dition. If the layer is a Vgi-layer, then A has feature
ii). If the regular corner é,,,,3 has a 2-corner in one
V-layer and a 1-corner in the other V-layer, then A" has
feature iv). O

Definition [special boz]. A box(éy, .y,.3) i special if: 1)
the box is deep, and ii) €, 4,3 is a regular 3-corner with
no Vij-layer and no Vis-layer that is a Vo -layer.

Lemma 12 If B contains a special boz, then N satisfies
the Condition.

Proof. The box is deep and ¢,,,y,,3 is regular but has
no Vzj-layer and no Vis-layer that is a Viyo-layer. It
follows from Lemma 10 that the Vg.-layer of ¢z, y,.3
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Figure 11: A collection of ugly furniture: each cornerhedron is imperfect, consists of two niches sharing a tall tower,

and has an optimal boxing of size k + 1.

has a 2-corner and that the box of the 2-corner must be
thick as this box contains ¢4 1.4,.1. Hence the 2-corner
box contains both cgzi41,40,1 a0d Cxo41,40,2-

Consider all the corners of thick 2-boxes (we have
just seen that there is at least one), and let Cat) yp 2 de-
note the corner with maximum z-coordinate xj,. Hence
box(Eyy 4y 2) is a thick 2-box, and with respect to the
position of ¢z 4,3, the coordinates of ¢,y . o satisty
xzy > xo and yy < yo. If box (e, 2) contains cubes
in the 7-wall, then by Lemma 8, A satisfies the Condi-
tion with feature iii). If box (¢, 4 2) does not reach the
T wall, then we continue searching in N for a feature of
the Condition. Let ¢,y v 1 and ¢y o 2, where Yo < Yo,
denote the two cubes in the Vr.-layer of Cay oy 2 that
abut box(Cy; 4 2). We consider two cases i) and ii).

Case 1) yg=1: The two cubes lie in the T-wall and
box(cgy v 2) = box(Crr1,3) = box(ér). If box(ér) con-
tains ¢y 4r—=1,1 and so is deep, then by Lemma 7, N has
feature i) of the Condition; otherwise, box(cyy yr=11)
belongs to the T-wall and contains a i-corner. Again
the 7T-wall is a Vi;-layer and N has feature i).

Case ii) yy > 1: The corners of boz(cy 1) and
box(cyy 4y 2), Which may or not be the same box, lie
in the V-layer that contains the two cubes ¢,y v 1 and
Cal yy 2, where this V-layer is parallel to, but distinct
from, the T-wall; otherwise, their box(es) would inter-
sect the thick box(¢y; 4 o). We denote this V-layer by
V" (its cubes have the same y-coordinate yj ).

Suppose ¢y yr 1 and ¢y e 2 belong to the same box
B”. By maximality of z(, box B” cannot be a thick
9-box, so B” must be a deep 3-box. However, the 3-
corner of B” cannot be é7, as B” contains cubes in V.
Moreover, B” cannot be special, by maximality of zg.
Hence either its 3-corner is not regular because it has no
key, and thus N has feature v), or the 3-corner of B is
regular. In this case, since B is not special, the 3-corner
either lies in a Vjs-layer that is a Vo -layer, and thus N/
has feature iii), or the 3-corner lies in a Vsi-layer, and
thus N has feature ii), iii) or iv) by Lemma 11.

To complete the proof of case ii) and the proof of
the lemma, suppose ¢;; v 1 and ¢;; y» 2 do not belong

to the same box. Then box(cy; v 1) is a 1-box with

I-corner in V", and box(cyy 4 2) is either a 2-box or a
3-box with corner in V. If box(Cyy yy 2) 18 @ 92-box, then
V" is a Vsi-layer that is a Vgi-layer, so N has feature
ii). If box(cyy yr 2) is a 3-box with corner Cayy yy 3 then
this box is thick (not deep, as it lies above boz(cyy 4 1))-
If ¢, 4 3 has no key, then A has feature v); otherwise,
the key exists and by Lemma 9, at least one V-layer of
Cay gy 3 18 @ Vas-layer. If this V-layer is V", then V" is
a Vssi-layer that is a VSLA—layer and N has feature ii).
Otherwise, ¢, .~ 3 has a 2-corner in one of its V-layers
(namely in its Vy.-layer) and a i-corner in the other
(namely in layer V", its Vgi-layer), so N has feature
iv). O

We now establish the necessity of the Condition with the
box(co)-method. The proof considers perfect boxings
B; such that box(O) is an i-box, 1 < i < 3, and shows
that in each case, N has at least one of features i)-v).

Lemma 13 The Condition of Theorem 3 is necessary.

Proof. i = 1) Some perfect boxing B; boxes the origin
cube cp in a thin 1-box: Let c1,4,1 denote the cube in
the S-wall with maximum y-coordinate ¢’ such that the
cube belongs to a thin 1-box, namely box (¢, 4 1), which
may or not be equal to box(cp). Since y' < ys, there
must exist a cube c; 4 2 above ci 1. By maximality
of ¢/, the corner of box(cy, 2), which may be a 2- or
3-corner, lies in the Vg -layer containing é, , 1, so this
V-layer is either a Vaj-layer that is a Vs.-layer, or a
Vsi-layer that is a Vgi-layer. In the case of a Vii-layer
that is a Vs.-layer, N has feature ii). The case of a V33-
layer that is a Vs.-layer arises when box(cy, 2) has a
3-corner and hence is thick. If the 3-corner is regular,
then by Lemma 9 the 3-corner has a Vss-layer, and also,
its Vsi-layer is a Vij-layer. If the two V-layers are the
same, the 3-corner has a Visi-layer that is a Vgui-layer
and A has feature ii); if the layers are distinct, then A/
has feature iv). To complete this case, if the 3-corner of
box(c1,.2) is not regular, either the 3-corner is keyless,
or it belongs to 7. If the 3-corner is keyless, then A
has feature v). If the 3-corner is equal to é7, then its
Vsi-layer is the T-wall, which is a Vji-layer, so N has
feature 1).
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i = 2) Some perfect boxing B2 boxes the origin cube co
in a thick 2-box: By Lemma 8, N has feature iii).

= 3) Some perfect boxing Bs boxes co in a deep 3-box:
If the 3-corner of this deep box is é7, then by Lemma 7,
N has feature i). If the 3-corner of the deep box is
keyless, then N has feature v).

If the 3-corner of the deep box is not ¢ and the 3-
corner is keyed, then by definition this corner is regular.
If this regular 3-corner of deep boxz(cp) has a V-layer
containing a 1-corner, then by Lemma 11, A has feature
i), iii), or iv). If the 3-corner does not have such a
V-layer, then either the 3-corner I}as a Vis-layer that
is a Vyo-layer, or the box of this 3-corner is a special
deep box. If the 3-corner has a Vss-layer that is a V.-
layer then A has feature iii). If the box of the 3-corner
is special, then by Lemma 12, A has at least one of
features i) - v).

Thus any perfect boxing B of N has at least one of
features i)-v). O

5 Discussion and Conclusion

We have characterized perfect niches and constructed
optimum boxings for all niches, i.e., boxings B of size
IB|| = k for perfect niches and of size ||B|| = k+1 for im-
perfect niches. To do this, we developed two methods:
the anchored layer-boxing (ALB) method for construct-
ing partitions, and the box(co) method for case analysis
of a given perfect boxing.

Our work has focussed on characterization of perfect
niches. Our theorems and their proofs clearly suggest
how to achieve low running time algorithms for recog-
nizing perfect niches and for constructing an optimum
boxing of any given niche. Depending on the details of
the input and data structures chosen, we conjecture that
algorithms for solving these two problems have running
times of O(klgk), where k is the number of corners.

Many open problems arise for 3-layered cornerhedra
and more generally, for cornerhedra of three or more
layers.

1) Based on our characterization of perfect niches,
provide an efficient algorithm and implementation
for recognizing perfect niches, representing them
succinctly, e.g., by the coordinates of their corners.

2) Provide an efficient algorithm for boxing niches op-
timally, representing them succinctly.

3) Determine the complexity of recognizing perfect 3-
layer cornerhedra.

4) Determine the complexity of boxing 3-layer corner-
hedra optimally.

5) Given a subfamily (i.e., class) of cornerhedra, how
large can the gap be between the size ||B(C)|| of an
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Figure 12: Cascadia: opt||B|| —k =4

optimum boxing for a member C of the class and the
number of corners k(C) of C? For example, for 3-
layer cornerhedra, we can obtain a lower bound for
the gap by cascading triskeles as in Figure 12. As
another example, we define a subfamily of 3-layer
cornerhedra we call ugly furniture to consist of two
niches that share a tall tower. Optimum boxings of
the subset of ugly furniture shown in Figure 11 are
of size k + 1, where k is the number of corners of
the niche, so the gap is at least 1. Is it exactly 17

6) Enumerate perfect niches for given bounding box
sizes, and likewise for imperfect niches. Counting
perfect niches (or imperfect niches, or niches) mir-
rors a problem of MacMahon, which, in his termi-
nology, was to count the number of (a,b, ¢)-plane
partitions. In our terminology, this is equivalent
to counting the number of cornerhedra of height at
most ¢ in an a X b x ¢ bounding box. MacMahon
[12] gave a well-known formula for this.
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The Exact Routing and Spanning Ratio of arbitrary triangle Delaunay graphs

Prosenjit Bose *

Abstract

A Delaunay graph built on a planar point set has an
edge between two vertices when there exists a disk with
the two vertices on its boundary and no vertices in its
interior. When the disk is replaced with an equilateral
triangle, the resulting graph is known as a Triangle-
Distance Delaunay Graph or TD-Delaunay for short. A
generalized TDy, g,-Delaunay graph is a TD-Delaunay
graph whose empty region is a scaled translate of a
triangle with angles of 61,605,035 := ©m — 6; — 65 with
01 < 6 < 63. We prove that m is a lower
bound on the spanning ratio of these graphs which
matches the best known upper bound (Lubiw & Mondal
J. Graph Algorithms Appl., 23(2):345-369). Then we
provide an online local routing algorithm for TDy, g,-
Delaunay graphs with a routing ratio that is optimal in
the worst case. When 6; = 6 = %, our expressions for
the spanning ratio and routing ratio evaluate to 2 and
%, matching the known tight bounds for TD-Delaunay
graphs.

1 Introduction

Geometric graphs are graphs whose vertex sets are
points in the plane and whose edge weights are the cor-
responding Euclidean distances. A common theme in
Computational Geometry is the study of shortest paths.
In geometric graphs, one measure of how well a graph
preserves distances is its spanning ratio. The spanning
ratio of a geometric graph is the smallest upper bound
on the ratio of distance in the graph to distance in the
plane for all pairs of points [11]. One particular geo-
metric graph of interest is the Delaunay triangulation,
which has an edge between two vertices exactly when
they lie on the boundary of a disk which contains no
other vertex in its interior [9].

A long-standing open problem is to determine the
worst-case spanning ratio of the Delaunay triangulation,
which is known to be between 1.5932 [16] and 1.998
[15]. In other words, there exists a point set where the
spanning ratio is at least 1.5932, and for any point set,
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the spanning ratio is at most 1.998. While the exact
spanning ratio of the standard Delaunay triangulation
remains unknown, several variants do have known tight
spanning ratios in the worst case. For example, when
the empty disk is replaced with a square we obtain the
Lo, or Li-Delaunay graph, which is known to have a
spanning ratio of exactly /4 4+ 2v/2 ~ 2.61 [3]. Simi-
lar proof techniques have been generalized to Delaunay
graphs based on rectangles and parallelograms [14, 12].
In general, one can define a Delaunay graph from any
convex distance function, and such a graph is known to
have a constant spanning ratio where the spanning ratio
depends on the ratio of the perimeter to the width of the
convex shape [4]. When the unit circle in this distance is
a regular hexagon, then the exact worst-case spanning
ratio is 2 [13]. When the unit circle is an equilateral
triangle, then exact worst-case spanning ratio is also
2 [8]. A generalized TDy, g,-Delaunay graph is a TD-
Delaunay graph whose empty region is a scaled translate
of a triangle with angles of 61,05, 03 := m — 6, — 05 with
01 < 05 < 03. In this paper, we provide a lower bound
of m that matches the best known upper bound
for TDg, g,-Delaunay graphs [10].

The routing ratio of a geometric graph essentially cap-
tures how feasible it is to find short paths in a graph
when making local decisions based only on the neigh-
bourhood of the current vertex. The routing ratio is
the smallest upper bound on the ratio of the length of
the path returned by the routing algorithm and the Eu-
clidean distance between all pairs of vertices. Routing
in Delaunay trianglulations is notoriously difficult, with
the routing ratio of the standard Delaunay triangula-
tion known to be between 1.70 [1] and 3.56 [1]. Varia-
tions such as the L;-Delaunay triangulation are known
to have a routing ratio between 2.7 [1] and 3.16 [7].

For TD-Delaunay graphs, there is a gap between the
spanning ratio of 2 and the routing ratio which was
shown to be exactly % in the worst-case [5]. We show
that this gap is preserved for TDy, g,-Delaunay graphs
by extending techniques from [5] to obtain a tight rout-
ing ratio of

. sin(0; — «) sin(a) .
0(91702) o jG{l?‘QXbS} Sin(0j+1) sin(Gj_l) + mln(
<a<;
sin(«) sin(a+6;_1) sin(f; —a) sin(a+ Hj_l))
sin(9j,1) Sin(9j+1) sin(9j+1) sin(Hj,l) ’
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2 Preliminaries

We will denote the line segment from point u to point
v as uv, and the length of uv is denoted |uv|. For two
vertices u, v in a geometric graph G, the length of the
shortest path from u to v in G is denoted dg (u, v). Then
for a constant ¢ > 1, GG is said to be a c-spanner if for
all vertices u,v in G, we have dg(u,v) < cluv|. The
spanning ratio of G is the least ¢ for which G is a c-
spanner. The spanning ratio of a class of graphs G is
the least ¢ for which all graphs in G are c-spanners. A
constant spanner is a c-spanner where ¢ is a constant.

In a geometric graph, each vertex is identified with
its coordinates. Here, one unit of memory is either a
point in R?, or log,(n) bits. The k-neighbourhood of a
vertex u in a graph is defined to be all the vertices v such
that there is a path from u to v consisting of k or fewer
edges. Formally, a k-local, m-memory routing algorithm
is a function that takes as input (s, Ni(s),t, M), and
outputs a vertex p where s is the current vertex, Ni(s)
is the k-neighbourhood of s, ¢ is the destination, M is an
m-unit memory register, and p € Ny(s). An algorithm
is said to be c-competitive for a family of geometric
graphs G if the path output by the algorithm for any
pair of vertices s,t € V(G) for G € G has length at
most ¢|st|. The routing ratio of an algorithm is the
least ¢ for which the algorithm is c-competitive for G.

Throughout this paper, we fix a triangle A in the
plane with angles 6, < 65 < 63. We assume that the cor-
responding corners of A are labelled 7y, 79, 73. In order
to keep notation cleaner, we use arithmetic modulo 3 for
operations on index ¢ when referring to corners of trian-
gles. For example, 74 = 71, and 79 = 73. By convention,
the expression Zabc will refer to the smaller angle among
the clockwise and counterclockwise angles between ab
and bc for three non-collinear points a, b, ¢ € R?.

For any two points u, v in the plane, define the trian-
gle T%" to be the smallest scaled translate of A with
u and v on its boundary. Note that smallest implies
that at least one of w,v is on a corner of T%". We use
7" to refer to the corner of triangle 7% corresponding
to 7;. Now we define the cones, depicted in Figure 1.
In particular, for a point p and index ¢ € {1,2,3}, let
Cp.i = {v € R?|p = 77"} be the positive cone centred
at point p corresponding to 7;. On the other hand, de-
fine the negative cone Cp,; := {v € R?|v = 77""}. Note
that Cp ; is Cp; rotated by m radians about p.

The TD-Delaunay graph of a vertex set S C R? has
an edge between vertices v and v when there exists an
equilateral triangle with w,v on its boundary and no
other points of S in its interior. Note that the equilat-
eral triangle is a scaled translate of the TD unit circle.
As with any Delaunay graph based on a convex distance
function, every bounded face is a triangle [4]. To define
the TDy, ¢,-Delaunay graph, we replace the equilateral
triangle with A containing angles of 61,65, 03. Equiv-

Figure 1: Cp 1,Cp 2,Cp 3 are the positive cones of p and
1, Cp.2, Cp 3 are the negative cones of p.

D

alently, if F' is the affine transformation that brings A
to the equilateral triangle (the unit circle in the trian-
gle distance), then there is an edge uv in the TDy, g,-
Delaunay graph of a set S C R? exactly when F(u)F(v)
is an edge of the TD-Delaunay graph of F(S). This al-
ternative definition immediately leads to a local routing
strategy for the TDg, g,-Delaunay graph of a point set
S: use the existing routing algorithm from [5] on the
TD-Delaunay graph of F'(S). In Section 4.2, we show
that this approach is not optimal.

Bonichon et al. [2] showed that the TD-Delaunay
graph corresponds to the half-f5-graph. Analogous to
the half-fs-graph, Lubiw and Mondal [10] define the 3-
sweep graph, which directly corresponds to the TDy, g,-
Delaunay graph. The 3-sweep graph G gets its name
from an alternative, yet equivalent, construction. For
each vertex u and each positive cone C, ;, include in G
the edge to the nearest vertex v € C,, ;. By nearest, we
mean that the triangle 7% is minimal among {T%"" |
v' € Cy;}. In this way, one can picture the leading edge
70974 sweeping through cone C, ;. Throughout the
paper, we assume that no two points lie on a line parallel
to a cone boundary. This ensures that each vertex has
at most one neighbour in each positive cone.

One desirable property of paths is angle monotonicity.
A path is angle monotone with width « if the vector of
each edge on the path lies in a cone with apex angle
a. Lubiw and Mondal show that the 3-sweep graph
has certain angle-monotone properties which are used
to upper bound the spanning ratio, see Observation 1.

Observation 1 An angle monotone path from s to t

with width o has length at most Cosl(il/z) [10].

In [10], Lubiw and Mondal also define a k-layered 3-
sweep graph by combining k copies of rotated 3-sweep
graphs, and provide a local routing algorithm that
finds angle monotone paths in k-layered 3-sweep graphs.
Note that since k is at least 4, their routing algorithm
does not apply to TDy, ¢,-Delaunay graphs.

2.1 Our Contributions

In Section 3, we prove that
the spanning ratio of TDy, ,-Delaunay graphs which

W is a lower bound on

sin
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matches the best known upper bound [10]. Then in
Section 4, we provide a lower bound on the routing ratio
by showing that there exist TDy, g,-Delaunay graphs for
which the routing ratio of any k-local routing algorithms
is at least as large as C'(61,02). Then, we show that our
lower bound is tight by providing an online local routing
algorithm for TDy, g,-Delaunay graphs with a routing
ratio of C(601,02). Finally, in Section 4.2, we compare
our optimal routing algorithm to the previously best-
known approach to routing in TDy, g,-Delaunay graphs.

3 Spanning Ratio

We present a lower bound in the following proposition.

Proposition 1 There exists a set of points S C R?
such that the TDy, g,-Delaunay graph of S has a span-
ning ratio of exactly m —¢€ for any € > 0.

Proof. We will a point set S =
{a,b, 71,72, 73} such that dg(a,b) approaches Sin|(‘gl;|/2),
where G is the TDy, g,-Delaunay graph of S. See
Figure 2. Place two points a,b outside A each at a
distance w from 7y, with a arbitrarily close
to 77 and b arbitrarily close to 7173. By construction

of S, G has edges T T2, ToT3, T173, T1a, T2a, T b and T3b.

construct

T2

Figure 2: The shortest path from a to b passes through
71 in the TDg, g,-Delaunay graph G of the point set

{a,b,71,72,73}. As a,b get closer to A, then dg(a,b)
approaches %.

The shortest path in G from a to b passes through 7,

meaning the spanning ratio is at least W. This

value can be made arbitrarily close to ﬁ as a and
1/2)

b move closer to the boundary of A. While this point

set may not be in general position, the vertices can be

perturbed to satisfy the general position constraint. [

The upper bound of m follows from Lemma 6

of [10] by Lubiw and Mondal.

4 Local Routing

Local routing has been studied in many contexts, and in
Section 4.2, we will show that the known routing algo-
rithms do not give optimal results in TDg, ¢,-Delaunay
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graphs. In this section, we provide an optimal local
routing algorithm. Our approach is to generalize the
algorithm from [5], leading to our algorithm (refer to
Algorithm 1). The key algorithmic insight lies in the
threshold for making decisions in routing. Each deci-
sion is carefully made to reduce the total path length.
The goal of this section is to prove the following theo-
rem.

Theorem 2 The routing ratio of the TDg, g,-Delaunay
graph is at most C(01,0s). Furthermore, this bound is
tight in the worst case.

We will start with the following proposition:

Proposition 3 Let k be a positive integer. FEvery
k-local routing algorithm for TDg, g,-Delaunay graphs
must have a routing ratio at least C(01,03) — € for any
€ > 0.

Proof. We will construct two vertex sets S; and Sy and
refer to their corresponding TDg, g,-Delaunay graphs
as GG1 and G5. Importantly, the k-neighbourhoods of
GG1 and G5 around the start vertices s are identical,
however the rest of the graphs will be vastly different.
In this way any algorithm that performs well for one
graph will not for the other. These are analogous to
the constructions of Figure 12 in [5]. Assume j = 3

T

o

o3

Figure 3: The TDy, g,-Delaunay graphs G and G con-
structed for the lower bound of k-local routing from s
to 73. In this example, k = 3.

maximizes the expression of C(61,603). Let s be on
T172. Place p; inside Cs 1 N C;, o arbitrarily close to o,
then place ¢; in Cs2 N Cp, 2 N Cr 1 arbitrarily close
to 71. Next, place p2 on segment 73p; in cone Cy, 1,
arbitrarily close to p;. Next, for ¢ = 2,..., k, place g;
such that triangle 73, p;,q; is similar to 73,p1,q1, and
place p;y1 such that triangle 73,p;11,¢; is similar to

73,P2,41- FinaHYa let Sl = {Sapla"'apk7QI7"'7qk77—3}
and SQ = {Sapla"'apkvkarlvqla"'7qk77—3}~ This
construction ensures that (7 contains the
edges Sp1, 841, P141, Pi—1Pi» 4i—19i, 4i—1Pis Piqi, kT3
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where ¢ € {2,...,k}. On the other hand, Gs
contains  the edges  spi,sqi,p191,Pi-1Pis -1,
Qi—1Di> PiGi, PkPk+1, QkPk+1, Pk+173 Where ¢ € {2, ..., k}.
Importantly, G; does not contain the edge T3pi because
qr is the closest neighbour to 73 in the cone C, 3.
Similarly, G2 does not contain the edge 73q; because
Dr+1 is the closest neighbour to 73 in the cone C., 3.
Similarly, the edges px7m3 and gx73 do not exist in G
and G, respectively, since 73 is in a negative cone of
pr and gy

Since the k-neighbourhood of s in G; and Gs is
{s,p1, -, Pk, q1, -, Q& }, then any algorithm routing from
s to 73 will choose the same first vertex (p; or ¢1) in Gy
and G3. Moreover, 73 only has one neighbour in each
graph, so any path from s to 73 must pass through g
in Gy and through piy1 in G2. Then any algorithm
that visits p; first will output a path from s to 73 in G
of length at least |sp1| + |p1gx| + |gx73]- On the other
hand, any algorithm that chooses to visit ¢; first will
output a path from s to 73 in G5 having length at least
|sq1| + |g1pr+1] + [Pr+173]. Since py is arbitrarily close
to 7o, po is arbitrarily close to pi, and ¢ is arbitrarily
close to 71, then each p; is arbitrarily close to 7 and
each ¢; is arbitrarily close to 7y. Then, for any ¢ > 0,
the routing ratio of any algorithm is at least

min(|sme| + |27 | + |T173], |sT1] + |T172| + |T273])

|s73]
ST ST: L sT T3] |sT ToT
_ sl | 2|+mm(| 2|, Ins| Jsmil |23|)_
|sTs|  |s73] |sT3] |sT3| " |s73] |sT3]

Finally, we obtain C(61,602) — € by the law of sines in
triangles smo73 and 773, where angle o := Z1973s,

|s72| _ |573] _ |T273]

sin()  sin(fy)  sin(m —a — 63)’
|s71] _ |7173] _ |s73]
sin(f3 —a)  sin(a+03)  sin(f;)’

4.1 Local Routing Algorithm

In this section, we present Algorithm 1 which is
a 1-local, O-memory routing algorithm for TDy, g,-
Delaunay graphs. It is generalized from the routing al-
gorithm by Bose et al. [5]. Let s be the start vertex, ¢ be
the target vertex, and p be the current vertex. At each
step of Algorithm 1, the next vertex is chosen based on
the four cases (i), (ii), (iii), or (iv). To ease notation for
cases (ii), (iii), and (iv), we will define the left, middle,
and right regions of p: X, X/, and Xg respectively,
pictured in Figure 4. When ¢ lies in a negative cone
m, then let X, := Cpﬂ'_l n Tp’t, Xgr = Cp,i—‘,—l n Tp’t,
and X, :=C,,;, NTPL.

In short, the algorithm prefers to route in the region
towards ¢, however when this is not possible, it stays

Figure 4: TP is the smallest scaled translate of /A with
p and t on its boundary.

Algorithm 1: Local Routing algorithm in
TDg, ,-Delaunay graph G

Data: Two points s,t € S
Result: Path in G from s to ¢
p s
while p # t do
Choose the next vertex v based on the
following cases, then set p < v
(i) Case: t lies in a positive cone Cp ;.
Follow the unique edge pv in Cp ;.
(ii) Case: t lies in a negative cone Cp;, and both
regions X1, and Xp are empty
Let j € {1,—1} minimize |p7'f+”§j + |7'fjr)}t|. Choose
the neighbour in Xy, closest to Cp, ;4; in cyclic
order about p.

(iii) Case: t lies in a negative cone Cp;, and only one
region of {Xr,Xr} is empty.

If p has neighbours in Xj;, choose the neighbour v
closest to the empty region in cyclic order about
p. Otherwise, choose the unique neighbour in the
non-empty region.

(iv) Case: t lies in a negative cone C,;, and neither
X1 nor Xgr is empty.

If p has neighbours in Xj;, choose an arbitrary

one. Otherwise, let j € {1, —1} minimize
\prjm + |Tfj;-t|, and choose v in C ;4 ;.

end
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close to a neighbouring empty region or the side that
minimizes a possible detour. Now we will prove the
following upper bound:

Proposition 4 Let s,t be two wvertices in a TDy, g,-
Delaunay graph G. When t is in a negative cone of s,
then the path Ps; output by Algorithm 1 from s to t
in G has ratio L=l at most C(61,02).

[st]
‘Pst|
Ist]

When t is in a

positive cone of s, then is at most

1
sin(01/2)

Notice that when the angles 61, 02, 03 are all equal to %,
then C(61,02) in Proposition 3 for routing in a negative
cone reaches a maximum of 5/ V3 when o = g, match-
ing the bound from [5]. Furthermore, the expression for

routing in a positive cone matches the spanning ratio.

Proof. We will bound the path chosen by Algorithm
1 by defining a potential for each vertex along a path
and showing that at each step, the potential drops by
at least the length of the chosen edge. We define the
potential as follows, depicted in Figure 5.

d Case (1) (I)(p’t) = m: (‘p Z+j| +| 1+J |)

e Case (11) q)(p?t) = II:1 (|p 7,+_]| +‘ z-‘,—] |)

Case (iii): ®(p,t) = |p7F HJ Hjt\ where the
empty region (X, or Xg) is Cp v NTP".

Case (iv):
[P

D(p,t) = ]mln(\p Z+]| + |7? z+] L j +

Case (ii)

Case (iil) p Case (iv)

Figure 5: The potential is given by the green path. In
this example, i takes values 1,3,3,3 for cases (i), (ii),
(i), (iv) respectively. The grey regions are empty.

Now, we will show that in each case of Algorithm
1, the length of each chosen edge is less than the drop
in potential. More precisely, we want to show |pv| +
O(v,t) < ®(p,t) for cases (i),(ii),(iii), and (iv).

Suppose the current vertex is p and the case is (i), as
can be seen in Figure 6. Then after an edge pv is chosen,
the current vertex will proceed to v and the case will be
either (i), (ii), or (iii). Case (iv) is not possible when ¢
lies in a negative cone of v because at least one of the
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regions of v is empty. Then the next potential, ®(v,t),
passes through some vertex T” ' for k = +1. We have

lpv| + @ (v, t) < (lpr, @+k| + 7 Z+k ol) + (o + |7 z+k )
= (Il + o) + (2ol + )
= |pr, z+k| + |77 z+k |
< max(|pr, P+ (T t) = @(p.t)
Case (i) with ¢t € C,y Cas
e
p
ase (i) with t € C3 Case (i) or (i)
t
t

p

Figure 6: Bounding the potential in case (i) since t lies
in Cp 1. The dark grey regions are empty.

Next, suppose the current vertex is p and the case is
(ii), depicted in Figure 7. Let j minimize the expression
from ®(p,t). Notice that since we choose the edge clos-
est in cyclic order about p to the region C, ;1; NTP*,
then we can deduce that v has no neighbours in its re-
gion C, ;1; NT"'. Therefore once the current vertex
proceeds to v, then the possible cases are only (ii) or
(iii). Then we have

|p'U| + @(U,t) < (|p 7,+]| + ‘ ’L+j D (|U 7,+]| +| z+j |)

(|p 7,+_]| + ‘U z+] ) (| z+jv| +| z-‘,-] |)
|p 'L+]| + | z+]t| - ( t)

Case (ii)

Case (ii) or (iii)

P

Figure 7: Case (ii) when ¢t lies in C}, 3 and j = —1. The
dark grey and blue regions are empty.

Now suppose p is the current vertex, the case is (iii),
and C);4+; N TP is the empty region, shown in Figure
8. If X is not empty, then the choice of closest neigh-
bour v to Cp ;+; NTP' guarantees that the correspond-
ing region C,4; N T of v is also empty. Likewise,
if X is empty, then choosing the unique neighbour in
Cp,i—j N TP again guarantees that v has an empty re-
gion Cy;4; NT". Either way, once the current vertex
continues to v, then the case must be either (ii) or (iii).
Then the exact same sequence of inequalities as from
case (ii) completes the argument.
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Case (iii) with v € Xpr Case (ii) or (iii)

Case (ii) or (iii)

Figure 8: Case (iii) when ¢ lies in C), 3 and j = —1. The
dark grey and blue regions are empty.

Finally, we move on to case (iv), where p is the cur-
rent vertex. After choosing the next vertex v, the next
possible cases are (ii), (iii), or (iv). Let j = +1 min-
imize the expression of ®(p,t). In 8Ny case, we have
O(v,t) < (|or Z+J| + ;jrtj ;"‘J| + |7 t|) by the triangle
inequality. When v € X}y, then We use the following
inequalities to prove the claim, also shown in Figure 9.

L |pv| < [pr2%| + |7250| by triangle inequality

2. |Tf_’tjt| + |2l = |Tf_’tjt| by projection
3. |pr | < H’? ;’1]’| since p lies on T, ij’TZv,z;
4. | z+] Ti- J| +| zJ,ij) zv’?| = | ,LJF] z ]

and projection
5. |or, z+;| <|pr, HJ\ by projection

When v is not in Xr, then let u be the intersection

of pr?¥ and 1,7 ”j ;- The following inequalities suffice

to prove the claim.

1. |pv| < |pu| + |uv| by triangle inequality
2. Juv| + [Ty 1+] <|pr, z+]| by projection
3. |Tz'v—’tjt| + [pul = \Tf_’tjﬂ by projection
4. |1} z+] T J| <|F ZH T j| by projection

Case (iv) with v & Xy
P

7" Case (iv) with v € Xy

Figure 9: Bounding the potential in case (iv) when ¢
lies in m, with ¢ = 3,5 = 1. The dotted paths repre-
senting [pv|+ ®(v,t) are shorter than the corresponding
solid paths of ®(p,t). The grey region contains v, and
the blue triangle is TP.

Since ®(t,t) = 0, then the path from s to ¢ output
by Algorithm 1 can have length at most ®(s,t). When
t is in a positive cone of s, then the potential is deﬁned
using case (i). The corresponding path pr lﬂ + T t is

m—0;+; monotone, then the routing ratio in such a case
can be at most m by Observation 1.

On the other hand, when ¢ is in a negative cone of
s, there are three possible cases: (ii), (iii) or (iv). The
triangle inequality tells us that ®(s,t) is largest in case
(iv). Then, similar to the proof of Proposition 3, the
routing ratio is bounded by C(6;,62) using the law of
sines. O

Finally, Theorem 2 is a consequence of Propositions 3
and 4 since Algorithm 1 is 1-local.

4.2 Comparison to known routing algorithms

In this subsection, we show that currently known lo-
cal routing algorithms when applied on the TDy, g,-
Delaunay graph are suboptimal. Firstly, note that by
using a stretch factor upper bound from Section 3, we
can apply the technique of Bose and Morin [6] to ob-
tain a local routing algorithm that finds a path between
any two vertices with length at most 9 times the stretch
factor, which is not optimal. Another approach is to
route in TDy, g,-Delaunay graphs by combining the al-
gorithm of Bose et al. [5] with an affine transformation.
When A is the equilateral triangle, then Algorithm 1
simplifies to the standard TD-Delaunay routing algo-
rithm from [5]. In this case, notice that the thresholds in
cases (ii) and (iv) simplify so that j refers to the corner

T’ _;_t nearest p. In other words, the decision threshold is

the midpoint of the segment 7 +17' . We will analyze
this standard TD-Delaunay routing algorlthm when it is
used on the affine transformation of a general TDy, g,-
Delaunay graph. Since affine transformations preserve
midpoints, then the decision threshold in case (iv) is
also the midpoint of the segment 7 +17' . It is in this
way that applying an affine transformatlon to the exist-
ing algorithm differs from our Algorithm 1. To see the
difference in routing ratio of these two approaches, con-
sider the construction of G from Proposition 3. If we
enforce |s7a| < |s71|, then the path output by the affine
transformation of the standard TD-Delaunay routing al-
gorithm would choose to visit p; first. The routing ratio
of this algorithm would therefore be at least

sin(fs — )
sin(91 )

sin(a)
Sin(eg)

sin(«)
sin(92)

sin(a + 62)
Sin(91)

— €

where o := Z73735. For example, when 61 = %, 02 = T,
and a = I then the routing ratio of the standard TD-
Delaunay algorithm under an affine transformation is
strictly more than 6.55, whereas the optimal routing
ratio is less than 6.52 by Proposition 4.

wly
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Exact solutions to the Weighted Region Problem*

Sarita de Bergf Guillermo Estebant

Abstract

In this paper, we consider the Weighted Region Problem.
In the Weighted Region Problem, the length of a path
is defined as the sum of the weights of the subpaths
within each region, where the weight of a subpath is its
Euclidean length multiplied by a weight a > 0 depending
on the region. We study a restricted version of the
problem of determining shortest paths through a single
weighted rectangular region. We prove that even this
very restricted version of the problem is unsolvable within
the Algebraic Computation Model over the Rational
Numbers (ACMQ). On the positive side, we provide the
equations for the shortest paths that are computable
within the ACMQ. Additionally, we provide equations
for the bisectors between regions of the Shortest Path
Map for a source point on the boundary of (or inside)
the rectangular region.

1 Introduction

The Weighted Region Problem (WRP) [15] is a well-
known geometric problem that, despite having been
studied extensively, is still far from being well under-
stood. Consider a subdivision of the plane into (usually
polygonal) regions. Each region R; has a weight a; > 0,
representing the cost per unit distance of traveling in that
region. Thus, a straight-line segment o, of Euclidean
length |o|, between two points in the same region has
weighted length a;-|o| when traversing the interior of R;,
or min{w;, a; }-|o| if it goes along the edge between R;
and R;. Then, the weighted length of a path through
a subdivision is the sum of the weighted lengths of its
subpaths through each face or edge. The resulting met-
ric is called the Weighted Region Metric. The WRP
entails computing a shortest path m(s,t) between two
given points s and ¢t under this metric. We denote the

*Work by G. E. and R. I. S. has been supported
by  project  PID2019-104129GB-I00 funded by  MI-
CIU/AEI/10.13039/501100011033. G. E. was also funded
by an FPU of the Universidad de Alcal.

fDepartment of Information and Computing Sciences, Utrecht
University, s.deberg@uu.nl

fDepartamento de Fisica y Mateméticas, Universidad de
Alcald and School of Computer Science, Carleton University,
g.estebanQuah.es

$Departament de Matematiques, Universitat Politécnica de
Catalunya, rodrigo.silveira@upc.edu

IDepartment of Information and Computing Sciences, Utrecht
University, f.staals@uu.nl
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weighted length of 7(s,t) by d(s,t). Figure 1 shows how
the shape of a shortest path changes as the weight of
one region varies.

Existing algorithms for the WRP—in its general
formulation—are approximate. Since the seminal work
by Mitchell and Papadimitriou [15], with the first (14¢)-
approximation, several algorithms have been proposed,
with improvements on running times, but always keeping
some dependency on the vertex coordinates sizes and
weight ranges. These methods are usually based on the
continuous Dijkstra’s algorithm, subdividing triangle
edges in parts for which crossing shortest paths have the
same combinatorial structure (e.g., [15]), or on adding
Steiner points (e.g., see [1, 2, 3, 5, 18]). However, rather
recently it has been proved that computing an exact
shortest path between two points using the Weighted Re-
gion Metric, even if there are only three different weights,
is an unsolvable problem in the Algebraic Computation
Model over the Rational Numbers (ACMQ) [6]. In the
ACMQ one can compute exactly any number that can
be obtained from rational numbers by applying a finite
number of operations from +, —, X, +, and VA for any
integer k > 2. This provides a theoretical explanation for
the lack of exact algorithms for the WRP, and justifies
the study of approximation methods.

This also raises the question of which are the special
cases for which the WRP can be solved exactly. Two
natural ways to restrict the problem are by limiting
the possible weights and by restricting the shape of the
regions. For example, computing a shortest path among
polygonal or curved obstacles can be seen as a variant
of the WRP with weights in the set {1,00}. Efficient
algorithms exists for this problem, culminating with the
recent algorithms by Wang [19] for polygonal obstacles,
and by Hershberger et al. [11] for shortest paths among
curved obstacles. The case for polygonal regions with
weights in {0, 1,00} can be solved in O(n?) time [9] by
constructing a graph known as the critical graph, an
extension of the visibility graph. Other variants that can
be solved exactly correspond to regions shaped as regular
k-gons with weight > 2 (since they can be considered as
obstacles), or regions with two weights {1, a} consisting
of parallel strips [16]. In the latter case, the angle of
incidence in each of the strips is the same, so they can be
rearranged so that they are all together, and the angle
of incidence can be computed exactly using Snell’s law
of refraction.
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/

/

a=1.2

1 l

\ \

Figure 1: Examples of shortest paths between two points—shown in orange—for two weighted regions. The unbounded

region has weight 1, the squares have varying weight «.

Our results. In light of the fact that the WRP is un-
solvable in the ACMQ already for three different weights,
in this work we study the case of two arbitrary weights,
that is, weights in {1, a}, where a € QT. In particu-
lar, and without loss of generality, we assume that the
weight of the unbounded region is 1. Otherwise, we
could always rescale the weights to be 1 outside the
regions. This case is particularly interesting, since an
algorithm for weights {1,a} can be transformed into
one for weights in {0, 1, o, 00} [13]. However, the variant
with weights {1, a} was conjectured to be as hard as the
general WRP problem, see the first open problem in [9,
Section 7]. (The results in [6] do not directly apply to
weights {0, 1, o, 00}.)

This paper is organized as follows. First we present
some preliminaries in Section 2. In Section 3 we consider
two weights and one rectangular region R, with the
source point s on its boundary or inside. For this setting,
we figure out all types of possible optimal paths and give
exact formulas to compute their lengths. In Section 3.3
we focus on the case where s is outside of R, and prove
that in this case the WRP with weights {1, } is already
unsolvable in the ACMQ, confirming the suspicions of
Mitchell [13]. In Section 4 we explore the computation
of the Shortest Path Map for s. We finish with some
conclusions in Section 5.

2 Shortest paths and their properties

In this section we briefly review some key properties of
shortest paths in weighted regions.

First, with our assumption that the weight within each
region does not account for the effect of certain force
fields that favors some directions of travel, shortest paths
in the Weighted Region Problem will always be piecewise
linear, see [15, Lemma 3.1]. Second, it is known that
shortest paths must obey Snell’s law of refraction. So we
can think of a shortest path as a ray of light. Throughout
this paper, the angle of incidence 6 is defined as the
minimum angle between the incoming ray and the vector
perpendicular to the region boundary. The angle of
refraction 0’ is defined as the minimum angle between
the outgoing ray and the vector perpendicular to the

region boundary. Snell’s law states that whenever the
ray goes from one region R; to another region I;, then
a;sind = a;sin@’. In addition, whenever o; > «;, the
angle 0. at which g—J sinf, = 1 is called the critical angle.
A ray that hits an edge at an angle of incidence greater
than 6., will be totally reflected from the point at which
it hits the boundary. In our problem, a shortest path
will never be incident to an edge at an angle greater
than 6.

Finally, if the space only contains orthoconvex regions
with weight at least v/2, they can be simply considered
as obstacles [16]. Thus, since we focus on a rectangular
region R, we assume that its weight is 0 < a < V2.
However, first we provide some general properties of
shortest paths for arbitrary weighted regions that are
interesting on their own.

1

Lemma 1 Let S be a polygonal subdivision for which
each region has a weight in the set {1,a}, with a > 0. A
shortest path m(s,t) visits any edge of the subdivision at
most once.

Proof. Assume, for the sake of contradiction, that
7(s,t) intersects an edge e in at least two disjoint in-
tervals I; and I3 (note that I and I3 could be points).
Moreover, let p; € I} and p3 € I3 be points for which
the subpath 7(p1,p3) C 7(s,t) does not intersect e in
any points other than p; and p3. Let ps be a point on
7(p1,p3) between p; and pz, which thus does not lie
on e. Now observe that there exists a path pips from
p1 to p3 of length min{1, o} |[p1ps|. Since p2 does not lie
on pip3, it follows by the triangle inequality that the
length of m(py,p3) is strictly larger than min{1, a}|pips|.
Hence, m(s,t) is not a shortest path, and we obtain a
contradiction. O

Observe that the previous result is not true when there
are more than two weights, see [15, Figure 2].

Corollary 2 Let S be a polygonal subdivision with n
vertices for which each region has a weight in the set
{1,a}, with a > 0. Any shortest path 7(s,t) is a polyg-
onal chain with at most O(n) vertices.

LA region is orthoconvex if its intersection with every horizontal
and vertical line is connected or empty [17].
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Proof. Any shortest path is a polygonal chain whose
interior vertices all lie on edges of S, see [15, Proposi-
tion 3.8]. By Lemma 1, each edge contributes with at
most two vertices. O

We observe that if the regions use only one of two
weights {1, a}, Corollary 2 implies that the time com-
plexity of the algorithm proposed by Mitchell and Pa-
padimitriou [15] can be improved by a quartic factor to
O(n*L), where L is the precision of the instance.

3 Computing a shortest path

We now consider the problem of computing a shortest
path 7(s,t) from s to ¢ when the region R is an axis-
aligned rectangle of weight . The exact shape of (s, t)
depends on the position of s and ¢ with respect to R, and
on the value of a. In Sections 3.1 and 3.2 we consider the
case that s lies on the boundary or inside of R, respec-
tively. We categorize the various types of shortest paths,
and show that we can compute the shortest path of each
type, and thus we can compute m(s,t). In Section 3.3,
we consider the case that s and t lie outside R. In this
case (s, t) may have only two vertices on the boundary
of R, and these vertices may not have the critical angle
property. We show that the coordinates of these vertices
cannot be computed exactly within the ACMQ.

3.1 The source point s lies on the boundary of R

Throughout this section we consider the case where s
is restricted to the boundary of R, a rectangle of unit
height with top-left corner at (0,0). Let s = (s;,0),
sg > 0, be a point on the top side of R, see Figure 2.
In addition, we assume that ¢ is to the left of the line
through s perpendicular to the top side of R. The other
cases are symmetric.

Shortest path types. Lemma 1 implies that in this
setting, there are only O(1) combinatorial types of paths
that we have to consider. More precisely, we have that:

Observation 1 Let s be a point on the top boundary
of a rectangle R with weight 0 < a < \/2. There are 12
types of shortest paths m;(s,t), shown in Figure 2, up to
symmetries.

Note that only some of the types can exist for both
a<1land 1< a <2 These types are included twice
in Figure 2, once for each regime of a.

Length of 7;(s,t). When s is on the boundary of R,
there is at most one vertex of m;(s, t) without the critical
angle property. This allows us to compute the exact
coordinates of the vertices of m;(s,t) in the ACMQ. We
now provide the equations for the length d;(s,t) of the

93

12 types of shortest paths 7;(s,t). Theorems 3 and 4
summarize the results. The proofs of the equations,
which are based on Snell’s law of refraction, are deferred
to Appendix A.

Theorem 3 Let s = (s;,0) be a point on the boundary
of R with weight 0 < a < /2, and let f = a® — 1.
The shortest path w(s,t) = m;(s,t) from s to a point
t = (tz,ty) outside R, and its length can be computed
in O(1) time in the ACMQ. In particular, the length
d(s,t) = d;(s,t) is given by

e di(s,t) (82 —ta)? + 12,

o da(s,t) = afsy —tz) + V1 —a?ty,
o d3(s,t) = asy + /2 + 12,
o dy(s,t) = ss + /12 + 12,

[ ] d5(8,t) = Sy — \/mtx - \/Bty?

o dg(s,t) = a\/si +y2 4+ /12 + (ty — y)2, where y is
the unique real solution in the interval (t,,0) to the
equation

Byt —2t, By + [0 2+ Bt — 2| yP+2s5ty—sits =0,

d7(s,t) = /Bsz + 14+ /2 + (t, +1)2,

o ds(s,t) =+/B(sz+tz) —vV1—B(1+1t,)+1,
do(s,t) = ay/(sz —x)24+1 4+

V(e — )2+ (ty +1)2, where x is the unique

real solution in the interval (t5,s,) to the equation

Bat — 2B(ty + s2)2° + [B(s2 + 12 + 4syty)
+a®(14t,)* — 1]a® — 2[B(tss2 + t2s,)
+a®(L+ty)?s, — ty ]z + Btis?
+a?(1+1t,)%s; — 15 =0. (1)

Theorem 4 Let s = (s,,0) be a point on the boundary
of R with weight 0 < o < v/2. The shortest path (s, t) =
mi(s,t) from s to a point t = (t,,t,) inside R, and its
length can be computed in O(1) time in the ACMQ. In
particular, the length d(s,t) = d;(s,t) is given by

b dlo(sat) =8z —ly — mty,

o dii(s,t) = ay/(sz — tz)? + 1,

o dia(s,t) =vVa? —1(sy +tz) — ty.

3.2 The source point s lies inside R

We now consider the case where s is restricted to the
interior of the rectangle R.
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Figure 2: Path types for s on the boundary of R of weight o < 1 (blue) and 1 < a < v/2 (orange).

Observation 2 Let s be a point in a rectangle R with
weight 0 < a < /2. There are 6 types of shortest paths
mi(s,t), fori € {6,7,8,9,11,12}, up to symmetries.

The types of shortest paths are similar to the ones
defined in Observation 1, see the paths in Figure 2 where
the top side of R or the region above R is not intersected.
As in Theorems 3 and 4, we can thus compute (the length
of) a shortest path (of each type) exactly, albeit that the
expressions for the length are dependent on the location
of s in R. Note that Theorems 3 and 4 give exact lengths
for all path types when R has height > 1 and s is at
distance exactly 1 from the bottom boundary of R.

3.3 The source point s lies outside of R

When both the source and the target point are outside
of R, the shortest path can again be of many different
types. In particular, the types in Figure 2 can be gener-
alized to this setting. There are two special cases where
the shortest path bends twice, and these two vertices do
not have the critical angle property: it can bend on two
opposite sides of the rectangle, or on two incident sides.
In the first case, the angles at both vertices are equal,
and the shortest path can be computed exactly [16].
For the second case, we show that it is not possible to
compute the coordinates of the vertices exactly in the
ACMQ. Hence, the WRP limited to two weights {1, a}
is not solvable within the ACMQ. Note that this path

type can occur in an even simpler setting, where R is a
single quadrant instead of a rectangle.

Theorem 5 The Weighted Region Problem with weights
in the set {1,a}, with 0 < a < /2, and o # 1, cannot
be solved exactly within the ACMQ, even if R is a single
quadrant.

Proof. Consider the situation where a horizontal and a
vertical line intersect at the point O = (50,150). Let R
be the quadrant such that O is its top-left corner, and
has weight o = 1.2. Recall that the weight outside R is 1.
Let s = (0,0) be the source point and ¢ = (200,200) be
the target point, see Figure 3. We follow the approach
of De Carufel et al. [6] to show that the polynomial that
represents a solution to the Weighted Region Problem
in this situation is not solvable within the ACMQ. The
following lemma, which is a consequence of Theorem 1
and Lemma 2 of De Carufel et al. [6], see also [4, 7], states
when a polynomial is unsolvable within the ACMQ.

Lemma 6 Let p(z) be a polynomial of odd degree d > 5.
Suppose there are three primes q1, g2, q3 that do not divide
the discriminant of p(x), such that

p(x) = pa(r) mod g1,
p(z) = p1()pa—1(z)

p(x) = p2(w)pa—2(z)

mod ¢2, and

mod gs,
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Figure 3: The set-up for the proof that even for two
weights the Weighted Region Problem cannot be solved
within the ACMQ.

where p;(x) denotes an irreducible polynomial of degree i
modulo the given prime. Then p(x) = 0 is unsolvable
within the ACMQ.

Let (x,y) be the coordinates of the intersection point
of the path 7(s,t) with the vertical side of the quad-
rant. We denote by 6; the angle made by the ray from
s to (z,y) with the perpendicular to the vertical side
of the quadrant, by 0] the angle of the refracted ray
with respect to the same line, and by 5’2 the angle of
the refracted ray with respect to the top side of the
quadrant, see Figure 3. First we use Snell’s law to show
the following relations between the angles:

. sin 64
sin 0] = 2
sin @) — (2)

cos By = \/a? — sin? 6. (3)

To obtain the relation in Equation (3) we use Equa-
tion (2), and the fact that cosf) = «acosf], and

cos ) = /1 —sin® @;. We then express the sum of the

horizontal distances in terms of tangents of the angles,
as follows:

200 = 50+ ¥ 0
tanf]  tan6)
150 — 50
—t 0 = /y —+ = — 150.
tan®]  tan#)

Using that y = 50 tan 61, we obtain an equation only
containing 61, 0] and 6.

150 — 50 tan 6y 50

0 _
tan 0 tan 0},

— 150.

We then apply the trigonometric identities tanf =

95

i /1 — 2 a7
A0 for §; and 6, and tanf = Y1=Co520 fop 05,
/ 29 cos O

1—sin

150 — 50—

1—sin2 6 50
0= — L4 — — 150.
S vy y/1—cos? 0},
\/1—sin? 6] cos 9;

Finally, we replace all instances of sin 6} and cos 6}, by
expressions in sin 6, using Equations (2) and (3).

150 — 50—=nbe__
0= 4/ 1—sin? 0, i 50 — 150

_ sinb; v/1—(a2—sin? 0,)
o/ 177““:)291 Va2 —sin? 6,
_ {150 — 50 sin 0 ' \/a2isin291
V1 —sin? 64 sin 6,
50v/a? — sin? 6,

+
\/1 — (% —sin? ;)

3 1
= 501/a? —sin? 6, | — —
sin 64 V1 —sin? 64

1
+ — 150.
V1 —a? +sin?6,

The final equation in terms of u = sin #; then becomes

1 1
\/(12—u2<3— + >:3.

v V1—u?2 V1-a?+u?

For o = 1.2, this can be transformed into the following
polynomial by squaring appropriately using Mathemat-
ica [20]:

— 150

p(u) = — 5602195930320001 + 93511401766200000%
— 713160370741499900u? + 32593987365142500000°
— 9869397269940000000u* + 20717559301050000000%°
— 30701172521250000000u° + 32082903984375000000%"
— 23159988281250000000u® + 10999072265625000000u"
— 3093750000000000000u° + 390625000000000000%**.

To show that polynomial p(u) is unsolvable, we thus
need three primes q1, g2, g3 that adhere to the conditions

in Lemma 6. Using Mathematica we find the following
expressions for p(u) modulo 59, 37, and 17, respectively:

46 (u'' + 44u™ + 320 + 33u® 4 26u” + 47u’ + 210°
+ 11u* + 38u® + 3u® + 6u + 42),

16(u + 17) (u*® + 18u” + 23u® + 23u” + 35u° + 8u®
+ 34u’ + 16u® + 11u® 4 34u + 10),
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4(u® + 1u+ 9) (u” + 8u® + 11u” + 3u’ + 5u°
+2u* + 2u® + 120” + 9u + 16).

We conclude that even the very limited weighted re-
gion problem where we allow for a single quadrant to
have weight unequal to 1 and s and ¢ are on halfplanes
bounded by the sides of the quadrant, not containing
the quadrant, is not solvable within the ACMQ. O

4 Computing a Shortest Path Map

To find a shortest path from a source point s to all points
at once, one can build a Shortest Path Map (SPM),
see e.g., [10, 14, 15]. A SPM is a subdivision of the
space for a given source s, where for each cell the paths
7(s,t), with ¢ in the cell, have the same type. With
it, we are able to find for each specific destination ¢,
the weight of the shortest path from s to ¢ simply by
locating the point ¢ in the subdivision. Once a SPM is
available, we are able to report weights of shortest paths
from s to any destination ¢ by standard point location
techniques [8, 12]. To compute the SPM, we consider
computing the bisectors b; ; = {q | ¢ € R? A d;(s,q) =
d;(s,q)} for all relevant pairs of shortest path types
i, T4, i.e., pairs for which b; ; appears in the Shortest
Path Map. A SPM requires only polynomial space.
However, in general, the bisector curves that bound
cells of the SPM subdivision will be curves of very high
degree [6, 11].

As before, we consider the setting where R is a rect-
angular region. In Section 4.1, we first consider the case
when s lies on the boundary of R. In Section 4.2, we do
the same for the case s lies inside R. The case that s lies
outside R is not interesting, as we cannot even compute
exactly a single shortest path in that case.

4.1 The source point s lies on the boundary of R

The SPM is given by the boundary of R and several
bisector curves, expressed as points (z,b; ;(z)). If & < 1,
these curves all lie outside R (the interior of R is a single
region in the SPM).

Furthermore, bisectors involving 7y (s, t) are of a much
more complicated form, as might be expected from the
implicit representation used for dg(s,t) in Theorem 3.
Therefore, Lemmas 7 and 8 give the bisector curves,
excluding the ones related to mg(s,t). The proofs are
deferred to Appendix B.

Lemma 7 The SPM for a point s = (s;,0) on the
boundary of the region R with weight o < 1 is defined

by:

M=o (s, — ) ifi=1,5=2
bij(x) =4 Y=g ifi=2,j=3
0 ifi=3,j=6

Lemma 8 The SPM for a point s = (s;,0) on the
boundary of the region R with weight 1 < o < /2 is
defined by:

0 ifi=1,j=4
ﬁé%x ifi=4,j=5
\/gi%zf\/oﬁflsm ifi=53j=6
bij(x) =< o = ifi=6,j="7
—1- Yy ifi="77j=8
—Va? —1(s; — x) ifi=10,5 =11
_ (sat2)420y/5:T ifi=11,j =12

Va2—1

We conjecture the following on the bisectors involving
mo(s,1).

Conjecture 1 No point on b;o(z) \ R, i € {4,...,8},
can be computed exactly within ACMQ.

We tried to prove this conjecture by taking a similar
approach as in Theorem 5. However, the solution to
Equation (1) already seems to be of high degree. We
therefore did not manage to formulate a point on the
bisector as a polynomial equation (not containing roots).

Note that in the more restrictive case where R is a
single quadrant and s lies on its boundary, the only
types of shortest paths that exist are m;(s,t), for i €
{1,2,3,4,5,6,10,11,12}. Thus, we can compute the
SPM in the ACMQ (the bisectors are given by some of
the equations in Lemmas 7 and 8).

4.2 The source point s lies inside R

In this case we have shortest paths of type m;(s, t), for i €
{6,7,8,9,11,12}. Hence, the equations of the bisectors
of the SPM are given by the sides of R, and bisector bg 9
if @ < 1, and bisectors bg 7, b7 8, b9, b7.9,bg,9 and bi1,12
if 1 < @ < v2. See Lemmas 7 and 8, and Conjecture 1.

5 Conclusion

We analyzed the WRP when there is only one weighted
rectangle R, and showed how to obtain the exact shortest
path 7(s, ) and its length when s lies in or on R. When
both s and ¢ lie outside R the exact solution is unsolvable
in the ACMQ. We obtain similar results in the case
where R is a single quadrant. For future work, it would
be interesting to find an exact formula within the ACMQ
for the bisectors involving 7y (s, t). In addition, we may
want to analyze if or how we can generalize these results
to other convex shapes.
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A Computing a shortest path when the source
point s lies on the boundary of R

In this section, we prove the stated lengths of the shortest
paths as defined in Theorems 3 and 4. All angles in this
section are measured relative to the vertical or horizontal
line through the bending point for the bending point on the
top (and bottom) or left side of R, respectively. We denote
by 0. the critical angle. The following two equations capture
the properties we use of the critical angle. For a < 1, we
have

cosfl. =1 —a?
sin 0. a (4)

cosO. 1—a2

sinf. = a =
¢ tanf. =

And for a > 1, we have

1 cosf. = /1 — ﬁ
sinf. = — = ind 1 N (5)
@ tanec = 0059C = < T .
c \/1— 2 \/a2 -1
We frequently use these equations in the rest of this section
to determine the lengths of the path d;(s,t) for all 3.
From now on, we consider the case where the source point s
is restricted to the boundary of R, an axis-aligned rectangle
of unit height with top-left corner at (0, 0).

Observation 3 Let R be a rectangular region with weight
0 < a< V2. Let s = (s4,0) be a point on the boundary of R.
Then the length of the shortest path w1(s,t) from s to a point
t = (te,ty) outside R is given by di(s,t) = /(e — t2)? + 2.

Lemma 9 Let R be a rectangular region with weight 0 <
a < 1. Let s = (sz,0) be a point on the boundary of R. Then
the length of the shortest paths ma(s,t) from s to a point t =
(te,ty) outside R is given by da2(s,t) = asg—tz)+vV1 — aty.

Proof. Let 0. be the critical angle made by m2(s,t) on the
top boundary of R, and let (b,0) be the point where the
shortest path leaves R. We use Equation (4) to obtain the
value of b:
e :\b—tm|:b—t a ©)
V1—a? [tyl ty Vi—az?
We know that the weight of the shortest paths ma(s,t) is

given by da(s,t) = a|se — b + /(b —1tz)? +t2. By using

Equation (6), we have that

= b=t,+

da(s,t) = « (sx —ty — L@)
V1—a?

« a?t2
,a(sz te — 1—a2ty)+ : y2+t§
2 2
a’“ty t
DAY e [ e
2
at [ty
= (S —tz) — Y Y
( ) Vi—aZz J1-a?
1—a?
= a(sl — tq;) + ﬁty
= a(se —ta) + V1 — a?ty. O

(Sa:a 0)

(07 b?)

=

Figure 4: Illustration of Lemma 10.

Observation 4 Let R be a rectangular region with weight
0 < a<1l. Let s = (sz,0) be a point on the boundary of R.
Then the length of the shortest paths ms(s,t) from s to a point
t = (te, ty) outside R is given by ds(s,t) = ase + /12 +12.

Observation 5 Let R be a rectangular region with weight
1< a<+2 Lets=(ss,0) be a point on the boundary of R.
Then the length of the shortest path wa(s,t) from s to a point
t = (tz, ty) outside R is given by da(s,t) = sz + /t2 + t2.

Lemma 10 Let R be a rectangular region with weight 1 <
a < V2. Let s = (54,0) be a point on the boundary of R.
Then the length of the shortest path ms(s,t) from s to a point
t = (tz,ty) outside R is given by ds(s,t) = sz — V2 — a?ty —
va? —1t,.

Proof. The shortest path from s to ¢ intersects the top
side of R, and then it enters R using the critical angle, see
Figure 4. We proceed to compute the coordinates of the
vertices of the shortest path in this case.

Let 61 be the angle at which the shortest path leaves R
with respect to the normal, see Figure 4. Then

. . ™
sin; = asin (f —00) =acosf. =+v/a?—1,

2
and thus

Csing VaTo1 Va1
—Cosgl_\/lf(oﬂfl)_\/Q_az’

(7)

Let (b1,0) and (0,b2) be, respectively, the points where the
shortest path enters and leaves R. We also know that tan 6, =
ltﬁg.?zl. Since ty < b2 < 0, and ¢, < 0, we use Equation (7)
to get the value of bs:

a2—1 _ |ty—bzl _ bg—ty
V2 = a? [tz —ts
a?—1
= by =t, — ———t,. 8
2=h T e ®)
Also, since tanf. = ‘Z—;' and b2 < 0 < b1, we use Equa-

| bl
tion (5) to get the value of b;:
1 _buf b

2 —1 |bof

2] — —b2

98



CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

b ty te
' Va2 —1 Va2 -1 2-a?
Since sin 0. = \/bb%lTbg =1 = /b +b%=b1a. Thus:

d5(87t) = S —b1+a\/b%+b§+\/t%+(ty —b2)2

3 2
_ 2 > R

21
+2—a2t%

+ (& = 1)by +4/#2

2 / a?—1

2—a?ta?—1
= 50+ (a® — )by + [ta] 2zt -1

2 — a2
2 ta: ty ) 1
=5;+ (" =1 - —tz
( )<\/2—a2 Va2 —1 V2 —a?
\/775 + 1—1
Vo — a
2—oc2
=8; — Va2 -1ty — ———t,
Y2 —a?
zsz—\/aQ—lty—\/Q—a%w. O

Lemma 11 Let R be a rectangular region with weight 0 <
a < V2. Let s = (s4,0) be a point on the boundary of R.
Then the length of the shortest paths 7e(s,t) from s to a point
t = (tz,ty) outside R is given by ds(s,t) = a\/s2 +y> +

t2 + (ty — y)?, where y is the unique real solution in the
interval (ty,0) to the equation

(@ = Dy = 2t,(a® — )y° + [@%83 + (o” — D)ty — s3]y

+23Ityy — sztz =0,
Proof. Let (0,y) be the point where ms(s,t) leaves R, and
let 0, and 02 be, respectively, the angles of incidence and
refraction at (0,y). Then, by Snell’s law of refraction, we get
that asinf; = sinf3. Thus,

wl Ity —yl
V22 V24 (ty —y)?
= a2y2(t2 +(ty —9)°) = (ty — ) (s3 + %)

= o’ Y 2 4 a2y2t2 +a? y 2a2y3ty = siti + sin
+ y2t§ +yt = 2y3ty.

- 2sityy

Hence,

(0 = 1)y* — 2ty (a® — 1)y° + [@°62 + (o — 1)t] — s2]y°

+2s§tyy — siti =0

Finally, we get that the weighted length of the shortest paths
me(s,t) is given by

do(s,t) = an/s2 +y2 + /12 + (

Lemma 12 Let R be a rectangular region with weight 1 <

a < V2. Let s = (s4,0) be a point on the boundary of R.

Then the length of the shortest paths 77(s,t) from s to a point

t = (tz,ty) outside R is given by d7(s,t) = vVa? —1s; +1+
3+ (ty +1)°.

ty —y)>. O

99
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|

Figure 5: Illustration of Lemma 13.

Proof. Let (0,b1) be the point where 77(s,t) leaves R, i.e.,
the first vertex of the shortest path. Since b1 < 0, and s, > 0,
we obtain the coordinates of this first bending point by using
Equation (5):

‘b1| *bl 1 Sx

tanf, = = = = b = — . 9
an |Sx| P 1 a271 ()

a? -1

The weight of the shortest paths 77(s,t) is then given by

TR D+

2

o Q Sy o Sz 2 1 3
=T \/a2_1+1+\/tx+(1 ty)

=va?—1sy; +1+t2+ (ty +1)2. O

Lemma 13 Let R be a rectangular region with weight 1 <
a < V2. Let s = (54,0) be a point on the boundary of R.
Then the length of the shortest path ms(s,t) from s to a point
t = (tz,ty) outside R is given by ds(s,t) = Va2 — 1(sy +

te) — V2 —a2(14t,) + 1.

dr(s,t) 12+ (—1—t,)?

Proof. Let (0,b1) be the point where ms(s,t) leaves R for
the first time and let (0,b2) and (bs, —1) be, respectively,
the points where 7s(s,t) enters and leaves R for the second
time, see Figure 5. As m7(s,t) and ms(s,t) overlap up to bg,
Equation (9) gives us that by = ——=&

Va2—1 ’

Recall that R has height 1. Let 6; be the angle at which
the shortest path leaves R for the last time with respect to
Vaz-1 ..
Woreh similar to

the normal, see Figure 5. Then, tanf; =

Equation (7). So,

tan 6 _|tsz3‘_tz—b3_ a2 —1
A T 1t Va2
a?—1
=bs=t, +(1+ty) —.
’ +h) =
And, using Equation (5), we get
tan@c:|717b2|:b2+1: 1
|bs] b3 a? -1
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by = bs L Lt

a2 —1 Vaz—1 V2-a2

The weight of the shortest paths ms(s,t) is given by

ds(s,t) = ay/s2+b2 + |ba — b1] + ay/b2 + (b2 +1)2 +

\/(bs —tz)2 + (=1 —t,)2. Using the expression for b1, we
have that

2
s
\/82 4+ b2 =4/s2 + <—7x)
! \/ Va2 -1
a2 —-1+1 9 sy

a?—1 Sz:\/az—l'

Using our expressions for b2 and b3, and the fact that bo+1 >

0, we obtain the following for the terms A = /b3 + (b2 + 1)
and B = /(b3 — tz)2 + (=1 — )%

-1

(10)

/(te — )2 + (ty, + 1)2 where z is the unique real solution in
the interval (tz, sz) to the equation
(@® = 1D)z* —2(a® = 1)(ts + s2)z°
+ [(a® —1)(s2 + 2 + 4suts) + o> (1 4 t,)° — 1]z?
—2[(a® = 1)(tesz +tase) + (1 4+ ty) sy — to]x
+ (@® = Dt2s2 + o (1 +t,)%s2 —t2 = 0.
Proof. Let (z,—1) be the point where mo(s,t) leaves R, and
let 61 and 62 be, respectively, the angles of incidence and

refraction at (z, —1). Then, by Snell’s law of refraction, we
get that:

Sy — X x —ts

asinf; =sinfy = o

V-0 +1 @GP+ (14,

A—\/(ter(lthy)\/%)QJr (\/at;,l t e

= o’(x —t2)* (50 —2)> + (=1 — t,)*(s2 — x)°

141, 1“)2 = (2 — )% (50 — 2)° + (2 — ta)?
= (a2

(0 = D)(@ — ta)2 (s — 2)* + a*(—1 — ,) (s — )’

1+t

o (Y GRS 7S Ly
- \/a2 <x/at;— T \/12+—t22)2
- (Vo;z— it ¢12+—t22> ! (11)

and

B = \/<tz+(1+ty)¢;‘2_% —t1>2 F(—1—t,)?

21
= \/(1+ty)2% + (1 41,)2

2 _1+9_ a2
:\/(th)zu

2 — a?
_ |14 ty] (12)

V2 —a2’

Using Equations (10), (11), and (12), we get that the weighted
length of the shortest paths 7s(s,t) is given by

04231 Sz + tz 1+t

\/azfli\/azfli\@fa2

+a2( e, 1+ty)+
Va2 -1 2 -a?

2 Sz t+ 1 Se +lo

a\/oﬁfl_\/oﬂfl

1+t
Fl-
V2 — a2

— (sz—l) Sz+tz
V2 —a?
=va?—1(sg+tz) —V2—a?(1+t,)+1. 0O

Lemma 14 Let R be a rectangular region with weight 0 <
a < V2. Let s = (s4,0) be a point on the boundary of R.
Then the length of the shortest paths mo(s,t) from s to a point

t = (tz, ty) outside R is given by do(s,t) = ay/(sz — )% + 14+

ds(s,t) = +1

|1+ ty]
V2 —a?

1+1
+ (o — 1) —L
( ) oz

Lity

) —(z—t:)*=0
V2 —a? - [(a2 _ 1):52 =+ (a2 — 1)ti — 2(a2 - 1)tzm]

(82 4 2% = 2s,1) + @7 (—1 — 1,782 + (1 — t,) %’

—20% (=1 —t) s, —a® — 12 4+ 2t,x =0
= (& = 1)z’s2 4 (@ — 1)z* = 2(a® — 1)s,2°
+ (@® = D2s2 4 (o — Dt2a® — 2(a® — 1)t2s,2
—2(a® = Dteszz — 2(a® — Ditga® + 4(0® — 1)sptz®
+a® (=1 —t,)%s2 + a*(—1 — t,)°z”
—20° (=1 —t,)%spz — 2° — 12 + 2tz = 0.
Hence,
(® = Dz* —2(a® = 1)(ts + s2)z°
+[(a® —1)(s2 + 2 + 4suts) + (1 4 t,)° — 1]z®
—2[(a® = 1)(tesz +tase) + (1 4 ty) sy — to]x
+(@® = D)t2s2 + (1 +t,)%s2 —t2 = 0.

Finally, we get that the weighted length of the shortest paths
mo(s,t) is given by

do(s,t) = an/(sz — )2 + 14+ /(te — )2+ (1 +t,)2. O

Lemma 15 Let R be a rectangular region with weight 1 <
a < V2. Let s = (54,0) be a point on the boundary of R.
Then the length of the shortest paths mio(s,t) from s to a
point t = (tz,ty) inside R is given by dio(s,t) = Sz — tz —

Va2 —1t,.

Proof. Let (b1,0) be the point where m10(s,t) enters R. Let
0. be the angle at which m10(s,t) enters R. Since 0. is the
critical angle, using Equation (5), we get the value of b;:

by —to|  bi—t. 1
|ty| *ty a?—1

tanf. =

= b = tr — (13)

a2 -1

100



CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

We know that the weight of the shortest paths mio(s,t) is
given by dio(s,t) = |se — b1] + ay/(b1 — tz)? + t2. By using
Equation (13), we have that

ty )
a?—1
t 2
+ (tx_ﬁ_tx) +t?2/

ty £y 2
Sx—tx‘Fﬁ + ﬁ'i‘ty

d10(s7t) = <SI —tr +

2t2
= Sp — _1
t, a2|t\
= 5, —t, + y + y
’ “ Vaz—1 +Va2-1
t ot
:Sz_t:c“‘ Y - Y
Vaz—1 +Va2-1
= 5y —ty — (0‘2_1)ty
a?—1

=8¢ —tz — Va2 — 1. O

Observation 6 Let R be a rectangular region with weight
0 < a< 2 Lets=(s;0) be a point on the boundary
of R. Then the length of the shortest paths mi1(s,t) from
s to a point t = (tz,ty) inside R is given by di1(s,t) =
ay/(8e —ta)? + 2.

Lemma 16 Let R be a rectangular region with weight 1 <
a < V2. Let s = (s4,0) be a point on the boundary of R.
Then the length of the shortest path mi2(s,t) from s to a point
t = (tz,ty) inside R is given by di2(s,t) = Va2 — 1(sx +
ty) — ty.

Proof. Let (0,b1) and (0, b2) be the points where mi2(s,t)
leaves and enters for the second time, respectively, the re-

gion R. From Lemma 13 we know that b; = — \/(127_1 Using
Equation (5), we find:
- - 1
tan . — [ty —ba|  ba—t
|t:v| 2 oﬂ -1
=b e 1y
: az—1 7
We then get that the weight of mi2(s,t) is given by

d125t fa\/sz+b2+|b2—b1|—|—a\/t2 bg—ty SO

di2(s,t) = ay/s2 + %S b —t
12(9, - x a2 —1 \/a2—1 \/a2_1 Y
' 2
2 x _
+a tz+<m+ty ty)
a?s2 Sy +te t2
_ z —t t2 T
a 21 = y T« I+a271
|5z Sy +to - a?t2
= — — «
Vazi—1 Vez—1 " a?—1
_ a?s, Sz +te P a’t,
Vaz—1 +Va2-1 Y a? -1
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o 052(57; +tg:) Sz + i _t
Voar-1  Var-1 "
a?

-1
= (st~ ty

va? -1
=vVa?—1(sg +ta) — ty. O

B Computing the shortest path map for a given s

In this section, we express each bisector as an explicit function
of the shape y = f(x). Then, the actual bisector is given by
the corresponding points (z,y).

Lemma 17 The bisector by, is given by y =

Proof. We want to compute the coordinates of the points

such that the weighted length of paths mi(s,t) and

m2(s,t) is the same, i.e., the points (t»,ty) such that
(82 —t2)? +t2 = asz — tz) + V1 — a?ty. Thus:

2 2
(530 _tx) +ty =

2

a®(sz — tz)> + (1 = )t
+ 20V 1 — a2(sz — ta)ty

0=(1- 042)(59C - tm)2 + oz2t§
—2aV1—a?(se — ta)ty
0= [\/ 1—a?(se —tz) — oztyr
aty = V1 —a?(sz — ta)

/T — o2
«
Lemma 18 The bisector ba3 is given by y = — 1_a2x.

[e3

Proof. We want to compute the coordinates of the points
such that the weighted length of paths 72 (s,t) and mws(s,t)
is the same, i.e., the points (t»,ty) such that a(sz —tz) +

mty = oSz + \/m Thus:
—aty + V1 a?t, = /12 4 12
’th + (1 — )ty — 2a/1 — a2tyt, = to + 1,
(1— a2 + 212 + 201 — Q?t,t, =0
[ﬂtz + aty]2 =0

V1—a?t, = —aty
V1—a?

«

Va2-1
V2—a?

Proof. We want to compute the coordinates of the points

such that the weighted length of paths 74(s, ) and 75(s, t) is

the same, i.e., the points (tz,t,) such that s, + /t2 + 2 =
-2 —a?t, — a2 — 1t,. Thus:

V212 = —va? —1t, — /2 - a?t,

o+t = (o =Dty + (2 - a)ta +2Va2 -

=t te. O

Lemma 19 The bisector bss is given by y =

Z.

— aZtgty
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0=(2— )t —2va2 — 12 — 2.ty + (o — 1)¢2
0=(v2—-a2t, — Va2 —1t,)?
\/2fa2ty: \/onfltI
a?—1

= —1.
V2 —a? O

\/042—1
V2—a?

Lemma 20 The bisector bss is given by y =
Va2 —1s,.

Proof. The path 7s(s, ) is similar to a path 75(s,t) where
the point of entry in R is s. The path 7¢(s,t) do not have the
critical angle property. However, the points on the bisector,
still have that critical angle property, since the shortest path
from s to them is of both types. Let (0, b2) be the point where
75(s,t) leaves the square, see Figure 4. Using Equation (5)
we obtain the following relation:

tan 6. ||«Zx||
2
Sz
= |ba| = % =va?—1ls:| = va?—1s,
c

= by = —v/a? — 1s,.

y— °®~14 in Lemma 10 (see
V2—a?

Equation (8)). We then obtain the equation of the bisector

For 75 (s, t), we obtained by =t

b5762

\/7 \/7
\/2—042 \/2—042

Lemma 21 The bisector by g is given by y = —1 —

— Va2 — 1s,. |
V2—a?

aZ-1

tu - b2 +

Z.

Proof. We want to know the coordinates of the points
(tz,ty) such that vVa? — 1(sz +t2) — V2 —a?(1+t,) +1=
va? —1sg + 14 /t2 + (ty + 1)2. Thus,
Va2 —1t, — /2 —a2(1+1t,) =
= (@ =12+ (2— )1 +t,)°
—2v/a2 =12 — a2(1 + t,)t, =
= (22—t + (@ = 1)(1+1ty)?

(
1)
12v2 - a2/ —1(1+ty)te = 0
[\/2fa2t +va2 - 1(1+ty)} =0

5+ (1+1y)?

24 (14 t,)°

Lemma 22 The bisector bipa1 s gwen by y =

—Va? —1(sz — x).

Proof. We want the curve defining the bisector between
the region containing the points ¢ = (ts,ty) such that the
shortest path from s = (sz,0) to t is mio(s,t), and the region
containing the points ¢t = (tz,ty) such that the shortest path
from s = (s4,0) to t is m11(s,t). Thus,

—Va? -1ty

ay/(sz —te)2+12 =5

= o’[(se —tz)® + ti} = (55 —t2)° + (a® — 1)t§
—2(ss —tz)Va? — 1t
2 2 2, 2,2
=0=0a"(s¢ —te)” — (52 — to)” + "t
— Pt +th + 2(se — ta) Va2 — 1ty
2 2, 42
= (0% = 1)(s0 — 1) +£2
+2(s, — t2)*Va? — 1t
(ty + Va2 — 1(s, — t.)?

1(8z — tz). O

=ty = — Va2 —

Lemma 23 The bisector bii,12 bisector is given by y =
_ (satz)+2ay/szT
Vaz-1 ’

Proof. We want the curve defining the bisector between
the region containing the points ¢ = (¢4, ty) such that the
shortest path from s = (sz,0) to ¢ is m11(s,t), and the region
containing the points t = (¢, ty) such that the shortest path
from s = (s4,0) to t is mi2(s,t). Thus,

Va2 —1(se +te) —ty = ay/(se —ta)? + 12
2
= [\/oﬂ (50 + ta) — ty] = a®((s0 — t)* + £2).

By expanding the square we find
0= (a® = 1)t +2vVa? — 1(sz + ta)ty + (50 — ta)°
—(a® = 1)(s0 + ta)”
= (o =1t +2v/a% — 1(sy + o)ty +a’ss +a’ta
a2si —« t — 2025ty + (sz + tz)2
= (o’ =1t +2vVa? — 1(sz + ta)ty
+ (50 + ta)”.

— 20423051‘@C

— 4a2sztz

From which we obtain that

—2vVa? — 1(sg + ta)
2(a? —1)

ty =

n Va(a? = 1)((sz + ta)? — [—4a2sats + (8o + t2)?])
2(a? —1)
fm(sz +tz) £ /(a2 — 1)4a2s,ts
- a?—1
—(8z +tz) £ 20/ 35t

a? —1

Let (0,b1) and (0,b2) be, respectively, the points where
m12(s,t) leaves and enters for the second time the region R.
We know that b1y > b2. Thus, using Lemma 16, we know that
mi2(s, t) exists if t, < —-2ztls. Hence, the bisector is given

\/&2—1.

_ —(satte) 20V5Ts .
a Va2-1 ’

by the curve t,
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Computing shortest paths amid non-overlapping weighted disks*

Prosenjit Bose' Jean-Lou De Carufel*

Abstract

In this article, we present an approximation algorithm
for solving the Weighted Region Problem amidst a set ©
of n non-overlapping weighted disks in the plane. For
a given parameter ¢ € (0, 1], the length of the approxi-
mate path is at most (1+¢) times larger than the length
of the actual shortest path. The algorithm is based
on the discretization of the space by placing points on
the boundary of the disks. Using such a discretization
we can use Dijkstra’s algorithm for computing a short-
est path in the geometric graph obtained in (pseudo-
)polynomial time.

1 Introduction

Computing a geodesic path (i.e., shortest path) be-
tween two points s and t in a geometric setting is one
of the most studied problems in computational geom-
etry. Applications of geometric shortest path prob-
lems are ubiquitous, appearing in diverse areas such
as robotics [16, 25, 26], video games design [18, 29],
or geographic information systems [13]. We refer to
Mitchell [21] for an excellent survey on geometric short-
est path problems.

In contrast to the classical shortest path problem in
graphs, where the space of possible paths is discrete, in
geometric settings the space is continuous: the source
and target points can be anywhere within a certain ge-
ometric domain (e.g., a polygon, the plane, a surface),
and the set of possible paths to consider has infinite size.
Many variations of geometric shortest path problems
have been studied before, depending on the geomet-
ric domain, the objective function (e.g., Euclidean met-
ric, link-distance, geodesic distance), or specific domain
constraints (e.g., obstacles in the plane, or holes in poly-
gons). Finding shortest paths among polygonal obsta-
cles in the plane has drawn great interest [3, 5, 22, 30].
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Some of these results apply directly to real world prob-
lems. For instance, for modelling subdivisions of sur-
faces, embedding models use cylindrical faces, quadrics
or patch together surfaces that are defined via bicubic
or quadratic splines, see, e.g., [6, 11, 20]. Motion plan-
ning problems typically involve motion of curved objects
through obstacles having curved boundaries [10, 19].
Modern font design systems rely upon conic and cu-
bic spline curves [23, 24]. Numerous applications need
efficient algorithms for processing curved objects di-
rectly [15, 28]. The way to tackle arbitrary real objects
has been to approximate them as polygons or polyhe-
dra of a sufficient number of vertices. This process is
generally unsatisfactory, see [14]. For these reasons, in
this paper, as in [7, 8, 9, 17], we focus on the problem
of computing shortest paths among curved objects. In
particular, we consider disks of different radii with a
non-negative weight assigned to them.

1.1 Previous results

One of the most general versions of the shortest path
problem that has been studied consists of a subdivision
of the two-dimensional space. Without loss of general-
ity, we assume it to be triangulated. Each region has a
(non-negative) weight associated to it, representing the
cost per unit distance of traveling in that region. Thus,
the cost of traversing a region is typically given by the
FEuclidean distance traversed in the region, multiplied by
the corresponding weight. The resulting metric is often
called the weighted region metric, and the problem of
computing a shortest path between two points under
this metric is known as the Weighted Region Problem
(WRP). This problem is very general, since it allows to
model many well-known variants of geometric shortest
path problems.

The WRP was first introduced by Mitchell and Pa-
padimitriou [22]. They provided an approximation al-
gorithm that computes a (1 + €)-approximation path
in O (n®log “YW) time, where n is the total number
of vertices describing the polygonal regions, N is the
maximum integer coordinate of any vertex of the subdi-
vision, W (resp., w) is the maximum (resp., minimum
non-zero) integer weight assigned to a face of the sub-
division.

Recently, it has been shown that the WRP cannot be
solved exactly within the Algebraic Computation Model
over the Rational Numbers [12]. In this model one can
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Time complexity Reference
O (n®log 201V) [22]
0 (V' 1og (B22) 5 og =3 1
O(N21og (Fr) 2 ]og L (ﬁ+logn)) 2]
O (N?log (%)%logglogé) [30]
O (N?10g (V) 2 log 2 log 1) 3]

Table 1: Some (1 + ¢)-approximation algorithms for the
WRP. In this table, N is the maximum integer coordi-
nate of any vertex of the subdivision, W (resp., w) is
the maximum (resp., minimum non-zero) integer weight
assigned to a face of the subdivision.

compute exactly any number that can be obtained from
rational numbers by a finite number of basic operations.
This emphasizes the need for high-quality approxima-
tion paths instead of optimal paths.

Most of the results for the WRP are focused on polyg-
onal obstacles. The most common scheme followed in
the literature is to discretize the geometric space by po-
sitioning Steiner points, and then build a graph by con-
necting pairs of Steiner points, see [1, 2, 3, 5, 30]. An ap-
proximate solution is constructed by finding a shortest
path in this graph, by using well-known combinatorial
algorithms (e.g., Dijkstra’s algorithm). See Table 1 for
the time complexity of some approximation algorithms
designed following this scheme.

However, we are aware of only a few publications that
treat curved objects. In general, we do not seem to have
a good grasp on the complexity of weighted shortest
paths when the region boundaries are nonlinear curves.
The particular case where we consider n pseudodisk ob-
stacles in the two-dimensional space (i.e., the weight
of all the regions is infinity) can be solved exactly in
O(nlogn + k) time, where k is the size of the extended
visibility graph of the union of the pseudodisks [8].
Later, Chen and Wang [9] computed a shortest path
avoiding a set S of h pairwise disjoint splinegons with
a total of n vertices in O(n + hlog h + d) time, where d
is a parameter sensitive to the geometric structures of
the input, by applying a bounded degree decomposition
of the set of obstacles. This improves the result in [8]
when h = o(n).

Obstacles with curved boundaries present both alge-
braic and combinatorial challenges [7]. Thus, Hersh-
berger et al. [17] proposed an O(nlogn) time algorithm
for the shortest path problem based on certain assump-
tions on the computation of locating the intersection of
two bisectors defined by pairs of curved obstacle bound-
ary segments. They provided a (1 + €)-approximation
of a shortest path in O (n logn + nlog é) time without
the bisector computation assumption.

Moreover, if we consider the problem for weighted
disks where inside each region we can travel between
any pair of points at no cost whereas outside all regions
the travel cost between two points is their Euclidean
distance, this can be seen as a redefinition of the ad-
ditively weighted point set spanner problem. Bose et
al. [4] were able to show that it is possible to design a
graph G with a linear number of edges such that for any
pair of disks D and D’ there is a path in G whose length
is arbitrarily close to the Euclidean distance between D
and D’. Recently, this was improved by Smid [27] by
reducing the number of edges needed by a factor of 4.

1.2 Our results

Sometimes, the shape of a real-world curved object can
be approximated using a polygon whose vertices are
specified by a subset of ¢ points on the object, where c is
a sufficiently large value. Then, one approach to solv-
ing the WRP on a set of curved regions would be to
approximate each region with a polygon, and then use
existing algorithms that work on polygons. However,
this method is not always optimal.

Let ® = {D,...,D,} be a set disks, each with a ra-
dius R; > 0, and for any pair D; and D;, 1 <i < j < n,
D;ND; = 0. In addition, each disk has a (non-negative)
weight w; assigned to it. In this paper, we provide an
algorithm to compute a path between two points amidst
® that is at most (1 + ¢) times larger than the actual
shortest path. To solve this problem, we use the tradi-
tional technique of partitioning the 2-dimensional space
into a discrete space by using a non-trivial Steiner points
placement and designing an appropriate graph. With-
out loss of generality, we may assume that s and ¢ are
vertices of this graph. In particular, the main results of
this paper are:

e The special case where the weight of all the disks

is at least § can be solved exactly by using the

algorithms in, e.g., [8, 9, 17]. See Section 2.

e For the general version of the WRP, we propose a
discretization that consists of a set of Steiner points
along the boundary of each disk. We first place
some vertices, called vertex vicinity centers, evenly
on the boundary of each disk. Then, if the weight
of the disk is strictly positive, we create an annulus
around each vertex vicinity center, and we place
a set of Steiner points inside each annulus. For
a given approximation parameter ¢ € (0,1], the
number of vertices of the discretization is at most
C(D)%, where C(D) captures geometric parame-
ters and the weights of ©. See Section 3.

o We show that the weighted length of the approxi-
mated path between any pair of nodes is at most
(1 + ¢) times the weighted length of a shortest
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path. This approximation path can be computed
by executing shortest path algorithms on the graph
formed by Steiner points where two Steiner points
are joined by an edge. See Section 4.

2 Preliminaries

Any continuous (rectifiable) curve lying in the two-
dimensional space is called a path. Let II(s,t) de-
note a path from a source point s to a target point ¢
among © = {D1,...,D,}. Let R; and ¢; be, respec-
tively, the radius and the center of each disk D,;. Let
w; € Rxg,i € {1,...,n}, be the weight associated to
a disk D; € ©, which represents the cost of travel-
ing a unit Euclidean distance inside that disk. In ad-
dition, and without loss of generality, we can assume
that the weight outside the disks is 1. Otherwise, we
could always rescale the weights to be 1 outside the
disks. Then, the weighted length of II(s,t) is given by
ITL(s,t)|| = p+ > iy wi - |mi|, where p denotes the Eu-
clidean length of the intersection between II(s,t) and
the space outside the disks, and |m;| denotes the Eu-
clidean length of the intersection between II(s,¢) and a
disk D;, that is, m; = II(s,t) N D;. In case m; coincides
with an arc of D;, the weight of traveling along that arc
is given by min{1,w;}. Given s and ¢, a weighted short-
est path SP,(s,t) is a path that minimizes the weighted
length between s and t.

Observe that every path consists of a sequence of
(straight or circular-arc) segments whose endpoints
ai,...,a,, are on the boundary of the disks in ®. These
endpoints aq, ..., a.,, are called bending points.

We now present some properties of a shortest path
between two points on the boundary of the same disk
that will be useful in the forthcoming sections. Observa-
tion 1 gives the (weighted) length of a subpath between
two points p and ¢ on the boundary of a disk D € .
The result can be proved using the law of cosines.

Observation 1 Let p and q be two consecutive bending
points of the path SPy(s,t) on the boundary of D € ©
centered at ¢ with radius R and weight w > 0. Let 6 be
the angle Zcpq.

o If SPy,(p,q) coincides with an arc of D, then
ISP, (p,q)|| = R (m — 20); see the red path in Fig-
ure 1.

e If SP,(p,q) only intersects the boundary of D at p
and q, then ||SPy(p,q)|| = w - 2R cos8; see the blue
path in Figure 1.

The following result follows from the fact that the

weight of the boundary of a region is given by the min-
imum among the weights of the two adjacent regions.
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Figure 1: The two types of shortest paths between p
and ¢ on the boundary of a disk.

Observation 2 Let p and q be two consecutive bend-
ing points of the path SP,(s,t) on the boundary of D.
Let w € [0,1] be the weight of D. Then SP,(p,q) only
intersects the boundary of D at p and q.

Now consider a special case of the WRP where all
the regions have a weight w > g Lemma 1 states that
when the weight of a disk is at least 7, then the disk can
be considered as an obstacle. Hence, if all disks have
weight at least 7, we can compute exactly a shortest
path between any pair of points, see, e.g., [9].

Lemma 1 Let p and q be two consecutive bending
points of the path SP,(s,t) on the boundary of D. Let
w > T be the weight of D. Then SPy,(p,q) coincides
with the shortest arc of D from p to q.

Proof. We need to prove that the weight of a path in-
tersecting the interior of the disk is larger than when
going along the boundary, i.e., that R - (7 — 20) <
2Rw cos O <= m—20 < 2w cos b, for any angle 0 € [0, 7).
We know that w > 7, so 2w cosf > mcosf. Thus,
it is sufficient to prove that m — 20 < wcosf. We first
minimize the function 7w cosf + 26:

OmeosO 26 _ 6+ 2=0 sinf=>
a0 "

For this value of 6, we get that mwcosf + 20 >
V72 — 4 + 2arcsin %, which is greater than m, which

gives us the desired result. O

Now, we state that there are no other ways for a short-
est path between p and ¢ to intersect the disk D than
the ones described in Observation 1. This means that
if p and ¢ are two consecutive bending points on the
boundary of D, a shortest path between p and ¢ is a
(straight or circular-arc) segment, i.e., SP,(p,q) does
not bend on the boundary of D.

Lemma 2 Let p and q be two consecutive bending
points of the path SP,(s,t) on the boundary of D. If
w € (1,3), then a shortest path between p and q is a
(straight or circular-arc) segment.
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Figure 2: The two possible types of shortest paths be-
tween p and g on the boundary of a disk are depicted
in red and blue.

Proof. Suppose there is a point b # p, ¢ on the bound-
ary of D where SP,(p, ¢) bends, and let v be the angle
Zcpb, see Figure 2.

In this case, the length of SPy,(p,q) is

ISPl = REEEEw + 2RG - 0) =
R. (%w+2(7 9)):2R(wcosv+(’7—9))-

The value ||SP,(p,q)| is minimized when cosy =
\/w2—1:

w

31SPu(p, )l _

3 —2Rwsiny+ 2R =0<+<= wsiny=1
y

: 1
siny = 4,
{ N w?—1
COS7y = o
We can see that the equation holds since w € (1, 7).

Hence, for this value of v, the weighted length of a short-
est path from p to ¢ is:

|SPw (p; q)|| = 2R (wcosy + (v — 0))
=2RVw?2 —-1+2R <arcsin (i}) — 9) .

Now, we need to compare the length of SP,, (p, ¢) with
the length of (i) a path 71 (p, q) that only intersects the
boundary of D at p and ¢, and (ii) a path m2(p, ¢) along
the boundary of D.

We first define the function w cos 6 + 0 that allows us
to prove that |71 (p,q)|| < ||SPw(p,q)||- The maximum
value of the function, when 6 € (0, %] is obtained next:

Owcosl + 6

20 = —wsinf+1=0<+= wsinf =1

. 1 . 1
<= sinf = — <= 60 = arcsin | — |.
w w

Hence,

. 1 . 1
wecosl 4+ 60 <wcos | arcsin [ — + arcsin | —
w w

= v w? — 1+ arcsin (
= wcosl < /w? — 1+ arcsin

= 2Rwcosl < 2R\ w? —1+2R

)
)-¢
arcsin ( ) — 0)

Now, we define another function w® — 14w? + 37w that
allows us to prove that ||m2(p, )| < ||SPw(p,q)||. The
maximum of this function, when w € (1, §), is obtained
next:

IS

IS

7 N 7 N

= |Im1(p, @)l < [|SPw(p, q)ll-

O’ — 14w + 37
w WISTW s 40?437 = 0 e w = 1.

Ow
Hence,
4 14w? 4+ 37 1
w5—14w3+37w§24:>%§—
24 w
24 —12w% + 12 + w* — 2w? + 1 1
— < —
24 Tw
wr—1 (W?-1)2 1
2 * 24 T w

The Taylor series of the function cosxz is
Zzoo ((2711))'% , for all =z. Thus, oSm <
2

1-— ‘*’T—l 4 (w?= o 1)

, and we get that
1
cosVw?—1< = :sin(g -
w
1
e g — vV w? —1 < arcsin ()
w
. 1
— 1< 2arcsin | —
w

:>R-(7r—20)§2R< —1+arcsin(1)—9)
w

= [|m2(p, @)l < |SPw(p,)]|-

w271)§l
w

= rT—2

We proved that the length of both paths m(p,q)
and 7a(p, q) is not larger than the length of the path
SP,(p,q). Hence, a shortest path from p to ¢ is either
the straight-line segment from p to ¢ or a shortest arc
of D from p to q. O

3 Discretization

In this section, we construct a weighted graph G. =
(Ve(G.), E-(G.)) by carefully adding Steiner points on
the boundary of the disks. Then, one can apply Dijk-
stra’s algorithm on G. to obtain a path 7(s,t) that is a
(1 + e)-approximation of SP,(s,t).

Lemma 1 states that when the weight of a disk is at
least 5, then no shortest path will intersect the inte-
rior of that disk. In this paper we are discretizing the
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Figure 3: Vertex vicinity of a vertex v (in grey) on the
boundary of disk D;.

space to obtain a (1 + ¢)-approximation of a shortest
path. Thus, from now on, we can assume, without loss
of generality, that the maximum weight of the regions
is 5.

First, we introduce the value d; defined as the mini-
mum Euclidean distance from D; to any other disk D;
in ®. We also define a weighted angular radius «; to

. i . . i 1 : .
be a; = arcsin ( 2ddoRit minflwi} ) - Opgerve that oy is
4R; max{1l,w;}

not larger than 7.

Definition 1 Let v be a point on the boundary of D; €
®. We refer to the disk with center v and radius
2R;sinq; as the vertex vicinity of vertex v, or vertex
vicinity when v is clear from the context.

Observe that in Definition 1, «; is equal to the mini-
mum angle between (i) the line tangent to D; at v, and
(ii) the line through v and the intersection point be-
tween the vertex vicinity of v and D;. See Figure 3. We
use the definition of vertex vicinity to place k; points
around each disk D;. These points {v},..., 05}, called
vertex vicinity centers, are equally spaced around D;.

If the weight of the disk D; is 0, we define the angular
distance between ¢;, and two consecutive vertex vicinity
centers vf and vf“, for 1 </? < k;, by

ed; am
Av Civ Hl ———— foree |0, — 1
' (d + 1) ’Qwi ’ ( )
where q = LE3ctv0eZ+10c+1 . _ Z maxi<j<n{Ry}
B 2 P T ming<a{di}

and k; is the largest integer satisfying Lvilcivfi < 2m.

Note that we do not consider the particular case where
the disks overlap, so ¢ > 0, and a > 1.
Otherwise, if the weight of D; is w; > 0, we have that

k; = {JEJ Let p - be the point diametrically opposed

to v} in D;. We associate to each vertex vicinity center
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Figure 4: Ring points associated to the vertex vicinity

J

center v; on the boundary of D;.

vf a set of 2r 4+ 1 points on D;, noted as p?)j, . ,pfg,
each of which is called a ring point. The ring points

p?j7 ..., p; ; are placed on the boundary of the half disk
' ——

to the right of v p1 j» from p - to v] in clockwise order.

The points pl ,...7pZ . are placed symmetrically on
the other half of the dlsk We impose the condltlon that
inside the vertex vicinity of each vertex v}, we do not
place ring points associated to vf Thus, r is the largest
See Figure 4

integer satisfying ép” lp” < 35—
for an illustration of the ring points associated to Uj
We define the angular dlstanee between v!, and two

consecutive ring points pm and pm , for 0 § f <r, by

€ 2wie )" am
jadid (1— Z),fOI'EE(O,].
am 2w;
(2)
Based on previous discretization schemes (e.g., [2, 3]),
and without loss of generality, we may assume that the
points s and t are vertex vicinity centers or ring points.
From Equation (2), and using the definition of vertex
vicinity and the formula for the sum of the first terms
of a geometric series, we can obtain the number of ring
points associated to v} that we are adding to the bound-

ary of a disk D; with weight w; > 0.

] Z+1
4p2] lp'L]

Proposition 3 Let D; be a disk with weight w; > 0.
The number of ring points associated to v] inserted

on D; is upper-bounded by 2% + 1.

Proof. By the definition of the ring points we know
that the angular distance between consecutive Steiner

v L
points on half a disk is Lp”vfpf“;l = @i€ (] — 2wc)

So the angular distance from point p . to each of the
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Steiner points pf’j, ¢e{l,...,r} is given by

; = WiE 2wie\™
Zpg,jvgpf,j = - (1_ - )

m—0 a aTm
_we 1-(1-2)
e 1-(1- %)

we 1-(1- %)
= a ’ 2w; e

I
N
VN
=
|
VRS
=
|
2| &
ks
N———

o~
N———

T _

The largest value of r such that épgjvf Pi; <%

can be found by solving the following inequality:

T (_ 1_2wi€ Sz_ai
2 am 2

Q;

— 1 (1—2wi8>T§1—2al
am T
— (1 . sze)r Z 20&1'
am T
2041-
— 1 < log,_su,e —
logQ% 1 +log, 7%

~log, (1— 22)  log, (1 - 225)°

Since we need to add ring points around the whole
disk D;, we need two times the number of points in the
previous equation. In addition, we need to take into
account vertex p?’ ;» hence the final result. O

Observe that we do not need to place the number
of points from Proposition 3 around each vertex vicin-
ity center Uf—, since some of them are further away
than the ring points associated to neighboring vertex
vicinity centers. Hence, we create an annulus around
each point v} and we place ring points only inside
these annuli. The smallest circumference of the annuli,
i.e., the boundary of the vertex vicinity of v}, has ra-
dius 2R; sin «;, and the largest circumference has radius
2R; sin (2a;). An upper bound on the total number of
points placed on each disk D; with weight w; > 0 is
given next.

Proposition 4 Let D; be a disk with weight w; > 0.

The total mumber of vertexr vicinity centers and ring
s

points added on D; is upper-bounded by ﬁ—.

ar—2w;e Vi

Proof. Let Ug be a vertex vicinity center on the bound-

ary of a disk D;, for j € {1,..., 2%1} By Proposition 3
1+log, % . . 7
we place 27log2 =y + 1 points associated to v; on

the boundary of D;. Since we are creating an annu-
lus where the largest circumference has radius 2 cos o

Figure 5: The annulus where the ring points from v are
placed is represented in grey.

times the radius of the small one (see Figure 5), out-
side this second disk, and around D;, we are placing

1+log, 20 .
——=2.r__ + ] points.
10g2 (1_ 2:};5) + P

Then, the idea is to calculate the number of Steiner
points inside the annulus:

1 +log, 7% B 1+ log, 2?
logy (1 — 2222)  log, (1 — 222)

log, & —logy %2 2log, =7

logs (1— 225) log, (1 — %)
210g2% B -2 2

logy (1 - %22) ~ logy ™ 244=  log,

am
am—2w; e

Note that in the previous equation we are not count-
ing the intersection points between D; and the largest
circumference around v!. In addition, the intersec-
tion points between D; and the smallest circumference
around v} coincide with the vertex vicinity centers of
vf ~! and vf *1. Finally, since the vertex vicinity cen-
ters belong to the set V.(G.) of nodes, and we have ﬁ
vertex vicinity centers, we get the desired result. O

The total number of nodes in G. is O(%), and the

total number of edges is O(’;—z), where the constants
hidden in the “big-O” notation depend on the geometric
parameters and weights of ©, see the appendix. In case
that two nodes are not visible or are adjacent on the
boundary of a disk, we join them by arcs of the disks,
instead of using a straight-line segment. This way, we
ensure that if a shortest path between a pair of points
does not intersect the interior of the disks, then our
algorithm computes a shortest path exactly.
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4 Discrete path

If the source point s and the target point ¢ are on the
boundary of the same disk D and the only disk SP, (s, t)
intersects is D, then we can compute SP,(s,t) exactly,
and in constant time. This result is obtained by taking
into account that there are only two possible shortest
paths from s to ¢, see Observation 1.

Now, suppose s is on the boundary of a disk D cen-
tered at ¢, and t is outside D. We prove that there
is a path 7(s,t) whose length is at most (1+ <) times
larger than the length of a shortest path from s to ¢
when intersecting only D. This path 7 (s,t) is a short-
est path through the vertices of the discretization. In
fact, we can compute a shortest path exactly in this
case. However, the result in Lemma 5 will be useful
to prove the approximation ratio when a shortest path
intersects more than one disk.

Lemma 5 Let s be a point on the boundary of a disk D
centered at ¢ and weight w > 0, and let t be a point
outside D. If D is the only disk intersected by SP,,(s,t),
then ||7(s, t)|| < (14 £) - [|SPw(s,t)].

Proof. First, we will prove the case where w > 0. Sup-
pose that a shortest path from s to ¢ does not intersect
the interior of D. In this case, the approximate shortest
path intersects the arc of the disk from s to the tan-
gency point from ¢t to D. Before this tangency point,
and along the boundary of D, there is a ring point.
This ring point is joined to ¢t by an edge which is not
a straight-line segment. This means that in this case,
an approximate shortest path is also a shortest path.
Hence, [[7(s, )| = [|SPu (s,8)]| < (1+ £) [SPu(s, )]

Now, suppose that SP,(s,t) intersects the interior of
D. Let g be the point where SP,(s,t) leaves the disk
and let 0 be the angle Zcsq. Let p be the closest ring
point to ¢ on the boundary of the disk, and let Zesp be
0+-¢', for some e’ > 0 and 6 < 7. The case where ¢’ <0
will be addressed later in the proof. In addition, we can
assume, without loss of generality, that D has radius
length 1. Let s’ be the point diametrically opposed to
s on the boundary of D, and let v be the angle Zs'ct,
see Figure 6.

Then, the length of the approximate path is

| 7(s,t)|| = 2w cos (8 + &)
+ /1 + |ct|2 = 2|ct| cos (2(0 + &) — )
= (Qw cos O 4+ /1 + |ct|2 — 2|ct| cos (260 — 'y))

2w cos 0 + /1 + |ct]2 — 2|ct| cos (20 — 7)

[Zw cos (04 ¢') + /1 + |ct]> — 2|et| cos (2(0 + &) — 7)]

We would like to prove that:

2wcos (0 + ') + /1 + [ct]> — 2|ct| cos (2(0 + ') — )
2w cos 6 + /1 + |ct|? — 2|ct| cos (20 — v)
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Figure 6: Notation when ¢ is outside the disk.

wcecosf + ¢
wcos B

Since cos (0 4 ') < cos 6, it is sufficient to prove that:

2w cos 0 + /1 + |ct]2 — 2|ct| cos (2(0 + ') — 7)
2w cos 0 + /1 + |ct]2 — 2|ct| cos (20 — 7)

wcosf + ¢

wcosf

Thus,

2w? cos? 0 4 wcos By/1 + |ct|2 — 2|ct| cos (2( + ') — 7)

< V14 |ct|2 = 2|ct| cos (20 — ) - (wcosh 4 €')

+ 2w? cos? 0 + 2&'w cos O

> wcosfy/1+ |ct|2 — 2|ct| cos (2(0 + ') — 7)
< /14 |et]? = 2|ct| cos (20 — ) (wcos O + £')
+ 2¢’wcosd

= <\/1 + |ct]?2 — 2|ct| cos (2(0 + €') — )

—2¢/ — /1 4+ |et|? — 2|ct| cos (20 — 'y))cucosé)

< V1 + |ct]> = 2Jet| cos (20 — 7)€’

The term to the right of the inequality represents the
length of a shortest path from s to t outside the disk,
multiplied by a positive value €’, so this value is positive.
In addition, w > 0, and since § < 5, cos@ > 0. Then,
it is enough to prove that

V1 +|ct2 = 2|ct| cos (2(0 +¢') — ) — 2¢’
—/1+ |ct|2 = 2Jet| cos (20 — ) <0
= /14 |ct]? — 2|ct| cos (2(0 + &) — 7)
< 26" 4+ /1 +|ct|2 — 2|ct| cos (20 — 7)
= 14 |et]? = 2ct|cos (20 + &) —7) <4 + 1
+ |et|* — 2|ct| cos (20 — )
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4 4¢'\/1 + |ct|2 — 2|ct| cos (20 — 7)

= —2|ct|cos (2(0 +¢') — ) < 4e’? — 2|ct| cos (20 — 7)
+ 4¢'\/1 + |ct|2 — 2|ct| cos (20 — )

<= 2|ct|(cos (20 — ) — cos (2(0 +&") — 7))
< 4" + 4"\ /1 + |ct]? — 2|ct| cos (20 — ).

Since cosa — cosb = —2sin “—H’ sin 45~ =b for all angles

a, b, the previous inequality is equ1valent to:
— 2y + 2¢

4
— |et| sin ( o 5 ) sin (—¢’)

< e? 4 &'\/1+|ct]2 — 2|ct|cos (20 — 7).

We know that sina < a, so it is sufficient to prove
that:

1
< +/|ct|? — 1 — arccos <t|) —v+20
c

<1+ |ct]2 = 2|et| cos (20 — )
= 20 — /1 + |ct|> — 2|et| cos (20 — 7)

1
< arccos (| t) +9—+|ct]? - 1.

Now, 6 is just on the left-hand side of the inequality,
so we would like to know which is the largest value
20 — /1 + |ct|> — 2|ct| cos (20 — ) can take:

(3)

020 — \/1+|ct]2 — 2|ct| cos (20 — 7)
06
B 2|ct|sin (20 — )
V1 + [ct]? — 2|et| cos (20 — 7)

|ct|sin (20 — v + €')e’ < & + &'\/1+ |ct]2 — 2|ct| cos (26

=)

= /14 [ct]|2 — 2|ct| cos (20 — ) = |ct|sin (20 — )

|ct|sin (20 — v +€') < & + /1 + |et]? — 2|ct| cos (20 — )
|ct|sin (20 — v +&') — &’ < /1 + |ct|2 = 2|ct| cos (20 — 7).

Now, &’ is just on the left-hand side of the inequal-
ity, so we would like to know what is the largest value
|ct| sin (20 — v 4+ &’) — &’ can take
!

Olct|sin (20 —y+¢') —¢

=|ct|cos (20 —vy+¢€')—1=0

o¢’
< |ct|cos (20 —y+¢€') =1
, 1
<= ¢ = arccos | ] +v — 26.

We know that ¢/ > 0, so the maximum value is
max{O arccos (I fl) + v - 29}.

obtained when &’

Hence,

o If ¢ 0, it is sufficient to prove that
|ct|sin (20 — ) < /1 + [ct]2 — 2|ct| cos (20 — 7):

|ct|? sin? (20 — ) < 14 |ct|* — 2|ct| cos (20 — )
<= |ct|*sin® (20 — ) — |ct|* < 1 — 2|ct| cos (20 — )
— Jet|? cos® (20 — v) < 1 — 2ct| cos (20 — )
— ) + |et|* cos? (20 — ) > 0
<= (1 — |et|cos (20 — v))* > 0.

—
< 1 —2|ct| cos (20

e If &/ = arccos (‘ |) +~—20, it is sufficient to prove

that |ct| sin (arccos (\ct|)) arccos (|ct\) —v420 <
1+ et]? — 2[ct| cos (20 — 7):

1 ! ! + 26
— —— —arccos | — | —

etf? ) "
<1+ Jet|? = 2|ct| cos (20 — 7)

|ct]

— 1+ |ct]* — 2|ct| cos (20 — ) = |ct|* sin® (20 — )
<=1 = |ct]| cos (20 — 7).

Hence, 20 — /1+|ct]> —2Jct|cos(20 —7) <
arccos (ﬁ) +~—+/1+|ct]?> — 2 = arccos (ﬁ) +

v — +/|ct|? — 1, which is (3), and that is what we
wanted to prove.

In both cases, we proved that ||7(s,t)]] <

e 1P, O = (14 55| SPu(s, Dl We also
know that cosf > 1 — 20 when 6 < Z. Hence,
e’ / p—
1 - - < 1 :1 —_—
Fares SO 20) T )

However, we are interested in obtaining a (1 + %)—
approximation. We can obtain this approximation fac-
tor by setting €’ to M Note that ¢’ represents the
maximum angular distance between consecutive ring
points. So, if we place the first Steiner point on the
boundary of the disk, diametrically opposed to s, 8 =0
and, in order to get a (1 + %)—approximation, we would
like to have the following Steiner point at a distance =2
from the first Steiner point, which is true by Equation
(2). Following this procedure, one can prove that we
always obtain a (1 + %)—approximation.

We also need to calculate the ratio when the closest
ring point to ¢ is to the left of ¢ with respect to SPy, (s, t).
Suppose p’ is the closest ring point to ¢ on the boundary
of the disk where Zcsp’ = 6 + ¢’ and ¢/ < 0. If the ap-
proximation path through p is shorter than through p’,
the algorithm that calculates the approximation path
will never go through p’, so we do not need to calculate
the ratio of the approximation path through p’. Other-
wise, since the length of the approximation path is on
the numerator, and the length of the shortest path does
not change, the ratio when taking the approximate path
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Figure 7: The tangency point from ¢ to the disk D is
after the Steiner point.

through p is larger. Also, note that in this case, if p is
before the tangency point ¢’ from ¢ to D, the segment
from p to ¢t will intersect the interior of the disk, see
Figure 7. Hence, we need to calculate the ratio in this
particular case.

The length of the approximate path is given by
17 (s, t)|| = w|sp|+3d+]q't|, where 6 = Zpcq’, see the yel-
low path in Figure 7. We know from before that w|sp| =
2wcos (0 +¢’). We also know that |¢'t| = /|ct]? — 1,
since ¢’ is the tangency point from ¢ to D. In addition,
by using some trigonometric identities, we obtain that

0 =2(0 +¢’) — arcsin <VCt2_1> — 7. Thus,

|ct]

| 7(s,t)|| = 2wcos (0 +&") + /]ct|2 — 1+ 2(0 + &)
_ (,/|ct|2—1>
—aresin [ Y——— | — 7

|ct]

Our goal is to prove that:

7 (s, 8)l
2w cos 0 + /1 + |ct[2 — 2|ct| cos (20 — ) ~

wcosf + ¢

wcos B

Since cos (0 + €') < cos 6, it is sufficient to prove that:

2(wcosf + 0 + ¢’) — arcsin <V|cﬁt2_1> —y+/|ct]? =1

2w cos @ + /1 + |ct|? — 2|ct| cos (20 — v)

wcosf + ¢
wcos
Vlet]2 =1
— <2w cosf +2(0 +&') — v — arcsin <|c||t|>
c

+ V]ct|? =1 —2wcos § — 2¢’
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— /1 +|et|2 = 2|et| cos (26 — Fy)>wcos9

< V1 + |ct]2 = 2|ct] cos (20 — 7)e'.

We know that the term on the right-hand side of
the inequality is positive, also w > 0, and since 6§ <
cos 6 > 0. Then, it is sufficient to prove that

Vet]2 =1
A =20 — y— arcsin <|C|> ++/ct]? =1

|ct]

s
2

—/1+ |et]? — 2|et| cos (20 — 7) < 0.
We now maximize the function A with respect to 6:
0A _5 4|ct| sin (20 — ) —0
00 24/1 + [ct]? — 2|ct]| cos (20 — )
< |et|sin (20 — 7) = /1 + |ct|2 — 2]ct| cos (20 — )
= |et[*sin® (20 — ) = |et|* + 1 — 2|ct| cos (20 — 7)
= —|ct|? cos® (20 — ) = 1 — 2|ct| cos (20 — )
— (1 —|et|cos (20 —~))* =0

arcsin < v Ct|2_l> + 7

:}9:

Thus,

2 —1
20 — v — arcsin Vet =1 +V|et|? =1
|ct]

— /14 |et]? — 2|ct| cos (20 — v)

Vlet]2 =1 Vl0et]2 =1
< arcsin <C|> — arcsin <|C>

|ct| |ct|

1
+ \V4 |Ct|2 — 1 — \/1 + ‘Ct|2 — 2|Ct|m = O
C

This proves that [|7(s,t)|| < (1+ £)[SPw(s,t)|| when
s is on the boundary of a disk D with positive weight.

In the special case where w = 0, we know the exact
weight of a shortest path since m — 20 + v = 7 =
20 = ~. Hence, ||7(s,t)|| = /1 + |ct|?> — 2|ct| cos2¢/,
and ||SP,,(s,t)]| = |ct| — 1. Thus,

|7(s, )| _ /T T [t? — 2lctcos 2
[SP. (s, )] 1
VI [etF = 2[ct] + 4]ct]e
B |ct| — 1
_ et = D2+ dfetle | Afet]e”
- (e EA e (=7 Vo
Now, we would like to prove that /1 + (ﬁc!tc|t|—61/§2 <

4|ct|e’?

1+ 2 = 1+ e < (1+ %)2 We know that |ct| >
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d+1,and &’ < Wdﬂ)’ where d is the minimum distance
4|ct|e"

from D to any other disk. Thus, since Tet=1)2 is a

decreasing function for |ct| > 1, we have that

” 2
4|ct|e <14 4(d+1)e
(let| = 1)? d?

ed 2
4(d +1) (2a(d+1))
42
g2 g2
=1+ ———=<1+4+ =
+ a?(d+1) — + a?

e 2%

£\ 2
1+ 5+ == (1+3). O
a a a

1+

<1+

<

Next, we generalize Lemma 5 to the case where
SP,(s,t) intersects an ordered sequence of disks of D.
Recall that each disk D; is centered at ¢;, has radius R;,
and the weight inside the disk is w; > 0, for 1 < ¢ < n.
In addition, G is the graph whose vertex set is the set
of vertex vicinity centers and ring points, and each pair
of points is joined by an edge, see Section 3.

Theorem 6 Let SP,(s,t) be a weighted shortest path
between two points s and t. There exists a path 7(s,t)

in Ge such that ||7(s,t)|| < (14¢) - ||SPw(s,t)]-

Proof. Let D = (Dj,...,Dy) be the ordered sequence
of disks intersected by SP,(s,t). We can suppose
that s € D;, and ¢ € Dj. The ordered sequence
of points where SP,(s,t) enters the disks is given by
(s =ai,as,...,a5—j+1 = t), see Figure 8. The portions
SPy(a;,a;+1) are called inter-vertex vicinity portions.

By Observation 1, the subpaths SP,,(a;,a;+1) either
intersect the interior of the disk D;, or coincide with an
arc of D;.

Nodes s = a; and t = aj_;41 are ring points, so
we let vy, = s and vy, = t. For the remaining
points a;, we let vy, be the closest vertex vicinity center
or ring point to a; in disk D;, see Figure 8. Consider
now an inter-vertex vicinity portion SPy(a;, a;+1). We
define the path 7'(ve,,ve,,,) as the path from vy, to
vg,,, through by;, the point where 7(a;, a;41) leaves D;.
Using the triangle inequality, we get that

Hﬂ-/(vei7v£i+1)|| < ||v£1‘,aiH + ||7r(ai7ai+1)” + ||ai+1v£i+1||'

Moreover, the maximum distance between consecu-
tive Steiner points on the same disk is given by the last
two points on the same annulus. This, together with
the fact that a; belongs to the interior of the annulus of
some vertex vicinity center, and Equation (2), gives us

aTm

1
; 2w;e \ 82 argew;
[ve,aill < 2R;sin (ogﬁ (1 - wﬁ) e ) min{1,w;}.
a

An upper bound for ||a;41vy,,,| is obtained analo-
gously. Thus, we have the following inequality:

Riw;e Rij1wiqie

17 (Ve ve, )| < + lIm(ai, aia)|| +

Note that we are using the fact that sinf < 6 when
0 > 0, and (1 — z)¥ < 1 when z,y > 0. Also,
the inequality is true even in the case where w; = 0

(resp., wiy1 = 0), since |lvg,a;]| = 0 < L€ (resp.,
aiv1ve,,, ]| = 0 < %) Now, recall that a =
143c4+v9c2410c+1 ; _ EFmaxigi<n{R;}
%>1SIHCQC_W>O'
Thus, a can be written as the solution of the system of
equations given by a = b—; and b = %. Then,
Riw;e Riti1wipie
% + |7 (as, aiv1)| + ShitlWitle
2(4)7;8Ri min1<j<n{dj}
= = + ||7(@is Git1
2wip1eRipy miny<j<n{d;}
by maxi<j<n{R;}
2ed; 2ed; 1
< Z5 4 (s as) | + L @

Therefore, we obtain the path 7/(s,t) = 7'(s,ve,) U
7' (vey,ve,) U. .. UT (vg,_,,t). Foreachi=1,...,k—j,
we define the point p; to be the closest Steiner point
to by; that is to the right of SP,(s,t) when oriented
from s to t if by; is to the right of the segment
from a; to its diametrically opposed point on D;. Oth-
erwise, we let p; be the closest Steiner point to by;
that is to the left of SP,(s,t). Now, we create
the path 7”(s,t) = 7"(s,ve,) U 7" (vey,ve5) U -+- U
ﬂ—/l(vek—j’t)7 where ”T//(vfz‘vvfi+1) = (Uprivvfi-u)' We
know from Lemma 5 that [|7”(vs,, ve,,,)|| < (14 £) -
|7 (ve,, ve,,,)||- Thus, using Equation (4),

k—j

In" (s, Ol =Dl (ve;, ve,.) |

i=1

(1+5)

<(1+5)

K3

kS

<.

||7r/(vfi » Vliqq ) H

.

kS

S, =

(el + 5+ i) )
®)

1

k—j
9
S@+J§yﬂ%MH)
k—j

+ (1 + i) 2{ Z(di +dij). (6)

=1

Recall that d; is the minimum distance from disk D;
to any other disk D;. Hence, it follows that
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Figure 8: The shortest path SP,(s,t) is represented in blue. The path 7/(s,t) is represented as a dashed path. The

vertex vicinities are the small disks around vy

di + div1 < (|Jvg,aill + |7 (as, ait1)|)

+ (loe, oy @i |l + 1w (@iv, ai)ll)

2
< 2l|m(aq, aiy1)| + g(di +dit1).

The second inequality in the previous equation comes
from the fact that |jvgail + |lve,,ais1ll < 2E(di +
diy1) < %(di + dit+1), see Equation (5). Hence, d; +
dit1 < 2% ||lm(ai,ai11)|. This, when substituted in
Equation (6) implies that

k—j

> lm(ai,aie)|
i=1

6a+2
Thfe +4dae + 2¢

(257 2)

=(1+¢) - [|SPu(s, 1)l

7" (s, )l < | 1+

Finally, since the length of the shortest path 7(s,t)
in G is at most as large as the length of 7”(s,t), we
obtain the desired result. O

If we use this discretization scheme for disks, the ap-
proximation factor that we achieve is better than ap-
proximating each disk by a c-gon, and then using the
existing methods for triangulations by a factor of ap-
proximately /1 + €log, % The reason might be be-
cause most of the discretization schemes we are aware
of (see, e.g., [1,2, 3, 30]) are described in terms of a tri-
angulation and, in our case, we would only have disjoint
c-gons.

Remark 7 Using our discretization scheme  for
weighted disks provides an approximate shortest path
using fewer Steiner points than when wusing other
schemes for triangulations.

Proof. First, let us consider that the disks are approx-
imated by regular c-gons circumscribing the disks. We
would like to know the value of ¢ for which the length
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;1> Vg, and vy

i+1°

Figure 9: c-gon circumscribing a disk.

of a path that coincides with the boundary of the c-
gon is a (1 4 ¢)-approximation of the length of a path
that coincides with an arc of a disk. For the rest of
the proof we assume that the c-gons are disjoint. Let
a be a corner of the c-gon circumscribing D;, let d be
the intersection between the segment ¢;a and D;. Let b
be the midpoint of an edge containing a, see Figure 9.
Now, we want to compare the length of the segment ab
with the length of the arc db. Let « be the angle Z¢;bd,
and assume, w.l.o.g., that the c-gons have side length 2.

Then, db = >— = % cot 7. Hence,
|ab| _ v sin 7 < z
|bd| % cot © Tceos T T - (1 _ (1)2)
c 2
B 1 B 2
- 9 (= 2 T 29
() 2-(%)
and if ¢ > ,/%77, then % <1+ &. The lowest up-

per bound on the number of vertices of a discretization
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scheme is obtained in [3], giving in this case at most

C(P)y/=7nlog, 2
NG

C(P) > 0. However, using our approach, we are adding

at most C(D)%, for some other parameter C'(D) > 0.
Thus,

Steiner points, for some parameter

c(P) 12'*':7rn10g2% C(P)ﬂ- 9
e > V14 elog, — 7
C(D)z = C@NV2 gy (7)

We know that /1 + ¢log, % > 1, since € > 0, and that
C(P)w
C(D)V2
for small values of €. This concludes the proof that we

are adding less points than if we approximate each disk
with a c-gon, and then we use existing algorithms that
work on polygons. O

> 0, so the value in Equation (7) is at least 1

5 Conclusions and open problems

We presented and analyzed a discretization scheme
of the 2D space containing a set of non-overlapping
weighted disks. Using this scheme, one can compute an
approximate shortest path when the disks on the space
have a non-negative weight assigned to them. The main
idea of the discretization is to place Steiner points on
the boundary of the disks.

In addition, we can solve exactly the special case
where the disks have a weight w = 0 or w > 7 by using
visibility graph techniques and Dijkstra’s algorithm in
O(n?) time. We can also show how to create a linear-
sized t-spanner to reduce the running time of the algo-
rithms that compute a weighted shortest path when the
disks have any non-negative weight assigned to them.
However, due to lack of space, we cannot include these
results here.

As future work, it would be interesting to reduce the
number of Steiner points that we place on the bound-
ary of the disks, or reduce the number of edges of the
associated graph. Finally, a more general version of the
problem is to consider some disks that are not mutually
disjoint.
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Appendix

This Appendix is devoted to provide the proof on the size of
the graph G-.

Lemma 8 The number of nodes in G. is at most C(D)Z,

2a7r3(max1<j<n{Rj}+1)
where C(@) < min{l,wz}»minlsjgn{l,d?,RJZ.}’

imum positive weight of ©.

and w 1s the min-

Proof. Proposition 4 gives us an upper bound on the num-

ber of vertex vicinity centers and ring points in each disk
us

with weight greater than 0, which is W?. We

am—2w;e

1

know that log, > x, when x > 0, so

1l—x
1 o s ™
log, ﬁ &%) B (e} 10g2 I—Zj - ai%
< : _r :
arcsin (m‘“ﬁ{iﬁiﬁﬁilﬁ“i} ) 2;—;5
< T

(min{di ,R;} min{1l,w;} ) 2w;e

4R; max{1,w; } ar
2a7%R; max{1,w;}
min{d;, R; } min{1, w; }w;e
2am*(Ri + 1)%
min{d;, R;} min{1,w; }w;e
2am? (Ri+1)
min{d;, R;} min{w;,w?}e
2(171'3(Ri +1)
~ min{d;, R;} min{1l,w?}e’

IA

Moreover, if the weight of D; is 0, then by Equation (1)
27

we are placing — 7" points, so
a(d, +1) i
if R;<d;

N 2an(R;+1
27 _ 2am(di +1) =" 1(3125 :

ed; - . = Yifd;<R; )
a(di+1)Rz Ried; A 2ar(d;i+1)

- d?s

2am(min{d;, Ri} + 1) 2am(R; + 1)

min{d?, R?}e
2am*(R; + 1)
min{d?, R?}e’

~ min{d?, R?}e

Then, since we have n disks, the total number of vertex
vicinity centers and ring points is upper-bounded by C(D)%2,
where C(D) < .QMS(QmaX.lSjS"{RJ‘}Zl) 3

min{1l,w }-mmlgjgn{l,dj ,Rj} ’
minimum positive weight of ©. Thus, the estimate on the
number of nodes in G is O(Z). Note that here we are taking
into account that a does not depend on .

The set E. of edges is obtained by creating an edge (u, v)
between any two vertex vicinity centers or ring points. In
case u and v are adjacent on the disk, we add an arc between
them. In addition, if v and v are not visible, the edge is a
non-straight line segment. This edge is a shortest path from
u to v avoiding all the disks, see, e.g., the red path in Fig-
ure 6. Thus, the total number of edges in G. is O(:—j) O

where w is the
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Burning Simple Polygons

Justin Bruss*

Abstract

Given a simple polygon P with n vertices and an integer
k, we wish to find a set S of k vertices of P that mini-
mize the maximum geodesic distance from any point in
P to its geodesically closest vertex in S. We describe a
dynamic programming algorithm that solves this prob-
lem in O(n") time.

1 Introduction

We are given a simple polygon P defined by n vertices
V', ordered clockwise around P. We are also given a
positive integer k < n. The problem is to find a set U
of k vertices in V that minimizes (over all size k subsets
of V) the maximum geodesic distance (over all points
p € P) from U to p, where the distance from U to p
is d(U,p) = minyey d(u,p) and d(u,p) is the geodesic
distance (length of the shortest path in P) from u to p.
Alternatively, one can think of the set U C V as being
ignition points where we simultaneously ignite k fires
that totally burn the flammable polygon in the least
time.

Our problem is a restricted version (where U C V)
of the general geodesic k-center problem in a simple
polygon P where U C P. Oh et al. [7] described an
O(n? log? n)-time algorithm for the general problem in
a simple polygon for k = 2. Soon after, Cho et al. [3] an-
nounced an optimal O(nlogn) algorithm for this prob-
lem. The general problem for & > 2 seems more diffi-
cult. Evans and Lin [4] introduced the polygon burn-
ing problem and showed it to be NP-hard for polygons
with holes. They also gave an algorithm that solves the
problem in O(kn?) time for a restricted class of convex
polygons. In this paper, we describe an algorithm to
solve the problem for simple polygons in O(n”) time.

Our approach starts by identifying a small set of
points in P, called the potential final burn points, de-
noted F, that contains all points that could be the last
to burn in P for any k and any U C V. The set F com-
prises precisely the vertices V', along with the points on
the boundary of P equidistant from two vertices of P,
and the points within P equidistant from three vertices
of P. Thus F consists of points defined by one, two, or

*Department of Computer Science, University  of
British Columbia, justinbrussi@gmail.com will@cs.ubc.ca
jack.li.jxl@gmail.com. Research supported in part by NSERC
Discovery Grant.
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three vertices of P. Consequently, |F| € O(n?) and it
can be calculated in O(n?) time [6]. For a point p € F
to be an actual final burn point of a set of U C V of k
ignition points, the vertex/vertices that define it must
be in U and there must be a way to choose the remain-
ing ignition points in U so that (1) U contains no vertex
of P closer to p than p’s distance, ¢(p), to its defining
points! (i.e. p is the last point to burn) and (2) every
point in P is at distance at most ¢(p) to its closest point
in U (i.e. all of P burns). Given a particular value k,
our algorithm considers each p € F, in increasing or-
der of t(p), as a candidate for the true final burn point
for some set U of k ignition points. Using dynamic
programming, our algorithm determines if such a set U
exists. The first such p is the geodesic k-center.

2 Properties and Definitions

Notation: Let P be a simple polygon with vertices V.
Let OP be the boundary of P and let dP(a,b),a,b € OP
be the boundary of P clockwise from a up to b. For
u,v € P, let 7(u,v) be the shortest geodesic path in P
from u to v and let d(u,v) be the length of 7(u,v). The
last vertex (or u if there is none) before v on 7(u,v) is
called the anchor of v (with respect to u). Let b(u,v)
be the geodesic bisector of v and v in P. Given a
set of ignition points (sites) U C V, let Vor(U) be
the geodesic nearest-point Voronoi diagram of U in P
and let Vor(U)[u] be the Voronoi region associated with
u € U in Vor(U). We also call Vor(U)[u] the burn region
associated with u.

Observation 1 Since we are considering burn regions
which are Voronoi regions of sites that are vertices of
P, every burn region contains a vertex of P. In fact,
burn regions are star-shaped® around their ignition point

(from Aronov [1, Cor. 3.20]).

Definition 1 (Burn Path) A burn path 7(u,p) is the
shortest geodesic path from an ignition point u to a point
p in the burn region associated with wu.

Definition 2 (Final Burn Point) A final burn point
of a set of ignition points U C V is a point p € P

LA point p may have different values of t(p) if it has different
sets of defining points.

2A set Q C P is star-shaped around p € P (with respect to
the geodesic metric) if Vg € Q : 7(p, q) C Q.
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satisfying

d(U, p) = supd(U, q)
qeP

For simplicity, we will assume that P is in general po-
sition, meaning no vertex of P is equidistant from two
other vertices of P, i.e., no bisector b(u, v), u,v € V con-
tains a vertex of P (from [1, Def. 3.21]). However, this
assumption can be removed (See Appendix A). Note
that P being in general position implies that all bisec-
tors intersect the boundary of P at exactly two points.

Lemma 1 Letu,v € V. Then d(u,p) where p € b(u,v)
1s strictly convex in p.

Proof. See Appendix B for proof. O

Corollary 2 Given the open subset S of b(u,v) between
two points p and q in b(u,v)

max{d(u,p),d(u,q)} > sup d(u,p")
P

Proof. Since d(u,p’) is strictly convex in p’ € b(u,v),
the maximum value of d(u, p’) is attained at the bound-
aries of a given subdomain. O

Lemma 3 Given a burn region R associated with ig-
nition point w, there exists p € R such that d(u,p) =
sup,cp d(u,p'). Moreover, for all such p € R, at least
one of the following is true:

1. pe (VNR)\ {u}

2. p is the intersection of b(u,v) with OP for some
veV

3. p is the intersection of b(u,v) with b(u,w) for some
v,weV

Proof. See Appendix C for proof. O

Definition 3 (Potential Final Burn Point) A4 po-
tential final burn point is a point p € P such that:

e p € (,en Vor(N)[n] for some N CV where 1 <
|N| < 3.

o If N={u}, pe V\{u}.

o If N = {u,v}, p is the intersection of b(u,v) with
oP.

o If N = {u,v,w}, p is the intersection of b(u,v) with
b(u,w). (This condition, when |N| =3, is redundant.)

We use F to denote the set containing all such po-
tential final burn points in P. For p € F, we call its
corresponding N the set of defining ignition points of p.

Classifying points p € F by the number of ignition
points used to define them, we obtain a constructive
definition of F:

Figure 1: p is the Type II potential final burn point
defined by u, v clockwise from u to v. ¢ is the Type II1
potential final burn point defined by u, v, w.

A Type I potential final burn point is defined by a
single ignition point (|N| = 1). All n vertices are Type
I potential final burn points.

Type II: A Type II potential final burn point is de-
fined by a pair of ignition points N = {u,v}. There are
(;) ways to choose distinct u,v € V. For each pair, the
bisector b(u, v) intersects OP, yielding exactly two Type
1T potential final burn points (Fig. 1). Thus, we have
up to 2(2) Type II potential final burn points.

Type III: A Type III potential final burn point is
defined by a triple of ignition points N = {u,v,w}.
There are (g‘) ways to choose distinct u,v,w € V. For
each triple, if the corresponding Voronoi vertex exists
in P, it constitutes a Type III potential final burn point
(Fig. 1). (Note that potential final burn points can have
multiple valid sets of defining ignition points.)

It is clear that F comprises precisely the vertices V,
along with the points on the boundary of P equidis-
tant from two vertices of P, and the points within P
equidistant from three vertices of P.

Lemma 4 F* C F where F* is the set of final burn
points of P for every possible set of ignition points U C
V.

Proof. Concretely,

Fr= U {p € Pld(U,p) = maxd(U, q)}.
Ucv

Fix U C V and let a« € {p € PldUyp =
maxgep d(U, q)}. We must have a € Vor(U)[u] for some
u € U. Let R denote the burn region associated with w,

R =Vor(U)[ul.
Let b € R,
d(u,b) = d(U,b) b € Vor(U)[u]
<
< I;lea]%(d(U, q) be R
< cP
< max d(U,q) RC
=d(U,a) choice of a
= d(u,a) a € Vor(U)[u]
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Figure 2: Enclosed regions A = R({u},p, (p,u)) and
B = R({u},p, (u,p)) defined by ignition point v and a
point p which lies on the boundary of P in Vor(U)[u]
(U CV).

Therefore d(u, a) = sup,e d(u, b) and a satisfies at least
one of the three statements in Lemma 3.

If a € (VNR)\{u}, then we take N = {u}. If a is the
intersection of b(u,v) with OP for some v € V, then we
take N = {u,v}. If a is the intersection of b(u,v) with
b(u,w) for some v,w € V, then we take N = {u, v, w}.
In all three cases it is clear that a satisfies Definition 3
and is therefore in F.

Since each set in the union is a subset of F, we have
F* C F as desired. O

Note that for all final burn points p € F*, the sets of
defining points are covered by the sets of defining points
for the same p € F since we use every possible set.

2.1 Enclosed Regions

Given a set of ignition points U C V| an enclosed region
is a region of P that is enclosed by a simple curve com-
posed of one or two shortest paths from ignition points
in U to some (shared) point p in their associated burn
regions, and a continuous part of the boundary of P
between the two end points of the curve. More specifi-
cally: Let w € U be an ignition point and p € 9P be a
point in Vor(U)[u]. The region enclosed by dP(u,p) (or
OP(p,u)) and m(u,p) is an enclosed region with enclos-
ing vertex u and enclosing point p (Fig. 2). Similarly,
let u,v € U be ignition points such that Vor(U)[u] and
Vor(U)[v] intersect at some point p € P. The region en-
closed by OP(u,v) (or OP(v,u)) and the shortest paths
7(u,p) and 7(v,p) is an enclosed region with enclosing
vertices u, v and enclosing point p (Fig. 3).

Let R(N,p,(a,b)) denote the enclosed region of P
enclosed by w(N,p)UdP(a,b) where N is a set of one or
two enclosing vertices, p is the enclosing point associated
with the vertices, and a,b € 0P are the end points of
w(N,p). Note that the ordered pair (a,b), with a,b €
N U {p}, determines which half of P is enclosed.

Lemma 5 (Isolation Property) Given an enclosed
region R = R(N,p, (a,b)) where the paths w(N,p) are
burn paths in Vor(U), no region in Vor(U) exists on both
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Figure 3: Enclosed regions A = R({u,v},p, (u,v)) and
B = R({u,v},p, (v,u)) A and B defined by ignition
points u,v and a point p which lies in the intersection
of the burn regions associated with v and v in Vor(U)

U V).

sides of |J,en m(v,p) (other than the regions associated
with N ).

Proof. If the paths 7(N,p) are burn paths in Vor(U),
Vor(U) contains regions associated with the ignition
points in N. Furthermore, (J, .y 7(v,p) is entirely con-
tained in (J, ¢ y Vor(U)[v] and must separate P into two
halves. By Lemma 1, burn regions are simply con-
nected. If there exists a region in Vor(U) that is on
both sides of | J, y 7(v, p) that isn’t associated with ver-
tices in IV, it would imply it is not simply connected or
that the region intersects other regions at more than
just the boundary which contradicts our general posi-
tion assumption. O

3 Algorithm Description

The input is a simple polygon P with vertices V', and
the maximum number of vertex ignition points & > 0
allowed to burn P.

Definition 4 (Properly Burned) Given a set of ig-
nition points U C V| an enclosed region R is considered
properly burned in time t if the burn paths enclosing R
exist in Vor(U) and R is entirely burned in time t.

3.1 Preprocessing

We first calculate and store the set of all Type II and
Type III potential final burn points (see Definition 3).
Let Fa[u,v] be the Type II potential final burn point
p € OP(u,v), if it exists, with associated ignition points
u,v € V. Let F3[u, v, w]® be the Type III potential final
burn point p, if it exists, with associated ignition points
u,v,w € V. Populating these tables takes time O(n?)
using the algorithm of Oh [6] which takes O(n) time to
compute the geodesic Voronoi diagram for a constant
number of sites. It takes time O(n*logn) using the
simpler algorithm of Asano and Asano [2].

3 Assume different permutations of u, v, w index the same way.
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3.2 Polygon Burning Algorithm

The Polygon Burning Algorithm returns the solution to
the Polygon Burning Problem in P by finding a set of
ignition points U C V, |U| < k, such that the time taken
to burn the entirety of P is minimized. This is done by
iterating through every point py € F in increasing order
of associated final burn time, finding the smallest set U
of ignition points that achieves that burn time, until we
find U such that |U| < k.

(1) Let DPTable be a dynamic programming table, in-
dexed by a time #(py) and an enclosed region R,
that stores the minimum size set of ignition points
required to properly burn R in time ¢(po).

(2) For each potential final burn point py with asso-
ciated set of ignition points N = {u} (Type I),
N = {u,v} (Type II), or N = {u,v,w} (Type III),
in increasing order of t(pg) = d(u,pg), we attempt
to find the smallest set U C V of ignition points
that burn the entirety of P with final burn point pg
and the burn paths from N to py appear in Vor(U).
There are different initial enclosed regions for each
type of potential final burn point:

Type I: There are two enclosed regions associ-
ated with a Type I potential final burn point:
R({u}, po, (u,po)), R({u},po, (po,u)). These corre-
spond to the halves of the polygon clockwise of v up
until py and clockwise of py up until u respectively
which are separated by the burn path 7 (u, po).

Type II: Without loss of generality, assume py is
clockwise of u up to v. There are three enclosed
regions associated with a Type II potential final
burn point: R({u}, po, (v, p0)), R({v},po, (po,v)),
R({u, v}, po, (v,u)). These correspond to 3 regions
of the polygon, one isolated by the burn path
7(u, po), one isolated by the burn path (v, pg), and
one isolated by the burn paths 7 (u, pg) and 7 (v, pg).

Type III: There are three enclosed regions asso-
ciated with a Type III potential final burn point
(note that we are assuming that w,v,w are in
clockwise order around P): R({u,v},po, (u,v)),
R{v,w}, po, (v,w)), R{w,u},po, (w,u)). These
correspond to 3 regions of the polygon which are
each enclosed by two burn paths from ignition
points to pg.

After determining the set of enclosed regions asso-
ciated with pg, we attempt to find the smallest set
of ignition points as follows:

(a) We determine the sets Sp, Ss, (S3) correspond-
ing to the optimal set of ignition points re-
quired to burn the enclosed regions associated
with pg and N in time #(pg) using the ERA
algorithm in Section 3.3.

(b) If S; = 0 or Sy = 0 (or S3 = (), this means
it is not possible for py to be a true final burn
point so we continue to the next potential final
burn point; otherwise

(C) let U + S1 U SQ(USg)
Once we find U such that |U] < k, we return U.

Lemma 6 If it is possible to burn P with a set of ig-
nition points U such that po is the final burn point and
the paths from N to pg are burn paths in Vor(U) then
the algorithm returns the smallest such set. Otherwise
it continues to the next potential final burn point.

Proof. For each potential final burn point py defined by
a set of ignition points N, there exist known burn paths
from N to pg. Using these known paths, we define a set
of enclosed regions Sg as in Step 2 such that each region
in Sg is isolated from the rest by burn paths from N to
po and |JSg = P. Let t(pg) = d(N,pg) (by definition,
each ignition point in N is equidistant to pg). Properly
burning all of the regions in Sg in time ¢(py) with a
set of ignition points U is equivalent to P being entirely
burnt in time t(py), po being a final burn point in P,
and burn paths 7(N,po) being burn paths in Vor(U).
This is because properly burning all regions in Sg with
U implies:

e The known burn paths from NV to pg are burn paths
in Vor(U)

e | JSg = P is entirely burned

e Each region in Sg is burned in time less than or
equal to t(pg) which means pg, which is burned at
exactly time t(pg), is the last point to burn.

Suppose U* is a smallest set of ignition points that prop-
erly burns all of the regions in Sg. Since each region
in Sg is isolated from the rest by known burn paths,
U* must properly burn each region in Si optimally. By
Theorem 9, in Step 2a, we obtain optimal sets for prop-
erly burning each region in Sg. Since U* properly burns
each region optimally, the union U of the optimal sets
found in Step 2a has the same magnitude as U* which
implies U is optimal.

If it is not possible to burn P and maintain pg as
the final burn point with burn paths from N to pg, By
Theorem 9, we will not be able to properly burn at least
one of the regions in Sr which means we will continue
to the next potential final burn point in Step 2b. O

Theorem 7 This algorithm finds a set of ignition
points U, |U| < k, such that for all points p € P, the
mazximum geodesic distance from U to p is minimized.

Proof. By Lemma 4, F* is a subset of Fp. In addition,
the set of defining points for each p € F* is covered
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by the set of sets of defining points for corresponding
p' € F. Suppose U*, |U*| < k, is an optimal set of
ignition points that minimizes the maximum distance
from an ignition point to a point p € P. U* will have
an associated final burn point py € P. Since F covers
every possible set of initial ignition points that make p
the final point to burn in F' (Lemma 4), if we look at
potential final burn point pg with initial ignition points
N such that the burn paths from N to pg exist as burn
paths in Vor(U*), we will return a set U such that |U| =
|U*| by Lemma 6.

Since U* is optimal and we explore potential final
burn points in increasing order of burn time, if we return
before we get to potential final burn point pg with initial
ignition points N, we must have returned a set U, |U| <
k, with burn time equal to the burn time of U*. O

3.3 Enclosed Region Algorithm (ERA)

The purpose of this algorithm is to fill in the dynamic
programming table by finding the set with the minimum
number of ignition points required to properly burn an
enclosed region R of P in time ¢(pp). If it is not possible
to properly burn R in time t(po), the table is assigned
the empty set.

Each subproblem is defined by an enclosed region R =
R(N = {u, (v)},p, (a,b)) and a time t(py) to burn R.
Note that we assume d(N,p) < t(po).

(1) Return DPTable[t(po), R] if it has already been cal-
culated; otherwise

(2) Determine if R is entirely burned in time t(pg) by
the set N of enclosing vertices in linear time (see
Section E). If R is entirely burned, we update the
dynamic programming table: DPTable[t(pg), R] +
N and return NN; otherwise

(3) Let Spest + 0 be the minimum set of ignition points
required to burn R.

(4) If [N| = 2, attempt to recursively find the optimal
sets S4 and Sp for enclosed regions A and B implied
by Case 2 of Lemma 12. If S4 and Sp are both non-
empty, Spest < Sa U SB.

(5) For each vertex v' € V N 9OP(a,b), we attempt to
add v’ as the next enclosing vertex.

(a) Determine the enclosing point p’ and enclosing
regions A and B associated with adding v’ as
the next enclosing vertex (see Section 3.4). If
we cannot add v’ as the next enclosing vertex,
we continue to the next iteration of the loop;
otherwise

(b) Recursively find optimal ignition point sets S
and Sp that properly burn A and B respec-
tively in time ¢(po).
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(¢c) If Sa=0or Sg =10, Aand/or B could not be
properly burned in time ¢(pg) so we continue to
the next iteration; otherwise

(d) If |SA U SB| < |Sbest| or Sbest = @7 Sbest —
SaUSEB.

(6) Update the dynamic programming table

DPTablelt(pg), R] < Spest and return Spes;.

Lemma 8 In ERA Step 4, given that burn paths w(u, p)
and (v, p) exist, properly burning A and B is equivalent
to properly burning R, subject to b(u,v) not intersecting
any region in R other than Vor(U)[u] U Voxr(U)[v].

Proof. If A and B are properly burned, burn paths
7(u,p’) and (v, p’) exist and are burned in time ¢(po).
This means burn paths m(u,p) and 7(v,p) are burn
paths in Vor(U) since they are separated from AU B by
7(u,p’)Un (v, p’). Furthermore, R, , = R\(AUB) which
is enclosed by m(u,p’), w(u,p), w(v,p’), and 7(v,p) is
entirely burned by w and v (Obs. 5). This means
R=AUBUR,, is entirely burned in time ¢(pg) which
implies R is properly burned. O

Theorem 9 FRA finds a minimum set of ignition
points to properly burn R = R(N = {u, (v)},p, (a,b))
in time t(po), if it is possible. Otherwise, ERA returns
the empty set.

Proof. Suppose there exists some optimal set U C V
of ignition points that properly burn R in time ¢.

e If R is entirely burned by N in time ¢(pg), N is the
optimal set since we don’t need to add more igni-
tion points and the enclosing vertices and enclosing
point of R are preserved by default (Step 2).

e If R is not entirely burned by N in time ¢, there
are three cases:

Case N = {u}: Without loss of generality, suppose R =
R({u},p, (p,u)). By Lemma 11, there exists an ignition
point v € U N OP(p,u) and a point p’ € b(u,v’) N
OP(p,v") such that OP(p,p’) is entirely in Vor(U)[u].
Since U N dP(a,b) C V N OP(a,b), at some point, we
will attempt to add v’ as the next enclosing vertex (ERA
step 5). Since the enclosed regions A and B implied by
adding v’ exist in the context of U, by Theorem 10, we
will obtain A and B such that properly burning A and
B is equivalent to R being properly burned with v’ as
the next enclosing vertex (ERA step 5a). We recursively
find optimal ignition sets S4 and Sp that properly burn
regions A and B. Since A and B are isolated from each
other in U by w(v',p’), they must be burned optimally
in U or there would exist a set of ignition points more
optimal than U. This implies |S4 U S| = |U|. Since U
is optimal, the set S4 U Sp of ignition points returned
by the algorithm is optimal.
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Case N = {u,v} and b(u,v) intersects regions
other than Vor(U)[u] U Vor(U)[v] in R: Without
loss of generality, suppose R = R({u,v},p, (v,u)). By
Lemma 12 Case 1, there exists v € U N 0P (v,u) and
p’ € R such that p’ is the Voronoi vertex of u, v, v’ (it is
equidistant from all three vertices). In a similar manner
to the previous case, we will eventually attempt to add
v’ as the next enclosing vertex and find the regions A
and B implied by adding v’ as the next enclosing ver-
tex (Obs. 4). We recursively find the optimal sets Sy
and Sp that properly burn A and B. Since A and B
are isolated from each other by m(v’,p), they must be
burned optimally in U which implies [S4 U Sg| = |U].
Since U is optimal, the set S4 U Sp of ignition points
returned by the algorithm is optimal.

Case N = {u,v} and b(u,v) does not intersect
any region in R other than Vor(U)[u]UVor(U)[v]: In
Step 4, we find the regions A and B implied by this case
as shown in Case 2 of Obs. 4. Lemma 8 says that prop-
erly burning A and B is equivalent to properly burning
R in this case. Since it must be possible to properly burn
A and B (since U exists), we recursively find the optimal
sets S4 and Sp that properly burn A and B. Since A
and B are isolated from each other by b(u, v), they must
be burned optimally in U which implies |S4USg| = |U]|.
Since U is optimal, the set S4 U Sp of ignition points
returned by the algorithm is optimal.

If there exists no way to properly burn R with some
set U C V, for each v/, either there will be no way to find
A and B (Theorem 10 for Case 1,2, Lemma 8 for Case
3) or we will not be able to recursively find sets that
properly burn A and B which means Spes; will never be
updated. Since Spes; is never updated, we will fill the
table with the empty set. O

3.4 Next Enclosing Vertex Algorithm

Given an enclosed region R = R(N,p, (a,b)), a maxi-
mum time ¢(pg) allowed to burn R, and a potential next
enclosing vertex v’ € 9V (a, b), we determine if v’ can be
added as the next enclosing vertex and we find enclosed
regions A and B associated with adding v’. We assume
that the burn paths enclosing R are already burned in
time ¢(pp).

(1) If d(v', p) < d(N,p), return @; otherwise

(2) There are two cases:

Case 1: N = {u}: Without loss of generality,
assume R is bounded by dP(p,u). We assume v’
is the vertex described in Lemma 11 which means
p' = Falu,v’] since p’ is the intersection of b(u,v’)
with OP on the same side of P as p.

(a) If d(v',p’) > t(po), return @; otherwise

(b) If OP(p,p’) is not covered by u in time t(po)
(see Section E), return @; otherwise

(¢) return A and B as in Obs. 3.

Case 2: N = {u,v}: Without loss of generality,
assume R is bounded by OP(v,u). We assume v’ is
the vertex described in Case 1 of Lemma 12 which
means p' = F3[u,v,v’] since it is equidistant from
all three vertices (if p’ does not exist, return §).

(a) If d(v',p’) > t(po), return 0; otherwise
(b) return A and B as in Obs. 4.

Theorem 10 Given an enclosed region R =
R(N,p,(a,b)), a time t(pp) and v as the next
enclosing vertex, if it is possible, the Next Enclosing
Vertex Algorithm gives us two enclosed regions A and
B separated by w(v',p'), such that A and B being
properly burned in time t(po) by a set of ignition points
U is equivalent to R being properly burned in time t(pg)
and paths ©(N,p') and w(v',p’) being burn paths in
Vor(U). If it is not possible the Next Enclosing Vertex
Algorithm returns nothing.

Proof. See Section D. O

3.5 Runtime Analysis

There are O(n3) possible values of ¢ for indexing into
the dynamic programming table. At each step of the
recursion, we choose an enclosed region such that the
enclosing point is a potential final burn point of P.
This is true for the Polygon Burning Algorithm and in
each case of the Next Enclosing Vertex Algorithm. So
there are O(n?®) possible enclosed regions meaning the
total size of the dynamic programming table is O(nS).
Each value in the table is filled in by one call to ERA.
Each iteration of the loop in ERA takes constant time
if we precalculate region coverage for vertices (O(n®)
with brute force) and the set of all pairwise distances
between v € V and F (O(n*logn) using [5]). Since
ERA performs O(n) iterations, the final run time of the
algorithm is O(n7).

4 Open Problems

It seems likely that the running time of this algorithm
can be improved. It is also likely that a slightly more
complicated algorithm could handle a constant number
of ignition points in the interior of polygon P.
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Appendix
A Removing the General Position Assumption

Assuming no vertex of P is equidistant to two other vertices
ensures that the (geodesic) bisector of any two vertices of
P is a 1D curve that intersects P at exactly two points.
Without this general position assumption, we can get posi-
tive area intersections of Voronoi cells as shown in Figure 4.
To handle this, we define the bisector b(u,v) to be only the
1D curve portion of the intersection between Voronoi cells
of v and v in Vor(U) (including the two intersection points
on OP at the ends of the curve).

Observation 2 All points in P on the same side of b(u,v)
as u are at least as close to u as they are to v

Proof. If there exists a point p such that d(u,p) > d(v,p
and (v, p) crosses b(u, v) at a point x where d(u, z) = d(v, x
then d(u,p) < d(u,z) + d(z.p) = d(v,x) + d(z,p) = d(v,
is a contradiction.

NN’

o=

Assume b(u,v) intersects OP at some vertex w. If this
bisector appears when running ERA, it must be the case
that we are attempting to include both u and v in our solu-
tion which means we can assume any non-trivial intersection
region is covered by the ignition point on the same side of
b(u,v) as the intersection region by Obs. 2.

B Proof of Lemma 1

Lemma 1 Let u,v € V. Then d(u,p) where p € b(u,v) is
strictly convex in p.

Proof. The tangent to b(u,v) bisects the angle between
the directions to v and v of the shortest paths 7(p,u) and
7(p,v)*. Let v’ and v’ be the anchor vertices along 7 (p, )

4from [1, Lemma 3.22]
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Figure 4: Polygon P is not in general position since
b(u,v) intersects vertex w of P. In this case, all points
in region A are equidistant from both u and v.

and 7(p,v) respectively. Let the angle 6 be the angle be-
tween pu’ and pv’ clockwise from pv’ to pu’.

Let o = 6/2 be the angle between the tangent to the
bisector at p and pu’. « € [0, 7] since, if this were not the
case, then the shortest path from u to p would properly
intersect b(u,v). Consider point p’ € b(u,v) infinitesimally
close to p in the direction such that p’ is clockwise from pv’
to pu’. We consider the segment of b(u,v) between p and p’
to be a straight line. Let 8 be the angle between the tangent
of b(u,v) at p’ and p’u’. We now have a triangle composed of
segments and angles pu/, o, pp’, 3, p'u/, € as shown in Fig. 5.
This implies:

sin a ’

roN / .
d(u',p) = sinﬁd(u ,p) Law of Sines
B=m—a—¢ sum of angles

/ _ sina ;

= d(u,p) = sin(a+e) d(u',p")

This implies d(v’,p) > d(v',p’) for a < 7/2 and d(v',p) <
d(v',p") for a > m/2 which implies the same for d(u,p) and
d(u,p’). Since alpha strictly increases as we move along
b(u,p) in the direction of p’ from p (increases by e at each
step), d(u,p) is strictly decreasing for a < 7/2 and strictly
increasing for a > /2. O

p

Figure 5: The triangle created by «/, p and p’ as in
Lemma 1.

C Proof of Lemma 3

Lemma 3 Given a burn region R associated with igni-
tion point u, there exists p € R such that d(u,p) =
SUD,/c R d(u,p"). Moreover, for all such p € R, at least one
of the following is true:

1. pe (VNR)\ {u}
2. p is the intersection of b(u,v) with OP for somev € V
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Figure 6: An enclosed region R = R({u},p, (p,u)) as
defined in Lemma 11

3. p is the intersection of b(u,v) with b(u,w) for some
v,weV

Proof. Fix u and its corresponding burn region R. Ex-
istence of p follows directly from 1) the function d(u,p) :
R — R is continuous and 2) R is closed and bounded in
R? and hence compact. Let p € R and suppose none of the
above is true.

Case 1: p is an interior point of R. In this case, a point
q € R with d(u,q) > d(u,p) can be found by extending the
last segment in 7(u,p) by an infinitesimally small amount
and taking the new endpoint as q.

Case 2: p is not an interior point of R. Then p € b(u,v)
for some v € V or p € OP. If p is on some bisector then
Lemma 2 implies the existence of ¢ € R infinitesimally close
to p on the same bisector as p such that d(u,q) > d(u, p).

Suppose p € P and the anchor vertex p’ doesn’t change
at m(u,p). We must have |p'q| > |p'p| for all ¢ lying on at
least one side of p on the same polygon edge. Then we can
find ¢ € R on the polygon edge infinitesimally close to p such
that |p’q| > |p’p| while maintaining p’ as the anchor vertex
along m(u,q). Then d(u,q) = d(u,p) + [p'q| > d(u,p) +
Ip'p| = d(u,p) and d(u,p) # sup,cg d(u,p).

Alternatively, if p € 0P and the anchor vertex does change
at m(u,p). Let p’ denote the anchor vertex and p” denote
the second to last vertex on m(u,p). Similarly, we must
have |p”q| > |p”p| for all ¢ lying on at least one side of p
on the same polygon edge. We can find ¢ € R infinites-
imally close to p such that |p”q| > |p”p| and the anchor
vertex along 7(u,q) is either p’ or p”. If the anchor vertex
is p” then by argument similar to the previous case, we are
done. Otherwise, applying the triangle inequality under Eu-
clidean distance, we have d(u, q) = d(u,p"”) + |p"p'| +|p'q| >
d(u,p") + [p"q| > d(u,p”) + |p"p| = d(u, p).

d(u,p) # sup,icr d(u,p’) in all cases if p satisfies none of
the above statements. Combined with the fact that some
p € R must satisfy d(u,p) = sup,/cg d(u,p’), the lemma is
true. (]

D Algorithm Correctness

Lemma 11 (see Fig. 6) Given an enclosed region R =
R{{u},p, (p,u)), if R does not lie entirely in Vor(U)[u], there
exists an ignition point v’ € OP(p,u) such that the following
properties hold:

e Vor(U)[W'|C R

Figure 7: The enclosed regions implied by the existence
of v/ and p’ in Obs. 3. A =R{v'},p,(p',v")), B =
R({u,v'},p, (v, u)).

Figure 8 An enclosed region R = R({u,v},p, (v,u))
that falls into Case 1 of Lemma 12.

e p' € OP(p,v") Nb(u,v")
e OP(p,p’) C Vor(U)[u]
The symmetric claim holds for R = R({u},p, (u,p)).

Proof. Since R does not lie entirely in Vor(U)[u], there ex-
ists a set S of one or more burn regions in R associated
with ignition points in U \ {u}. Furthermore, by Lemma 5,
since 7(u, p) separates P, the ignition points must all exist in
OP(p,u). By Obs. 1, there exist points along dP(p,u) that
are in | J S. Since p € Vor(U)[u], as we travel along 0P (p, u)
from u to p, we must eventually get to a point p’ where
p’ € U S and, for all points b € OP(p,p’), b € Vor(U)[u]. We
choose v’ to be the ignition point associated with a region
in S that contains p’. Because Vor(U)[v'] does not contain
u, it is a proper subset of R. O

Observation 3 (see Fig. 7) Given the enclosed region R =
R({u},p, (p,u)), the existence of p' and paths w(u,p’) and
m(v',p’) in R implies the ewistence of two new enclosed re-
gions derived from Vor(U):

o A=R({v'}p, ¥, v))
e B=R({u,v'},p, (v, u))
The symmetric claim holds for R = R({u},p, (u,p)).

Lemma 12 Given an  enclosed  region R =
RH{u,v},p, (a,b)), if R does mnot lie entirely in
Vor(U)[u] UVor(U)[v], there are two possible cases:
o Case 1 (Fig. 8): If b(u,v) intersects some region other
than Vor(U)[u]|UVor(U)[v] in R, there exists an ignition
point v' € U such that the following properties hold:
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Figure 9: The enclosed regions implied by the ex-
istence of v/ and p’ in Case 1 of Obs. 4. A =

R({v, o'}, 0", (v,0), B =R({u, '}, p' (v, w)).

— Vor(U)[Y] C R

— Vor(U)[v'] intersects Vor(U)[u] N Vor(U)[v] at
some point p' € R

o Case 2: b(u,v) does not intersect any region in R other
than Vor(U)[u] U Vor(U)[v]. The following properties
hold:

— There exists burn paths 7w(u,p’) and w(v,p’) where
p’ is the point at the intersection of b(u,v) with OP
n R

Proof. Case 1: If b(u,v) intersects regions other than
Vor(U)[u]UVor(U)[v], there exists a region Vor(U)[v'] at the
point p’ on b(u,v) at the boundary of Vor(U)[u] UVor (U)[v].
This point, by definition, is the Voronoi vertex associated
with vertices u,v,v" and therefore is in all three associated
regions. Since 7((,u),p) U (v,p) separates R from the rest
of P, Vor(U)[v'] C R.

Case 2: b(u,v) intersects 9P N R at some point p’ since,
if this were not the case, we could draw a path from u to
v through R that does not intersect b(u,v). Since b(u,v)
does not intersect any region in R other than Vor(U)[u] U
Vor(U)[v], p" € Vor(U)[u] U Vor(U)[v]. This implies there
exists burn paths 7(u,p’) and w(v,p’) in R. O

Observation 4 Without loss of generality, assume R is en-
closed by OP(v,u).

In Case 1 of Lemma 12, the existence of p’ and burn paths
7(u,p’), w(v,p’), and 7(v',p’) in R implies the existence of
two new enclosed regions derived from Vor(U) (Fig. 9):

o A=R{v,v'},p,(v,v"))

d B :R({u’ v/}7p/7(v/’u))

In case 2 of Lemma 12, the existence of p' and burn paths

7(u,p’) and 7 (v, p") implies the existence of two new enclosed
regions derived from Vor(U)

o A=R({v},0,(v,p))
e B= R({u}7p/7 (pl7 u))

Observation 5 The region Ry, = R\ (AU B) is enclosed
by burn paths 7(u, p’), 7(u,p), 7(v,p’), and w(v,p). Further-
more, Ry . lies entirely in Vor(U)[u]UVor(U) and is isolated
from AU B by w(u,p") Um(v,p’).

125

Theorem 10 Given an enclosed region R = R(N, p, (a,b)),
a time t(po) and v’ as the next enclosing vertez, if it is pos-
sible, the Next Enclosing Vertexr Algorithm gives us two en-
closed regions A and B separated by w(v',p’), such that A
and B being properly burned in time t(po) by a set of ig-
nition points U is equivalent to R being properly burned in
time t(po) and paths w(N,p') and 7(v',p’) being burn paths
in Vor(U). If it is not possible the Next Enclosing Vertex
Algorithm returns nothing.

Proof. In both cases, A and B are separated by 7 (v’,p’)
(Obs. 3 & 4). This implies that if A and B are properly
burned, v must be an ignition point.

If d(v',p) < d(N,p), p would not be in the Voronoi re-
gions associated with enclosing vertices in N which means
the enclosing vertices and enclosing point of R would not be
preserved if v is chosen as an ignition point (Step 1). In ad-
dition, if v" implies an enclosing point p’ that is not burned
by v’ in time t(po), v’ cannot be the next enclosing vertex
(Step 2a for both cases).

e Case 1: Without loss of generality, assume R =
R({u},p, (p,w).
p’ € OP(p,v) since if this was not the case, it would
imply d(v’,p) < d(u,p) since b(u,v’) would properly
intersect m(u,p) which would imply p is closer to v’
than u. If A and B are properly burned in time ¢(po),
it must be the case that the burn path 7(u,p’) exists.
Let R, be the region enclosed by burn paths 7 (u,p’)
and 7 (u,p) and OP(p,u). By Obs. 1 (star-shaped prop-
erty), Ry, lies entirely in Vor(U)[u]. This means 7 (u,p’)
separates m(u,p) from AU B which implies that 7(u, p)
is preserved. OP(p,u) must be burned by w in time
t(po) (Step 2b). Since burn paths m(u,p’) and 7 (u,p)
exist and P(p,p’) can be burned by u in time ¢(po),
by Lemma 1, R, is entirely burned by u in time ¢(po).
This means R = AU B U R, is entirely burned in time
t(po) which implies R is properly burned.

e Case 2: Without loss of generality, assume R =
R({u,v},p, (v,u)).
p’ € R since if this was not the case, similar to the previ-
ous argument, v’ would be too close to p. If A and B are
properly burned in time ¢(po), it must be the case that
burn paths 7(u, p’) and (v, p) exist. This implies that
burn paths 7(u,p) and 7 (v, p) are preserved since they
are isolated from A and B by 7 (u,p’)Un(v,p’) (Obs. 5.
Since p and p’ are burned by u and v in time ¢(po), the
segment S of b(u,v) between p and p’ is burned by u
and v by Lemma 1. Let R, , be the region enclosed by
burn paths 7(u,p’), 7(u,p), m(v,p’), and w(v,p). By
Obs. 5, R\ (AU B) C Ry,. Similar to Case 1, since
S is burned by u and v, the region enclosed by burn
paths 7(u,p) and m(u,p’) and S is entirely burned by
u (and similar for v) (Lemma 1). This implies Ry,y is
entirely burned by u and v in time ¢(pg). This means
R = AUBUR,,, is entirely burned in time t(pg) which
implies R is properly burned.

In both cases, if either A or B cannot be properly burned
in time t(po), since each region is isolated by known burn
paths, R cannot be entirely burned in time ¢(po) with v’ as
the next enclosing vertex. 0
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E Determining if an enclosed region is entirely
burned by a set of enclosing vertices in time ¢(p)

This method takes the arguments to an enclosed region R =
RN}, p,(a,b)) and a time ¢ to burn the enclosed region
with N. We assume that p is burned by N in time ¢.
Implementation:
There are two cases depending on |N|:
o |[N|=1: If d(u,v") < tforallv € (VNIP(a,b))U{p},
return true; else return false.
e |N|=2: It must be the case that N = {a,b}. Assume,
without loss of generality that w = a and v = b.
Let p’ be the Type II potential final burn point associ-
ated with w and v (clockwise from u to v).
If d(u,v') <t for all w’' € (VNOP(u,p’)) U{p,p'} and
d(v,v") <t for all v’ € VNOP(p',v), return true; else
return false
In both cases, we check all potential points p as in
Lemma 3. If all of these points are within ¢ of N, we know

that R is entirely covered or we would violate the lemma. If
one of the points isn’t covered, then R is not covered by V.
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Maximum Overlap Area of Several Convex Polygons Under Translations

Hyuk Jun Kweon*

Abstract

Let k > 2 be a constant. Given any k convex polygons
in the plane with a total of n vertices, we present an
O(nlog?*~3 n)-time algorithm that finds a translation of
each of the polygons such that the area of intersection of
the k polygons is maximized. Given one such placement,
we also give an O(n)-time algorithm which computes the
set of all translations of the polygons which achieve this
maximum.

1 Introduction

Shape matching is a critical area in computational ge-
ometry, with overlap area or volume often used to mea-
sure the similarity between shapes when translated. In
this paper, we present a quasilinear time algorithm to
solve the problem of maximizing the overlap area of sev-
eral convex polygons, as stated in the following theorem.

Theorem 1 Let Py, P1,...,P,_1 be convex polygons,
with a total of n wvertices, where k is a constant.
Then in O(nlog®* =3 n)-time, we can find a placement
(Vo,V1,...,Vk—1) mazimizing the area of

(Po —|—V0) n---N (Pk—l —|—Vk_1).

Once we have found a placement (vo,vi,...,Vi_1)
that maximizes the overlap area, we can compute the
set of all such placements in linear time.

Theorem 2 With the notation in Theorem 1, suppose
that we have found a placement (vo,vi,...,VE_1) maz-
imizing the overlap area. Then in O(n)-time, we can
compute the set of all placements that mazximize the
overlap area. This set is represented in terms of O(n)
linear constraints without redundancy.

It is important to note that a greedy method may not
yield the optimal result. To illustrate this, consider the
following polygons.

1. An equilateral triangle with height 1

2. An upside-down equilateral triangle with height 1

*Department of Mathematics, University of Georgia,
kweon@uga.edu, This author is funded by The AMS-Simons
Travel Grant program.

TDepartment of Mathematics, Massachusetts Institute of Tech-
nology, honglinz@mit.edu
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3. A rectangle with height 1 and sufficiently small
width e

If we first place the two triangles to maximize their in-
tersection, and then place the rectangle to maximize the
overlap with the combined shape, the resulting overlap
area is approximately (2/3)e. However, the true maxi-
mum overlap area of all three shapes is approximately ¢.
This example highlights the necessity of our algorithm.

Suppose that we have k polytopes in R? with n ver-
tices in total. Clearly, the overlap volume function un-
der translation is a piecewise polynomial function. To
find the maximum overlap volume under translation, we
can compute the maximum on each piece. For example,
Fukuda and Uno presented an O(n*)-time algorithm for
maximizing the overlap area of two polygons in R? [9,
Theorem 6.2]. They also gave an O((kn®+1)9)-time
algorithm for the problem with k& possibly non-convex
polytopes in R¢ [9, Theorem 6.4].

If the polytopes are convex, then the overlap volume
function is log-concave. This follows immediately from
two properties: the 0-1 indicator functions of convex
sets are log-concave, and the product of two log-concave
functions is again log-concave. With this additional
structure, one may apply a prune-and-search technique
and make the algorithm much faster. For example, de
Berg et al. gave an O(nlogn)-time algorithm to find
the maximum overlap of two convex polygons in R2
which is highly practical due to the small constant hid-
den in the order notation [7, Theorem 3.8]. Ahn, Brass
and Shin gave a randomized algorithm for finding max-
imum overlap of two convex polyhedrons in expected
time O(n®log*n) [I, Theorem 1]. Ahn, Cheng and
Reinbacher [2, Theorem 2] find an O(nlog*® n)-time
algorithm for the same problem after taking a generic
infinitesimal perturbation. The last two results cited
from [1] and [2] have also been generalized to higher-
dimensional cases within the same papers.

On the other hand, there are few known results for
problems involving several convex shapes. In this re-
gard, Zhu and Kweon proposed an O(nlog® n)-time al-
gorithm to find the maximal overlap area of three con-
vex polygons [16, Theorem 1.2]. This result is based on
an O(nlog? n)-time algorithm that finds the maximum
overlap area of a convex polyhedron and a convex poly-
gon in R? [16, Theorem 1.1]. The main algorithm of
this paper is a strict generalization of both [7, Theorem
3.8] and [16, Theorem 1.2].
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2 Notation and Terminology

In this paper, we use the notation Supp f to refer to the
closed support of a function f, i.e., the closure of the set
of points where f is nonzero. For two sets A, B € R, we
define their Minkowski sum and difference as A + B =
{a+blaceAbeB}land A-B={x]|x+BC A},
respectively.

We consider closed polytopes unless otherwise speci-
fied. When referring to a polytope P, its (geometric) in-
terior consists of the set of points not on the facets, while
its (geometric) boundary comprises the set of points on
the facets. On the other hand, the topological interior
of P C R"™ is the set of points in P that have an open
ball entirely contained in P. The topological bound-
ary of P consists of points that are on the interior of
P. For example, if P is a polygon in R3, then its ge-
ometric boundary consists of the edges, which are one-
dimensional, while its topological boundary corresponds
to the polygon itself.

The computation model is based on the real RAM
model, yet the base field R can be substituted with any
ordered field R. Specifically, we assume that within R,
the binary operations +, —, X, and /, as well as the
binary relations < and =, can be precisely computed in
constant time.

This generalization is important since we employ the
technique of symbolic infinitesimal translation, similar
to [7]. Whenever a new infinitesimal number ¢ > 0
is introduced, we change our base field from R to the
functor field R(e). One may have concerns about this,
since operations in R(e) cannot be generally performed
in constant time. However, as our algorithm only com-
putes quadratic functions, we use € only for n < 2.
Furthermore, we introduce fewer than 2k infinitesimal
numbers. Therefore, we may assume that operations in
R(e) can be executed in constant time. The assump-
tion regarding the constant-time operations in R(e) is
technical and not significant in the context of the con-
ceptual framework. Therefore, we will not delve into a
meticulous explanation of this aspect.

3 Configuration Space

The aim of this section is to define the configuration
space, the domain of the overlap area function, and
discuss its properties. Throughout the paper, we take
k convex polygons Py, Py,...,Py_1, where k is a con-
stant. Let vo,...,vi_1 € R? be vectors of indetermi-
nates. The overlap area of

I=(Py+vo)N(Pr+vi)N---N(Py—1+Vi—1)
is invariant under the map

(Voy -y VE—1) = (Vo + X, .., Vi—1 + X).

Therefore, we define the configuration space as a (2k —
2)-dimensional quotient linear space

Co— {(vo,.. -, vik—1): vi € R?}
{(x,...,x): xeR2}

One may also define the configuration space by fix-
ing one polygon, but this definition loses symmetry
and makes the algorithm more complicated. Any el-
ement of C will be called a placement. We denote
(vo;...;VvE—1) € C as a placement that corresponds to
(VQ7 .. ;Vk—l) S (R2)k.

We define the overlap area function II: C — [0, 00) as

H(Vo; . ;Vk—l) = ‘(PO —|—V0) n---N (Pk—l —+ Vk—l)‘ .
and then its support Suppll is compact. To compute
II(vo;...;VE—1) in linear time, we use the following the-
orem:

Theorem 3 (Shamos) Let P and Q be convex poly-
gons of m and n vertices, respectively. Then PNQ can
be computed in O(m + n)-time.

Proof. This was first proved by Shamos [15, Section
5.2]; see also [141, Section 7.6]. O

The vertices (2o, yo), - - -, (Tr—1, Yr—1) of the overlap T
can be expressed as linear functions in vg,...,vg_1 in
a generic setting. Ordering them in counter-clockwise
direction, the area of I can be computed using the
shoelace formula:

1
|[| = 3 Z (a:iyi+1 - $i+1yz‘)7
i€Z/TT

where the indices are taken modulo m. Therefore, II is
a piecewise quadratic function of vq,...,vg_1.
Note that IT may not be quadratic in two cases:

(I) an edge of a polygon P; + v; contains a vertex of
another polygon P; + v; and

(IT) edges of three distinct polygons P; + v;, P; + v;
and P, + v intersect at one point.

Each of these events defines a polytope in C of codi-
mension 1. Following [7], we call such a polytope as an
event polytope. An event polytope defined by (I) (resp.
(IT)) is called of type I (resp. of type II). A hyperplane
containing a type I (resp. type II) event polytope is also
called of type I (resp. of type II). There are O(n?) type
I hyperplanes and O(n?) type II hyperplanes.

4 Linear Programming

Let L C C be an r-flat. The goal of this section is to
provide an O(n)-time algorithm that finds a placement
v € L such that

II(v) # 0.
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If no such placement exists, the algorithm returns
None.

When working with two polygons, Supp Il is simply
the Minkowski sum Py + (—P;), where —P; is the poly-
gon P reflected about the origin. However, when work-
ing with more than two polygons, the problem becomes
more complex. To tackle this problem, we use linear
programming with Meggido’s solver.

Theorem 4 (Megiddo [11]) If the number of vari-
ables is fized, a linear programming problem with n. con-
straints can be solved in O(n)-time.

Let n; be the number of vertices of P;. Then P; is
defined by n; linear inequalities:

fi,a(x) Z 0

The codimension of the r-flat L C C is 2k —r — 2. Thus,
L is defined by 2k — r — 2 linear equations:

(for a < n;).

g(v) =0 (for b < 2k —r —2).

Then a placement v = (vy;..
R? and satisfy the constraints

fia(x —v;) >0

gb(V) =0

if and only if x € (Po+vg)N -+ N (Pr_1 + vk—1) and
v € L. Therefore, we obtain the lemma below.

.;Vig—1) € C a point x €

(for i < k and a < n;) and

(for b < 2k —r —2). )

Lemma 5 We have v € LNSuppll if and only if (x,V)
satisfies (1) for some point x in a plane.

Hence, in O(n)-time, we can get v € L N Suppll,
by solving any linear programming with the constraints
(1). One problem is that v might be on the (topological)
boundary of Supp II.

Lemma 6 Let M be the solution set of linear con-

straints

pi(x) >0 (fori<mn)and @)
gj(x) =0 (forj<m)

where x € R? and d is constant. Then we can compute
the maximal affinely independent finite subset S of M
in O(m + n)-time.

Proof. The proof can be found in the appendix. O

Theorem 7 In O(n)-time, we can either return v € L
such that II(v) # 0, or return None if none ezists.

Proof. Let M C R? x L be the solution set of the
constrains (1). Then II(v) # 0, if and only if (x,v) is
an topological interior point of M C R? x L for some
x € R2. Applying Lemma 6, we get the maximal affinely
independent set S of M.
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If |S] < r+2, then dim M < 2 + dim L, and M has
no topological interior point, so we return None. If
|S| =7+ 3, then

1
(Xavgavavg) = E Z (va)

(x,v)ES

is an topological interior points of M C R? x L. Hence,
we return vuyg. U

5 Decision Problem

We aim to find the maximum of IT on an r-flat L C C us-
ing an induction on r. To do so, we apply a prune-and-
search technique on the set of event polytopes. How-
ever, this technique requires solving a decision problem:
given a hyperplane H C L, we must determine on which
side of H the maximum of IT|, lies. In this section, we
provide an algorithm for this decision problem under
certain induction hypotheses.

Theorem 8 The square root of II: C — [0,00) is con-
cave on its support.

Proof. This follows from the Brunn-Minkowski in-
equality [13][4]; see also [9, Theorem 3.3]. O

Now, we assume the following hypothesis for some non-
negative function T'(n) in the rest of this section.

Hypothesis 9 Let L C C be an (r — 1)-flat. Then we
can find v € L mazimizing I1|, in O(T(n))-time.

We can partition L into open polytopes on which IT
is quadratic. Therefore, the maximum v € L of II|, is
a placement.

Theorem 10 Given an r-flat L and its hyperplane
H C L, let M C L be the set of mazimum points of
II|,. We can determine which side of H contains M in
O(T(n))-time.

Proof. Let € be an positive infinitesimal smaller than
any positive number in the base field in R. For any
t € R(e), let

h(t) = max TII(v).

vEtn+H
Let N C R(e) be the set of all maximum points of h(z).
It suffices to decide on which side N lies with respect
to 0. By Theorem 8, the function h: R(e) — [0,00) is
unimodal.
By Hypothesis 9, we can compute the sequence

S = (h(=4+1), h(0), h(ess1))

in O(T'(n))-time. If h(0) = 0, then all interior points of
Supp h lie in the same side with respect to 0. In this
case, apply Lemma 7 and attempt to get one point of
Supp h. If h(0) # 0, there are three remaining cases.



36" Canadian Conference on Computational Geometry, 2024

Figure 1: Two possible examples of the graph of h

1. If S is strictly increasing, then N C (0, c0).
2. If S is strictly decreasing, then N C (—o0,0).
3. If S is not strictly monotonic, then 0 € N.

This completes the proof. O

This proof highlights the necessity of infinitesimal
translations for our algorithm. Given that infinitesimal
numbers are introduced only in this step, we introduce
no more than dimC = 2k — 2 infinitesimal numbers.

6 Two Polygons

The goal of this section is to present a linearithmic time
algorithm for finding a translation that maximizes the
overlap area of two convex polygons under translations.
This problem was previously studied by de Berg et al.
[7, Theorem 3.8], but our approach is different and al-
lows for handling multiple polygons.

In this section, we only have two convex polygons
P = Fy and Q = P; with n and m vertices, respectively.
We consider only one translation vector v = v — vy,
and since C is two-dimensional, we refer to event poly-
topes and hyperplanes as event line segments and lines,
respectively. Since there are no type II line segments,
all event line segments can be defined by one of the
following two events:

1. an edge of a polygon P contains a vertex of polygon
Q@ + v and

2. an edge of a polygon @@ + v contains a vertex of
polygon P.

The first type of event lines segment will be called of
type (0,1) and the second type of event lines will be
called type (1,0) line segments. The same rules apply
to event lines.

Type (0,1) lines are organized into n groups, each
with m parallel lines. Our goal is to efficiently prune
this set, requiring an appropriate representation. We
use ‘arrays’ to denote sequential data structures with

Figure 2: Event line segments. The parallel lines of one
group are highlighted in red.

constant time random access, and assume the size of
each array is predetermined.

The n groups of parallel lines are represented by
sorted arrays Ag, A1,...,A,_1. Each array A; holds
the y-intercepts and a single slope value for the lines in
the i-th group. For vertical lines in A;, we store the
z-intercepts instead.

Definition 11 A slope-intercept array A consists of
sorted arrays Ag, A1, ..., An_1, with each A; associated
with a slope that is a potentially infinite number. Its
number of groups is n, and its size |A| is the sum of the
sizes of A;. Another slope-intercept array A’ is a pruned
array of A if it consists of A with identical slopes.

We can use [16, Theorem 1.4] to prune a slope-
intercept array A, but the description is complicated
and the result is weaker. Instead, we rely on a stronger
version, which we prove in the appendix.

Theorem 12 For a slope-intercept array A with n
groups of lines, we can partition the plane R? into four
closed quadrants Ty, . .., T3 using one horizontal line £y
and one non-horizontal line ¢1. Additionally, for each
i < 4, we can compute pruned array P; of A that include
all lines intersecting the interior of P; and have size at
least (3/4)| 4|, all in O(n)-time.

Now, we will represent the set of type (0,1) event
lines using a slope-intercept array.

Lemma 13 We have n linear functions fo,..., fn—1
and m vertices vy, ...,Um—_1 of a convex polygon, both
ordered counterclockwise by their gradient vectors and
arrangement, respectively. In O(m + n)-time, we can
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find indices a(0), ..., a(n—1) such that vertex v,y min-
imizes fi(v;) for all j <m.

Proof. In O(m)-time, we can find a(0) by computing
all fo(v;). Now, suppose that a(i — 1) is computed.
Then compute the sequence

fi(va(i—l))a fi(va(i—l)+l)7 fi(va(i—1)+2)u .

until it increases after some index a’. Then f;(vy)
maximizes f;, so a(i) = a'. By repeating this pro-
cess, we can find all a(0),a(1),...,a(m — 1). Observe
that ve(0), Va(1), - - - » Va(n—1) are sorted counterclockwise.
Since we only perform one rotation, this process requires
O(m + n)-time. O

Lemma 14 In O(m + n)-time, we can construct a
slope-intercept array of 2n groups of size mn represent-
ing the set of all type (0,1) lines

Proof. The proof can be found in the appendix. O

Theorem 15 Let P and Q) be convex polygons, with m
and n vertices, respectively. In O((m + n)log(m + n))-
time, we can finds a translation v € R? maximizing the
overlap area

II(v) =|PN(Q+ V)|

Proof. For any line / C R?, we can compute a point
v € ¢ maximizing II|, in O(m+ n)-time by [3, Corollary
4.1]. Using Theorem 10, we can determine on which
side of £ the set of maxima of II lies in O(m + n)-time.

By constructing a slope-intercept array A of (m + n)
groups with Lemma 14, we can represent all event lines
in O(m + n)-time. Applying Theorem 10 to ¢y and ¢4
obtained from Theorem 12, we can prune A to about
1/8 of its size, and this step requires O(m + n)-time.
After O(log(m + n)) steps, only O(1) lines remain, and
we can find a placement v that maximizes the overlap
area II(v) directly. O

7 Several Polygons

The aim of the section is to give an O(nlog®* =3 n)-time

algorithm to compute v € C maximizing II. We first
restrict the domain of IT into an r-flat L. C C and prove
a slightly stronger statement below by induction on r.

Theorem 16 Let L C C be an r-flat. Then we can find
v € L mazimizing 1|, in O(nlog" ' n)-time.

The proof of the base case can be obtained by modi-
fying the proof of [3, Corollary 4.1].

Lemma 17 Let £ C C be a line. Then in O(n)-time,
we can find v € £ mazimizing I1|,.

Proof. The proof can be found in the appendix. O
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Therefore, we assume that r > 1 and the following
induction hypothesis is true.

Hypothesis 18 Let L C C be an (r — 1)-flat. Then we
can find v € L mazimizing I|1, in O(nlog™ n)-time.

We will first find an r-simplex 77 C L such that T}
has the maximum point of II|L and no type I hyper-
plane intersects the interior of T;. Recall that type I
hyperplanes are defined by the following event.

(I) an edge of a polygon P; 4+ v; contains a vertex of
another polygon P; + v;

If 7 and j are specified, then it will be called a type (3, j)
hyperplane. Then type I hyperplanes are grouped into
k(k — 1) groups, each of which is the set of type (i, 7)
hyperplanes. Any type (¢, j) hyperplane H is defined by
a linear equation of the form

n- (X,L' - Xj) =cC
for some n € R? and ¢ € R. Consider the projection
T,5 C — RQ
X = X — X

Then 7; j(H) C R? is a line. Such a line will also be
called of type (¢,7). Thus, we will find a triangle T; ; C
L such that no type (4, ) lines intersect the interior of
T ;.
Proposition 19 In O(nlog” ™' n)-time, We can find a
triangle T; ; C R? such that
1. a mazimum point of I1|1, lies on W;j.l (T;;)NL, and
2. no type (4, 7) lines intersects the interior of T; ;.

Proof. The proof is similar to that of Theorem 15 and

can be found in the appendix. O
Now, define
Ty = () =} (T:;) C L. (3)
i,j<d

Then T7 is defined by 3k(k—1) € O(1) linear functions,
and by construction, no type I hyperplanes intersect
the interior of T7. Our goal now is to find an r-simplex
T C Ty such that T has the maximum point of IT|;, and
no event polytopes intersect the interior of 7.

To achieve this, we first note that only O(n) type
IT hyperplanes intersect the interior of 7;. Thus, we
can obtain T' by repeatedly applying Chazelle’s cutting
algorithm.

Definition 20 (Matousek [10]) A cutting of R? is a
collection C' of possibly unbounded d-simplices with dis-
joint interiors, which together cover R%. Let S be a set
of n hyperplanes in R?. Then a cutting C is a (1/2)-
cutting for S if the interior of each simplex intersects at
most n/2 hyperplanes.
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Theorem 21 (Chazelle [5]) With the notation pro-
vided in Definition 20, where d is constant, a (1/2)-
cutting of size O(1) can be computed in O(n)-time. In
addition, the set of hyperplanes intersecting each sim-
plex of the cutting is reported in the same time.

Proposition 22 In O(nlog" ' n)-time, we can find an
r-simplex T' C L such that

1. the maximum point of 1|1, lies on T, and

2. no event polytope intersects the interior of T.

Proof. Take T as defined in (3). By construction, no
type I hyperplane intersects the interior of 77 C L.
Therefore, the set of pairs of intersecting edges of P;
and P; does not depend on the placement v € T7. More-
over, every edge of P; intersects at most two edges of
P;. Therefore, there are at most

(’;) 4n € O(n)

type II polytopes intersecting the interior of 7. In
O(n)-time, we can compute the set S containing all such
type II hyperplanes by sampling a placement v in the
interior of T7.

To find a simplex T satisfying the conditions of
Proposition 22, we first set T = T;. Then we define
S as the set of hyperplanes in L containing a facet of
T or a type II polytope that intersects the interior of
T. We can compute a (1/2)-cutting C of size O(1) for
S in O(n)-time using Theorem 21. Using Theorem 10,
we can then find a simplex 77 € C containing the maxi-
mum point of |, in O(nlog”~*n)-time. We set T' = T’
and repeat this process O(logn)-times until no type II
polytopes intersect the interior of 7. O

We can now prove Theorem 16.

Proof. We can find T as in Proposition 22 and compute
IT|7, which is a quadratic polynomial. Then we can
directly compute the maximum point of II|r. O

Theorem 1 Let Py, P1,...,P,_1 be convex polygons,
with a total of n wvertices, where k 1is a constant.
Then in O(nlog®* =3 n)-time, we can find a placement
(Vo,V1,...,Vk—1) mazimizing the area of

(Po+vo) NN (Pr—1 + Vi—1)-

Proof. This is a corollary of Theorem 16 with r = 2k —
2. O

8 Set of Maxima

Our next step is to determine the set M C C of place-
ments v € C that maximize the overlap area II. Once

we identify at least one such placement, the problem be-
comes easy, as every maximal overlap is the same up to
translation. To accomplish this, we rely on the equality
condition of the Brunn-Minkowski inequality.

Theorem 23 (Minkowski) Let A and B be compact
subsets of R? with nonzero area. Then

Y21 12, Line
>—]A —|B

1, 1
A+ =B
’2 T3

and the equality holds if and only if A and B are homo-
thetic.

We define I(v) for any placement v € C, as follows:
I(v) = (Po+vo)N---N(Py_q + vi_1).

Lemma 24 Let v,u € C be two placements that both
mazximize II. Then I(u) and I(v) are equivalent up to
translation.

Proof. The proof can be found in the appendix. O

We then fix a maximal overlap Inax C R2. The set of
all v; such that I ,,.x C v;+ P; is given by the Minkowski
difference

{x € R? | x + (—Ipmax) C =P}
{x € R? | Inax C x + P;}.

(_Pz) - (_Imax) =

We define N := [[,_,.(P; — Imax) and let w: (R%)F — C
be the natural quotient.

Lemma 25 The restricted map w|y: N — M is an
affine isomorphism.

Proof. By construction M = w(N). Suppose there ex-
ist two distinct u,v € N such that

u=v+ (x,x,...,X%)

for some x € R2. This implies that Iy, = I(v) and
Imax = I(u) = I(v) + x. As a result, we must have
u="v. O

Since each P; and I, contain at most n vertices,
we can represent (—P;) — (—Inax) using O(n) linear
constraints without redundancy. This computation can
be completed in O(n)-time. Consequently, by employ-
ing standard linear algebra techniques, we can describe
M C C using O(n) linear constraints without redun-
dancy in O(n)-time.

Theorem 26 In O(n)-time, we can represent M C C
using O(n) linear constraints without redundancy.
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Proof. Let v; = (x;,y;) for each i < m. A linear func-
tion f(vg,...,Vvg_1) can be written as an affine combi-
nation of vi — vg,...,vg_1 — vg if and only if

B) B)
Zaxifzo and Zayifzo'

<m i<m

Every edge of I,ax should be part of an edge of P; for
some ¢ < m. Consider two nonparallel edges. They
yield two linear equations:

a-vi=c¢ and b-v;—d.

Here, v; and v; are column vectors, and a and b are
row vectors. Let

()= () 6,

o , 1
2 5" - (s)

so we replace every v; by v;—v’ in the linear constraints.
As a result, each constraint is expressed in terms of
Vi — Vp,.

and Z 5‘(21-‘/ = (?),

<m

..y VE_1 — Vp. [l

Theorem 2 is an immediate corollary of Theorem 26.
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A Appendix

The below is the proof of Lemma 6.

Proof. By Theorem 4, we can assume that M # (). More-
over, by eliminating variables, we may also assume that
m = 0. To compute the maximal affinely independent set,
we start with an empty set S and gradually add points to
it. At each step, we look for a new point that is not in the
affine hull of the current set S.

To do this, we first select a linear functional A that is non-
zero but evaluates to zero on all points in S. We can find such
a functional in constant time since d is a constant. We then
find the minimum and maximum values of h subject to the
constraints in M, denoted by Xmin and Xmax, respectively.

If |S] < dim M, then A(Xmin) < h(Xmax). Therefore, for
some X € {Xmin, Xmax }, the set SU{x} should be also affinely
independent. In this case, we replace S by S U {x}. If not,
we terminate the process. (]

1 xOX1

Figure 3: Finding a maximal affinely independent set
and the topological interior points.

Xmin

X0 X

Xmax

The below is the proof of Lemma 14

Proof. Let P be a polygon with n linear inequalities
fi(x) > 0, sorted counterclockwise by the gradients of V f;.
Let ¢; be the line defined by f; = 0, and let vo,...,Um—-1
be the vertices of ) sorted counterclockwise and indexed
modulo m. Then the set of all type (0,1) lines is

S={-vj+4|i<nandj<m}.

By using Lemma 13, we can determine the indices a(i)
and b(i) for each ¢, such that v,(;) (resp. vy(;)) is the vertex
of @ that minimizes (resp. maximizes) f;(v;) for all j < m.
This computation can be done in O(m + n)-time. We can
then construct two arrays:

Az = (—Va(s) + i, —Va(i)4+1 + iy oo, —Vby—1 + i)
and

Agiy1 = (=) + Lo, —vpiy+1 + iy - - o, —Va(iy—1 + i),

whose intercepts are sorted. Note that we do not need to
compute the entries of A; explicitly; once we have computed
a(z) and b(4), we can perform random access in O(1)-time us-

ing the formulas above. The resulting arrays Ao, ..., A2n—1
provide a slope-intercept array representing the set of all
type (0,1) lines. a

The below is the proof of Theorem 17.

Ub(i)

b Ya(i)

Figure 4: Visualization of why Ag; and Ag; 1 are sorted.

Proof. We parameterize ¢ by

f(t) = (fo(t)7 fl(t)7 B fkfl(t))7
where fi: R — R? are linear functions. We define cylinders

Ci = (z,y,2) € R®,|,(z,y) € fi(2) + P

(£3(t),1)

Figure 5: Depicting the cylinder C; obtained from P;
and /.

We can compute C = CoNCiN---NCk_1 in O(n)-
time using Chazelle’s algorithm [6]. Let H; C R® be the
hyperplane defined by z = ¢. Then we have |C N Hy| =
|(Po =+ fo(t)) [ARERNA (Pkfl + fkfl(t))|. We can find ¢ max-
imizing |C' N H¢| in O(n)-time using [3, Theorem 3.2]. For
such a ¢, the maximum point of II| is f(t) € L. O

The below is the proof of Proposition 19.

Proof. The proof is similar to that of Theorem 15. Let
M C L be the set of placements maximizing II|;. To deter-
mine on which side of a line £ the set m; ; (M) lies, we apply
Theorem 10, which takes O(nlog” 2 n)-time.

We can represent all type-(z,j) lines by a slope-intercept
array A in O(n)-time, as shown in Lemma 14. Applying
Theorem 12 to obtain lines ¢y and ¢;, we can prune A
to about 1/8 of its size using Theorem 10. This step re-
quires O(nlog" % n)-time. After O(logn) steps, only O(1)
lines remain, and then we triangulate the remaining re-
gion. This gives a triangle T3 ; with the desired properties
in O(nlog" ™' n)-time. O

The below is the proof of Lemma 24.

Proof. Since P,..., Px_1 are convex,

%I(u)Jr%I(v) Cl(u+v).
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Therefore,

1 1
‘QI(U) + 5[(V)

<Jr () <o

As a result, I(u) and I(v) are homothetic by Theorem 23.
Since |I(v)| = |[I(u)]|, this implies that I(u) and I(v) are
equivalent up to translation. O

B Partitioning with Two Lines

In this section, we prove Theorem 12. While the main theo-
rems can be derived solely from [16, Theorem 1.4], this ap-
proach is somewhat unsatisfactory. Specifically, it requires
three queries at every step and prunes only 1/18 of the lines,
leading to a slowdown factor of 27/4. Moreover, the state-
ment of [16, Theorem 1.4] is much more difficult to describe.

To provide a more convenient (at least in the authors’
taste) proof, we instead prove the dual statement. This is
the problem of partitioning a set of points in the plane with
two lines such that each quadrant contains at least 1/4 of
the points. We begin by presenting Megiddo’s linear time
algorithm for a special case of the ham sandwich problem
[12, Section 2].

Theorem 27 Given two finite sets of points in the plane
with a total of n points, and with disjoint convexr hulls, we
can compute a line that bisects both sets in O(n)-time.

The following corollary is a slightly stronger result than
Megiddo’s original main theorem [12].

Corollary 28 Given a set of n points in a projective plane
P2, we can compute a horizontal line £y and a non-horizontal
line £1 in O(n)-time, such that each closed quadrant defined
by the two lines contains at least |n/4| points in O(n)-time.

Proof. First, we can assume that there are no points on
the line at infinity by applying the perturbation (a;b;c) —
(a; b;c+eb). An appropriate value for € can be computed in
O(n)-time. Additionally, we can disregard a single point at
(1;05;0), as it is contained in all closed quadrants.

Next, we identify the horizontal line that passes through
the median y-coordinate of the points, denoted as ¢y. If £o
contains at least half of the points, we can select any non-
horizontal line ¢; that passes through the median point m of
fo. As a result, we assume that £y contains fewer than half
of the points.

We put the points above the line £y in a set A. Moreover,
we also put points on £y from left until A has at least half
of the points. Then B is the set of remaining points. Since
the convex hulls of A and B are disjoint, we can apply The-
orem 27 to compute the line ¢; that simultaneously bisects
both sets. Since ¢o contains less than half of the points, ¢1
should not be horizontal. This divides the plane into four
closed quadrants, each containing at least |n/4] points. O

An intersecting aspect is that Theorem 28 offers a linear-
time algorithm for its own weighted version. It is important
to note that this approach heavily relies on the following
well-established result.
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b

Figure 6: The red represents A and the blue represents
B

Lemma 29 Given n distinct real mumbers with positive
weights, we can determine the weighted median of these num-
bers in O(n)-time.

Theorem 30 Given n weighted points in a projective plane
P? with positive weights Xo, . . ., An—1, we can compute a hor-
izontal line Lo and a non-horizontal line £1 in O(n)-time such
that each closed quadrant defined by the two lines contains
at least 1/4 of the total weight.

Proof. Once again, we can assume that there are no points
on the line at infinity by applying perturbation (a;b;c) —
(a;b; ¢ + eb) and ignoring a single point at (1,0,0). Let £o
be the weighted median horizontal line. If ¢y contains at
least half of the total weight, then we can choose any non-
horizontal line ¢ passing through the weighted median point
m of £y. Therefore, we assume that £o contains less than half
of the total weight.

We start by putting all points above the line £y into a set
A, and adding points on £y from left to right until A has at
least half of the total weight. We modify the weight of the
last point p so that the total weight of A is exactly half of
the total weight, and set B as the remaining points and p
with the remaining weight.

Since ¢y contains less than half of the total weight, any
ham sandwich cut of A and B must not be horizontal. We
can then find two lines 4, and ¢; as in Theorem 27. Let v
be their intersection, and let v; be the intersection of ¢; and
the line at infinity.

Without loss of generality, we may assume that the y-
coordinate of £y is at most that of £;,. We then take a line
{1 passing through vo and bisecting the weight of B. If ¢;
also bisects the weight of A, then this is the desired line.
Otherwise, we may assume without loss of generality that
the left side of ¢; contains more weight. Then any ham
sandwich cut of A and B must pass through the left side of
£y with respect to vo.

We can repeat this process with v;. Then we determine
which side of the line at infinity a ham sandwich cut of A
and B must pass through with respect to vi. After this,
we identify one quadrant that does not intersect any ham
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vy at infinity

0 0

Figure 7: The red represents A and the blue represents
B

sandwich cut of A and B. Thus, we can merge the points in
that quadrant into two points, one for A and one for B, and
repeat the entire process.

Every step, the number of points become 3/4 and we get
at most 3 new points. Thus, in O(n)-time, at most 12 points
remains. Then we can get a ham sandwich cut of A and B by
brute force. The ham sandwich theorem implies that such a
cut exists. g

Theorem 31 Let A be an array of arrays Ao, ..., An_1 of
points. Suppose that for each i < m, points on A; lie on the
same horizontal line and are sorted from left to right. Then,
in O(n)-time, we can find £y and £1 such that for each i < 4,
we can obtain a pruned array P; of A with |P;| > |A|/8 and
P; contained in the ith quadrant.

Proof. We can simply choose median points of each of A;,
and let the weight be the size of A;. Then we can apply
Theorem 30 and get the answer. g

Again, an intersecting aspect is that Theorem 31 offers its
own optimized version.

Lemma 32 Let S be a collection of m sorted arrays. Given
x, we can compute the rank of x in O(nlog|S|)-time using
binary search on each array.

Proof. We can apply binear search on each array and get
the answer. O

Lemma 33 Let S be a collection of m sorted arrays. Then
we can find the ith element of S in O(nlog|S|)-time.

Proof. This follows from [8, Theorem 3]. O

Theorem 34 Let A be an array of arrays Ao, ..., An_1 of
points. Suppose that for each i < m, points on A; lie on
the same horizontal line and are sorted from left to right.
Then, in O(nlog|S|)-time, we can find £y and €y such that
for each i < 4, we can obtain a pruned array P; of A with
|P;| > |A|/4 and P; contained in the ith quadrant.

Proof. The proof is almost same are that of Theorem 30.
However, we need to use Theorem 31 for pruning points,
Lemma 33 for bisecting B, and Lemma 32 for counting
points of A. O

Let (P?)Y be the dual projective space, which is the space
parametrizing lines on P?. Consider the map

- P?
(¢;b;5a).

(B?)"
ax +by+cz=0

Then Theorem 12 is exactly the dual theorem of Theorem 34
under this map.
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Well-Separated Multiagent Path Traversal

Gleb Dilman* David Eppstein'

Abstract

We consider moving points along a given path, with
a fixed speed, so that no two points ever come closer
than 1 (in the space into which the path is embedded,
not only along the path) while they follow the path (all
points traverse the path from start to finish). Since the
motion of any point along the path is fully determined
as soon as the point enters the path, our only decisions
are the times when to send the points at the start of
the path. We give algorithmic results for the problem of
scheduling as many points as possible, i.e., maximizing
the throughput.

1 Introduction

We study the problem of sending entities/agents along
a given path so that the agents stay well separated dur-
ing the motion. Such problem may arise, e.g., in an
amusement park where the given path represents a ride
followed by circular cabins or any entities which may
deviate from the path (the path may live in 3D and the
entities may represent 3D cabin volumes). Maximizing
the cabin throughput maximizes the profit of the ride
owner, and will also maximize the customers adrenaline,
as a dense packing of the cabins implies many near
misses along the ride. Similar problem appears when
putting large items on a conveyor. Last but not least,
the separation may be dictated by privacy or safety con-
cerns, e.g., due to the fear of infection spread between
two people or making two entities vulnerable to a sin-
gle point threat/eavesdropper, which affects a certain
radius around it.

For the most part, we focus on 2D; however our so-
lutions work in arbitrary dimensions. We use realRAM
model of computation — standard in computational ge-
ometry.

1.1 Related Work

To our knowledge, the considered problem was not stud-
ied before; however, a large body of work on similar
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TComputer Science Department, the University of California,
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fCommunications and Transport Systems, ITN, Link6ping
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questions exist:

e The Fréchet distance between two curves is the
length of the shortest leash needed for the person on
one curve to walk the dog following the other curve;
computing the distance is a classical motion coor-
dination problem (in Section 2 below, we make use
of the “free space diagram” from the paper [1] that
introduced Fréchet distance). More related to our
problem is the recent work on flipped Fréchet [10],
i.e., walking the dog while maximizing the person—
dog separation. The main difference from our setup
is that in both classical and flipped Fréchet settings;
the person and the dog are very powerful—they can
move with infinite acceleration; on the contrary, our
agents move with same speed—the only decision is
when to start moving (and even these starting times
are not arbitrary, in some versions of our problem).

e Agents (aircraft or trains, modeled by disks and
segments, resp.) following each other ducks-in-a-
row along given paths were considered in the CCCG
paper [16] (and also in [17]); the trains and aircraft
are still more powerful than our agents because
they have infinite acceleration (but their speed is
bounded). Heuristics were given in [11].

e Wire routing and moving a disk through a domain
(the former is hard [13] while the latter can be done
in polynomial time [6,7]) is also related to our prob-
lem. Finding paths for a “snake” (the Minkowski
sum of a segment and a disk, i.e., of a train and an
aircraft in terms of [16]) was also studied in [13]:
the problem is hard for long snakes, but is FPT-
tractable w.r.t. the snake length (i.e., the problem
is “length-tractable”), which is reminiscent of our
results: we show that our problem is hard, but ad-
mits a PTAS if the path length is small.

e Finding separated trajectories is a well studied
problem in robotics and computational geometry
[2,4,8,12,14,18,19]; our work is different in that
we do not find the agents’ paths (the path—one for
all agents—is given in the input, not sought in the
output; our problem is purely a scheduling one).

e From non-geometric literature, remotely related to
our paper is the work [5] on sets of words, avoiding
a set of forbidden Hamming distance subsequences
(the solution to our problem will hinge on defin-
ing forbidden intervals between the path-following
agents). Another non-geometric, scheduling prob-
lem is the “pinwheel problem” in which the goal
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is to attend to a set of tasks while ensuring that
each task is visited with a certain frequency: it was
shown in [9] that there always exists a feasible pe-
riodic schedule — a result resembling our proof that
for our problem a periodic schedule can be arbi-
trarily close to the optimum.

e Finding (large) gaps between agents in a periodic
motion is the subject of the Lonely runner conjec-
ture [20].

1.2 Problem Formulation and Notation

In the problem input we have a polygonal path P (pos-
sibly with self-intersections) which we call the thread;
let n be the number of edges of P and let £ € R be
the length of the longest edge. We treat the thread as
a directed path; let s be its starting point. A bead is
a radius-1/2 disk whose center moves with unit speed
along P (starting from s). A schedule is a sequence
S = (t1,ta,...) of beads inter-release times: that is,
according to S, the beads are released at s at times
0,t1,t1+1ts,t1+t2+13,. ... For convenience, we start the
beads numbering from 0 (bead 0 is released at time 0).

A schedule is feasible if the beads never collide with
each other while following P, i.e., at any time, the dis-
tance between the centers of any two beads is at least 1.
The goal is to find schedules with high throughput, i.e.,
long-term average number of sent beads, or equivalently,
to minimize the long-term average of the release times,
ie., limy, oo Z;n:l t;/m (the reciprocal of the through-
put). We will restrict attention only to feasible sched-
ules for which the limit exists.

Periodic schedules A schedule is periodic if it repeats
itself, i.e., if for some p we have ¢;;, = t; Vj; the min-
imum p for which this holds is called the period of the
schedule. If the period p = 1 (i.e., if the interval between
consecutive beads release is constant), the schedule is
called uniform.

1.3 Results

Section 2, we present an O(n3¢)-time algorithm for find-
ing optimal uniform schedules (see the paragraph above
for the definiton of uniform and periodic scheudles); in
Section 3, we extend the algorithm to periodic sched-
ules of period p = O(1) (the runtimes of the algorithms
have p in the exponent). In Section 4, we prove that
periodic schedules (with long but bounded period) are
as good as arbitrary (i.e., possibly aperiodic) schedules.
As a corollary we obtain that the optimal (possibly ape-
riodic) schedule may be approximated arbitrarily well
by a periodic one, implying a PTAS for short paths.
Finally, in Section 5, we prove hardness of (even ap-
proximating) the problem when the period is large.

In summary, we show that our problem is hard in
general, but can be solved in polynomial time for short-
period schedules; for arbitrary schedules, the problem
admits a PTAS if the thread is short.

An applet to play with sending the beads (also
along several paths) is available at https://www.
cs.helsinki.fi/group/compgeom/necklacegame/: to
send a bead, click on the bead at the beginning of the
path. Figure 1 shows snapshots of the game.

2 Uniform Schedules

Let t =t; =ty = ... be the common value for the beads
inter-release times in a uniform schedule; our goal is to
minimize t. Consider two beads, with the second one
following the first one at distance t along P (Fig. 2),
and let eq, es be the edges of the thread on which the
beads are situated at some moment in time (we do not
assume that P’s edges are numbered — the indicies 1
and 2 in eq, ep are not ordinal numbers; in particular,
it is possible that e; = es, or that ey is farther than es
from s). Let Fe, ., be the set of “bad” timings ¢, i.e.,
the set of values for ¢ that lead to collision of the beads
while they are on ey, es.

Lemma 1 F,, ., is a single interval (possibly empty).

Proof. Let z1,z2 encode the locations of the beads on
e1,es resp. at some moment of time, i.e., bead i is at
distance x; from the starting point of e; (recall that
P and hence its edges are directed). Let C' C [0, |e1|] X
[0, |e2|] be the set of (x1, z2) pairs for which the distance
between the beads is at most 1; C'is the free space [1] for
the Fréchet distance between the edges. It is well known
that C' is a connected subset of the (z1,x2)-plane (in
fact, as was proved in [1], C is convex — the convexity of
C follows from the convexity of the distance function).
Since t = d — x2 + z1 where d be the distance (along P)
from the startpoint of ey to the start point of e, the
beads motion is described by a (45°-sloped) line in the
(x1,x2)-plane. The beads do not intersect iff the line
does not intersect C, which happens for a contiguous
range of t. O

For an interval I = [a,b] C R and a natural num-
ber k, let I/k = [a/k,b/k] denote the “scaled down”
copy of I. Having t outside Fy, ., ensures that two con-
secutive beads will not collide on ey, e, i.e., that for
any j the bead j does not collide with bead j + 1. To
make sure that bead j does not collide with bead j + 2,
the time interval 2¢ between the beads releases should
lie outside F, .,, or equivalently ¢ ¢ F, .,/2. Similarly,
for the bead j to avoid bead j + 3, it should hold that
t ¢ I, ¢,/3. In general, to ensure no collisions of beads
on ey, es we should have ¢t ¢ F, .,/k for any natural k.
Overall, to avoid beads collisions on any pair of edges
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Figure 1: Left: 5 beads (blue) moving along the path. Right: a collision
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Figure 2: Left: beads at x1,z2 on edges e, ea; the part of P between the edges (dashed) has length d — |es|. Right:

F61,62 =

of the thread, t should be outside all possible forbidden
intervals F,/k where o ranges over all pairs of edges
of P and k € N (Fig. 3).

Theorem 2 An optimal uniform schedule can be found
in O(n30) time.

Proof. Let F, = [a,, b,] for a pair o of edges. It suffices
to consider only those k for which a,/k > 1, since for
a larger k, [aqs,bs]/k C [0,1] and any ¢ < 1 is clearly
infeasible. Since the length of the thread is at most nf,
any t > nf is feasible, implying k < a, < nf. Thus, the
O(n3¢) forbidden intervals for ¢ (over all O(n?) pairs
of edges and all £ < nf) can be constructed in time
O(n3f). The optimal ¢ is the smallest one not covered
by the intervals: it is the left endpoint of one of the
intervals. 0
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[tmin, tmax] is defined by the tangents (dotted) to C' (drawn with ipelet [15]).

3 Periodic Schedules

Figure 4 gives a motivation for considering periodic
schedules: they can perform arbitrarily better than uni-
form. We first consider schedules with period 2, defined
by the two repeating beads inter-release times t1, to; our
goal is to minimize t; + t5. The constraint is that no
two beads ever collide—on any pair of the thread edges.
Therefore, just as with uniform schedules (Section 2),
for every pair o of P’s edges we compute the forbidden
interval F, between two beads on the edges. Let B =
U, F» be the union of all forbidden intervals, treated as
a sequence of (maximal) pairwise-disjoint segments on
the real line: B = [a1,b1] U [ag,bo] U---Uayr, b U. ..
where a1 = 0,1 < by < as < by < az.... The number
of the segments is at most the number of edge pairs,
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Figure 4: P is shaped as a hammer with thin handle of
length ¢ > 1 and the head of perimeter ¢. A uniform
schedule must have ¢ > ¢ (so that beads do not collide on
the opposite sides of the handle). A periodic schedule
can send a length-¢ train of |£/v/2] beads with inter-
release times /2 (so the beads do not collide at the 90°
turns of P), wait until the train fully leaves P (time 4¢),
and repeat. Thus the uniform schedule has throughput
©(1/¢) while the throughput of the periodic schedule is
constant (the long-term average of the release times is
> ¢ for uniform schedules and ©(1) for a periodic one).

O(n?).

In a period-2 schedule, the interval (the distance along
the thread) between beads of the same parity is k(1 +t2)
for an integer £ > 1. The interval between beads of
different parity is either k(t1 + t2) + ¢t (from an even
bead to an odd) or k(t; + t2) + t2 (from an odd to an
even bead) for & > 0. Thus for a feasible schedule it is
necessary and sufficient that

(k+ 1)t + t2),
k‘(tl +t2)+t2 ¢ B Vk=0,1,..

(as with uniform schedules, ¢1,t2 > 1, and it suffices
to consider inter-release times that do not exceed the
maximum thread length, n¢, i.e., (k+1)(1+ 1) < nf).

For any one forbidden segment [ay,bs] from B and
any fixed k, the inequalities ay < (k+ 1)(t1 +t2) <
by define a slab of forbidden pairs in the (¢;,%2)-plane
(Fig. 5). Similarly, the inequalities a; < k(t1+t2)+t1 <
by and ay < k(t1 + t2) + t2 < by each define a slab.
Overall, i.e., for segments [af,bs] for all O(n?) f’s and
O(nf) k’s, the requirements (1) define O(n3/) slabs. We
build the arrangement of the slabs and find the vertex
of the arrangement minimizing t; + to in O(n®¢?) time

E(ty +ta) + t1,

., nl/2 )

to A

Figure 5: The requirements (1) define slabs of forbidden
(t1,12) pairs (gray). The optimal schedule (marked with
the asterisk) minimizes t; + to for points outside the
slabs (white).

(by going through all the vertices).
The above algorithm extends to schedules of any
length p:

Theorem 3 An optimal schedule with period p can be
found in O((n®pl)P) time.

Proof. Let b,b/ € ZJ,b < V' be two beads, identified
with their positions in the schedule (recall that we start
numbering the beads from 0). If b = b’ mod p, then in
a period-p schedule the interval (the distance along the
thread) between the beads is (k+1)(t1 +ta+--- +¢p)
for an integer £ > 0. More generally, if b = r mod p and
b = r’ mod p, the distance is

D(ra' k) = tpp1 +tgo + oo+ tpt
+h(ty+ - +tp) +tr Hto+- + 1

(2)

Thus for a feasible schedule it is necessary and suffi-
cient that

D(r,r' k) ¢ B

3
vr,r' =0,1,...p—1 3)

Vk=0,1,...,nl/p,

For any one segment [as,by] from B and any fixed
r,r’, k the inequalities ay < D(r,7’,k) < by define a
slab of forbidden schedules in the (1,2, ..., t,)-space—
overall, i.e., for segments [af,bs] for all O(n?) f’s,
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Figure 6: Length-L segments (gray) correspond to
beads in the maximum-throughput schedule; we will re-
move the segments marked with asterisks.

O(nt/p) k’s and O(p?) pairs (r,7’), the requirements (1)
define O(n3pf) slabs in the p-dimensional space. We
build the arrangement of the slabs and find the vertex
of the arrangement minimizing ¢; +t2 + - - + t;. g

4 Arbitrary Schedules

Let 7 be the value of optimal throughput over arbi-
trary, possibly aperiodic schedules. We show that peri-
odic schedules can achieve a throughput arbitrarily close
to 7:

Theorem 4 For any € > 0 there exists a periodic
schedule whose throughput is at least T — €.

Proof. Let L denote the length of P. Identify each
bead with the length-L segment on the real line, span-
ning the time during which the (center of) the bead tra-
verses P (Fig. 6). Consider the segments in the optimal
(possibly aperiodic) schedule S. Choose an integer Z >
2L72 /e and draw vertical lines t = ZL,t = 2ZL, ...
at the regular spacing ZL. We claim that no such line
intersects the interior of more than x = 2L7 segments.
Indeed, the segments intersecting any one line cover at
most 2L of the time. If there existed a line intersecting
a set of more than = segments, we could have laid such
sets one after another, obtaining a (periodic) schedule
with throughput at least /2L > 7, contradicting the
global optimality of S.

Now remove from S the segments whose interior is
intersected by one of the drawn vertical lines. By the
above, the fraction of the removed segments is less than
x/Z, implying that the throughput of the schedule with
the remaining segments is greater than r—7x/7Z > 7—e¢.
It follows that at least one set of segments between the
lines has throughput > 7 = ¢; (in fact, such sets should
appear infinitely often, but for us it is enough to) take
one such set and repeat it — this results in a periodic
schedule with throughput > 7 —¢. O

It follows from the proof of Theorem 4 that to get a
schedule with throughput 7(1 — 2/Z) > 7(1 —¢/7) it
is enough to find an optimal schedule in a length-ZL
interval. Since the number of beads sent during the
interval is O(ZL) = O(L?7?/¢), it suffices to consider
schedules with period O(L?7?%/e). Taking 6 = ¢/7, we
conclude that a (1 — §)-approximation to the maximum
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throughput can be obtained by considering schedules
with period p = O(L%*7/8§) = O(L?/6) since 7 < L.
From Theorem 3,

Theorem 5 A (1 — 0)-approximation to the maximum
throughput can be found in O((nL/8)°E*/9)) time.

In particular, for threads with constant length, our
problem has a PTAS.

5 Hardness of Approximating Arbitrary Schedules

Our result is based on a known inapproximability results
for maximum clique by Arora et al. [3]:

Theorem 6 (Arora et al. [3]) There is a constant
c > 0, such that approximating the maximum clique size
in an N-vertex graph to within a factor N¢ is NP-hard.

We combine this result for the maximum clique prob-
lem with an approximation-preserving reduction from
maximum clique to our problem, that is, the problem
of determining the optimal schedule of beads. Hence,
from a given graph G in which we aim to find a maxi-
mum clique we will construct a thread P, such that the
optimal release times for P correspond to a maximum
clique in GG. Thus, the approximation ratio for the opti-
mal schedule of beads for P cannot be better than the
approximation ratio for maximum clique in G (given by
Theorem 6).

For the construction of P from G, we define a set
7 of maximal intervals of the timeline such that, if a
bead is released at time 0, it is safe to release another
bead within one of these intervals (and inter-release
times Z;Jj t; ¢ I,i =1,2,...;k = 0,1,... are infea-
sible). We call Z the set of safe intervals. Assum-
ing that we can construct Z as desired, we describe
the approximation-preserving reduction from maximum
clique in Section 5.1, and we detail the construction of
7 in Section 5.2.

5.1 Reduction from Maximum Clique

Let G be the graph in which we want to solve the max-
imum clique problem, let |V (G)| = N, and let the ver-
tices be labeled 1,..., N. We use a greedy algorithm to
construct a set U = {ug,us,...un,uny1} of integers,
such that Uj1 + Uj2 + Uj3 + Uj4 + Ujs5 + Uj6 7& 0 for any
6 indicies j1,...,J6 € {1,...,N + 1}. We start with
uy = 2 (see Section 5.2 on why we do not start with 1)
and consider integers of increasing value, adding them
to U whenever they do not yield an infeasible linear
combination with the numbers previously added to U.
For integers 1,. .., k, we need to pick at least k/° inte-
gers for U in order to exclude the other numbers due to
infeasible linear combinations. Thus, uy € O(N®).
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We construct a thread P with safe intervals around
{u; [1<i < N}yU{u; —uj|i>jandije E(G)} and
a semi-infinite interval starting at wy1. That is

7= (ui—a,ui—&—s)u

=

=1

(wi —uj —e,u; —u; +¢€)Ulunyr,00), €>0

iJEE(G)yi>]

(4)

Any optimal schedule with release times smaller than
un41 can be repeated at intervals of time uy 1. Hence,
we obtain a finite problem: Find the largest subset of
the finite parts of Z all of whose differences are in Z.

Let K = {vy,, Vk,, ..., vk k| } be the set of vertices in
a clique with k1 < k2 < ... < k||, then release times
0,t1,t1 + to,... with

J
Zti:ukj7j:17"'7|K| (5)
=1

yield a feasible schedule of |K| + 1 release times: the
inter-release times (for j; < j2) are (¢1 +to + ... +
tj,) — (b1 +ta+ ... +t5,) = ug,, —ug, € I, because
(Vk;, » Vk,,) € E(G). Moreover, any feasible schedule for
P for which all release times are 0 or elements of U must
be of this form.

Additionally, for a clique K in G the set
{O,uk‘m} Uj=1,... kx| {ukm — u;} is a feasible set
of release times. There also exist feasible schedules
with release times of the form wug, — ug;. The re-
lease time wuy, — Uk, 18 compatible with ug, (because
ug, — (ur, — ug;) = ug; € I) and with a single other
time ug; — ug;« (because (ux, — ug;) — (ur; — uk,.) =
ug, —ug,. €Zifij* € E(G)), but not with more release
times of this form. Hence, the schedules that do not
stem from cliques in G have bounded size. Thus, if we
aim for cliques larger than that, the release times in an
optimal schedule must stem from a clique in G.

Using Section 5.2, we construct a thread P with np =
3+7-N+7-|E(G)| edges with |Z| = f(np) = N +
|E(G)| + 1 safe intervals. With Theorem 6 we yield:

Theorem 7 There exists a constant ¢ > 0, such that
approrimating the optimal schedule of beads in a thread
with np edges to within a factor n;/zfc is NP-hard.

Proof. Suppose there exists an algorithm A that can
schedule beads optimally within a factor p < ny > °.
Then we can construct an algorithm A’ for the maxi-
mum clique problem in G:

1. Use Lemma 8 to construct P from the given graph
G (the input for the maximum clique problem).

2. Use algorithm A to schedule beads on P.

an

N

Figure 7: Gadget to exclude the interval [x —b, z]. The
black lines are the horizontal edges of P adjacent to the
gadget. The total length of the (gray) gadget is x.

3. Construct a maximum clique for G from the release
times for P.

Then the approximation ratio for A’ for the maxi-
mum clique problem is the same as for algorithm A for
scheduling beads (p). Hence, we have:

1/2—c —c —2¢
p<nd? = O((N + M)/27¢) = (N'72)  (6)
which yields a contradiction to Theorem 6. O

5.2 Construction of the Set of Safe Intervals

We aim to exclude all but the set of safe intervals given
in Equation (4). We use a long horizontal path to which
we add several gadgets to exclude certain intervals. Be-
tween each pair of consecutive gadgets we have a hori-
zontal edge of length uy41 in P:

e To exclude (0,u; — €] use a path of length u; — ¢
that runs on itself, i.e., “*>== up and “*5-= down.

e To exclude intervals of the form [z — b, z] we use
the gadget shown in Figure 7: The total length of
the gadget (shown in gray) is x, we have two ver-
tical edges of length % each within a distance of 1,
and part of a slanted square with four edges, total
length  — b, and a distance > 1 between parallel
edges. For example, if we aim to exclude the in-
terval [u; + &, u;41 — €] from the safe intervals, we
choose = u;4+1—¢, b/2 = u;—e, which excludes the
interval [x—b, z] with x —b = w11 —e— 2% (u; —¢) =
u; + €. Each of these gadgets also excludes the in-
terval (0,/2], thus, we choose u; > 1.

Each gadget except for the first has one horizontal
edge and six edges within the gadget. The gadget ex-
cluding the interval (0,u; — €] has three edges. Hence,
for a graph G with N vertices, constructing the set 7
of safe intervals from Equation (4), that is, excluding
all “unsafe” intervals, we use n =3+7-N + 7 |E(G)]
edges. This yields:

Lemma 8 Given a graph G with |V (G)| = N, |[E(G)| =
M, we can construct in polynomial time a thread P with
np =3+7-N+7-|E(G)| vertices, and C(G) < S(P) <
C(G)+1, where C(G) is the mazimum clique size in G,
and S(P) the length of an optimum finite schedule for P.
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6 Conclusion

We gave pseudopolynomial-time algorithms and hard-
ness results for scheduling uniform motion of well sepa-
rated agents along a given path; our algorithms extend
to the case of agents following multiple (constant num-
ber of) paths. An open problem is the existence of a
polynomial-time solution.
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Carving Polytopes with Saws in 3D

Eliot W. Robson*

Abstract

We investigate the problem of carving an n-face trian-
gulated three-dimensional polytope using a tool to make
cuts modelled by either a half-plane or sweeps from an
infinite ray. In the case of half-planes cuts, we present
a deterministic algorithm running in O(n?) time and a
randomized algorithm running in O(n3/2%¢) expected
time for any € > 0. In the case of cuts defined by
sweeps of infinite rays, we present an algorithm running
in O(n®) time.

1 Introduction

Stone carving is one of the earliest known representa-
tional works of art, and has been known to predate
even the earliest human civilization. This is the prac-
tice of taking a single solid piece of material and re-
moving pieces until achieving a desired final shape. To
ensure durability of the finished product, the base ma-
terial is often very durable and can be difficult to carve
with tools. As a result, it is desirable to minimize the
amount of work that must be done to achieve the final
carving, and is useful to be able to determine what kind
of objects can be carved out with the tools being used.

1.1 2D Cutting

The two-dimensional case of cutting material was first
studied by Overmar and Welzl [13]. In this work, the
authors modeled cuts as lines in the plane, giving al-
gorithms for computing the cheapest sequence of cuts
in special cases. This was generalized by Demaine, De-
maine, and Kaplan [8] to the case of cutting with line
segments in the plane where they gave an algorithm
with 2.5 approximation factor. This approximation fac-
tor was later improved by Dumitrescu and Hasan [9]. In
2009, Bereg, Daescu, and Jiang [3] presented a PTAS
for the problem of minimum length when cutting convex
n-gons out of convex m-gons with straight line cuts.
An analogous problem has been studied for ray cuts
[6, 14], where the cutting object is a ray instead of a
line or line segment. These results focus on carving
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fDavid R. Cheriton School of Computer Science, University of
Waterloo, jacksj@uwaterloo.ca

fDepartment of Computer Science, University of Illinois
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Figure 1: A polytope containing a cavity that can be
carved with ray sweeps but not half-planes.

both convex and simple polygons, and minimizing the
length of cuts. In Section 3, we study a more general
version of the decision variant of this problem, where
we find maximum ray-carveable regions not crossing a
set of disjoint polygons.

1.2 3D Cutting

Surprisingly, we found very little work on 3D generaliza-
tions of these problems, the only ones being guillotine
cuts (cuts that go all the way through) used to cut a
convex polygon out of a sphere [2], and work on cutting
styrofoam with hot wire [12].
We explore carving three-dimensional shapes with
models of two different classes of cuts:
e Straight-cuts with tools like circular saws or table
saws, modelled using half-plane cuts (see Figure 3).
e Tools with the ability to pierce up to a specific
depth such as waterjets or laser cutters, modelled
using ray sweeps (see Figure 1).
Note that straight-cuts can also be performed with a
wide variety of other tools, such as band saws, the long
edge of chainsaws, or even jigsaws. Some tools also allow
for additional types of cuts that we do not model, such
as using the tip of a chainsaw, or rounded cuts using
a band saw. However, straight-cuts can be performed
with every sufficiently large saw, and moreover they are
the only useful type of cut for carving polytopes exactly,
since polytopes do not have rounded edges.
For simplicity, we only consider 3D polytopes P with
n vertices. We make no assumptions of general posi-
tion in this work, although we only consider polytopes
without self-intersections or degenerate faces. In other
words, we only consider polytopes that are uniquely de-
fined by their connected interiors.
We will assume we are always given a polytope P



36" Canadian Conference on Computational Geometry, 2024

Figure 2: A polytope that can be carved with rays, but
with exactly one face that cannot be carved by half-
plane cuts.

Figure 3: Non-convex polytopes with holes that can be
carved using half-planes.

along with a triangulation of each face. If not, we may
triangulate each face in linear time [4] with no impact
on the final running time. We henceforth refer to the
resulting triangles as the facial triangles. We will use
n denote the complexity of P, i.e. the number of facial
triangles. Note that this is asymptotically proportional
to the number of vertices of P.

1.3 Our Contributions

In our paper, we consider a polytope P and determine
if there exists a finite set of cuts K such that for any
set C' D P, the “carved” set C'\ K has a connected
component (i.e., maximal connected open subset) equal
to int (P) (the interior of P). Essentially, the excess
connected components (“material”) can be “removed”
to leave only the intended shape. We also wish this to
be independent of C' (i.e. C' is not given as input to the
algorithm) so that the produced set of cuts can be used
to carve an object, regardless of the initial material.

In Section 2 we consider the set of cuts to be half-
planes, which can include complicated polytopes with
holes as in Figure 3. We are able to characterize the
shapes that can or cannot be carved, and use this to de-
rive a simple deterministic algorithm that runs in O(n?)
time. Furthermore, we also discuss a randomized algo-
rithm that runs in O(n3/2*¢) time for any ¢ > 0.

In Section 3, we model ray cuts as a finite set of ray
sweeps that consist of bounded continuous movement of
a ray on a plane. Sweeps are meant to model cuts one
could perform or program a machine to perform, rather
than simply being the set of shapes that are excluded

by a infinite union of rays. This model allows for a more
general class of cuts than half-plane cuts, as in Figure 1
and Figure 2. We are able to characterize the shapes
that can be carved with ray sweeps, and in this case we
present an algorithm that runs in O(n®) time.

2 Half-Plane Cuts

In this section, we study half-plane cuts which model
cuts that can be performed with tools such as circular
saws or table saws. Formally, a half-plane is defined by a
plane in R? and the region on one side of a line contained
in that plane. A polytope P is carveable if there is a set
of half-plane cuts H, so that for any P-containing set
C D P, the set C\(Ngeyn H) has a connected component
(i.e., maximal connected open subset) equal to int (P)
(the interior of P).

This model is equivalent to that of an open question
posed by Demaine et al. [8, 7th open problem|. They
ask if there exists an algorithm to cut three dimensional
polyhedra using an infinitely long rectangle that can
only slice straight.

2.1 Characterization of Carveable Polytopes

For a set S, we denote the convex hull of S by CH (S).
We give a complete characterization of the polytopes P
which can be carved in this model.

Theorem 1 For a triangulated polytope P, the follow-

ing are equivalent:

(a) P is carveable.

(b) For each facial triangle T in P, there is a sin-
gle half-plane Hp containing T such that Hp N
int (P) = @.

(¢) For each facial triangle T in P, let Ly denote the
plane containing T. There is a single half-plane H
containing T and not containing CH (int (P) N L)
whose boundary line passes through a verter of
CH (int (P)N LT), and also passes through a vertex
vofT.

Essentially, the transformation from (a) to (b) indi-
cates that it suffices to consider one cut per facial tri-
angle, and the transformation from (b) to (¢) indicates
that it suffices to consider only a limited set of potential
cuts for each facial triangle.

Proof.

(a) = (b) Assume that P can be carved by a set of half-
planes W. For a facial triangle T lying on the plane
Ly, let Wy C W be the subset of half-planes on
Ly. Then, by definition, " C |, ey, w- We claim
that there exists a half-plane H D T such that H N
int (P) = @. Then {J,,cyy,. w is the complement of an
open convex set on Lp. Denote this open convex set
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on Ly as S. Note that S contains int (P) N Ly, since
each w € Wr does not intersect int (P). As S and
T are disjoint convex sets, there exists a separating
line [ between S and T on Ly, which induces a half-
plane H with boundary [ containing 7" satisfying H N
int (P) = @, as desired.

(b) = (a) Take all f cuts of the form Hp. This divides
the exterior of P in any P-containing set C', and does
not intersect P, leaving it as a connected component.

(b) = (¢) Let T be a facial triangle of P, and let
L7 denote the plane containing 7. Assume that
Ly Nint (P) # @. Let Hy be a half-plane on Ly
containing 7" and not intersecting P, i.e. HrNT =T
and Hp Nint (P) = @. A half-plane H}. D> Hyp
can be found such that H/ touches the bound-
ary of CH (int (P) N Lr) by translating Hr. An-
other half-plane HY can be found by rotating H/.
around the boundary of CH (int (P) N L) until the
result touches a vertex of T. H/. is then tangent to
CH (int (P) N Lt), and some vertex v of 7T is on its
boundary.

(¢) = (b) Trivial. O

We now present observations about facial triangles 7'
and CH (int (P) N Lt ), where Ly is the plane on which
T lies. The first is stated in somewhat greater generality.

Observation 1 Let L be a plane, and let E be the
set of line segments defining edges of P that cross L.
That is, each line segment e € E has two endpoints
which are strictly separated by L (i.e. the endpoints of
e lie on opposite sides of L). Then, CH (int (P)N L) =
CH(ENL).

This is because the boundary of int (P) N L consists of
vertices that defined by the intersections of E with L.

We make an additional observation about polytopes
that are not carveable.

Observation 2 Let v be a vertex of P on facial triangle
T contained in the plane Ly. If there exists three edges
ey, ea,e3 of P such thatv € CH ({el, ea, ez}t N LT), then
the polytope P is not carveable.

This directly follows from Theorem
CH ({e1,e2,e3} N Ly) C CH (int (P) N Ly).

1(c), as

2.2 Quadratic Time Decision Algorithm

Using the characterization from Theorem 1(c) and the
observations, we show a simple quadratic time algo-
rithm exists for determining if a polytope is carveable.

Theorem 2 Given a triangulated polytope P with f fa-
cial triangles, there is an algorithm to determine if P
can be carved by half-planes that runs in O(n?) time.
If the answer is in the affirmative, the algorithm also
outputs a set of n half-planes that carve P.
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Figure 4: The tangents of v and the halfplanes H; (v)
and Hj(v) The figure is drawn on the plane L.

Proof. Let T be a facial triangle, and let Ly be the
plane containing 7. By Observation 1, we can com-
pute the set of edges E of P that cross L to compute
CH (int (P) N L) in O(nlogn) total time. If the re-
gion is empty, then any half-plane containing T' can be
output. Otherwise, by characterization (c¢) from The-
orem 1, we must determine if there exists a half-plane
H containing T and tangent to CH (int (P) N Lr), such
that the boundary line of H passes through a vertex v of
T. Note that each vertex v of T induces up to two lines
going through v and tangent to CH (int (P)N LT). It
suffices to consider each of them. It is possible to com-
pute tangents in O(logn) time per vertex once we have
explicitly computed the convex hull.

However, we can shave the log factor (pun intended),
and do this in O(n) time per facial triangle with a dif-
ferent algorithm. The tangent to CH (int (P) N L) on
L7 through a vertex v is a line through a vertex v and
a vertex of X = FN Ly. Let I, be the line passing
through a point x in X and a vertex v of T'. There are at
most O(n) such lines since |E| = O(n). If I, is a sepa-
rating line w.r.t. the plane Ly between X \ {z} and the
other two vertices of T, then the half-plane H contain-
ing T' with boundary [, , satisfies all of our conditions.
Otherwise, if no such line exists, then no half-plane sat-
isfying our conditions exists, and P cannot be carved
using half-planes by Theorem 1.

It is not immediately clear how we can efficiently
check each of these lines. However, observe that only the
“extreme” lines [, , for any specific v can be candidate
separating lines. This can be accomplished by perform-
ing what is essentially an iteration of the gift wrapping
algorithm for convex hulls [7, Section 1.1]. Maintain
a “current” line [,/ ,. Iterate through all the points
x € X. If z lies clockwise (resp. counter-clockwise) rel-
ative to the ray from v to 2/, set =’ + z.

If v lies outside of CH (X), this procedure is guar-
anteed to find the tangents to CH (X) passing through
v as candidate lines, and we can check in linear time
whether the candidate lines separate T' and X. If v lies
within CH (X)), then no such line exists, so we conclude
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Figure 5: A construction for family of polytopes carve-
able using half-planes (to increase the size, add more
pillars). For a member of this family with n facial trian-
gles, the algorithm described in Theorem 2 takes ©(n?)
time.

that the polytope P is not carveable.

This algorithm shows how to find a half-plane for each
facial triangle in O(n) time or deduce one doesn’t exist.
The whole algorithm runs in O(n?) time, since there are
O(n) facial triangles. O

Figure 5 demonstrates that there exists a family of
polytopes that can be carved using half-planes, for
which the runtime of the algorithm described in The-
orem 2 is ©(n?). In the next section we show a faster
algorithm for deciding if a polytope is carveable.

2.3 Subquadratic Time Decision Algorithm

At a high level, our quadratic time algorithm iterates
through a set Q of queries consisting of pairs ¢ = (v, T),
where v is a vertex on a facial triangle T in the polytope.
Each query g = (v, T') asks for tangents of CH (E' N L)
that go through v, lying on the plane Ly that contains
T. Since we have |Q] = O(n) queries and the polygon
we are querying can be different for different planes L
and can also itself have size O(n), this seems to require
quadratic time. However, we note that the polygons
are related: They all come from the original polytope
P. Surprisingly, we show that we can solve this problem
faster by answering all of these queries simultaneously.
We present a reduction from the decision problem
of whether a polytope P is carveable using half-planes
to the problem of detecting intersections between half-
planes and line segments in R3. The reductions solves
each query of Q on an increasingly large random subset
of the edges E that define the polytope P, by comput-
ing the violations between half-planes induced by the
previous tangents, and using the randomized analysis
of Clarkson—Shor [5] to bound the number of violations.
The violations are found by solving a problem involving
intersections between half-planes and line segments.

Lemma 3 Let T(n,k) be the time complexity of an al-
gorithm for detecting intersection between n half-planes

and n line segments in R with at most k intersec-
tions. Then, for any parameter 2 < r < n, there is
a randomized algorithm that decides if a polytope P
s carveable by half-planes that runs in expected time
O((logn/logr) - (T(O(n),O(nrlogn)) + nrlogn)) with
high probability.

Proof. We use a bottom-up sampling approach. Let
Ej be the edges (i.e. line segments not including end
points) defining the polytope P. We choose Ey D Fy D
E; D --- D Ep = @ to be a series of uniformly random
samples of the edges: To get E; 1 from E;, we take each
edge e € E; with probability % for some parameter .
We stop at the first value k such that Ey = &. Note
that with high probability (w.h.p.) k& = ©(logn/logr),
as|Eo| = O(n).

Throughout the algorithm, for each query g = (v, T)
pair (with 7" contained in a plane L), we maintain two
half-planes HiT(q), Hli(q) C Ly \ CH(E; N Lt). Their
boundaries are, respectively, the upper and lower tan-
gents of CH(E; N Ly) passing through v. Note that
it is possible that CH(E; N Ly) is empty (i.e. when
i = k), so in this case, we let H](q) = H}(¢) = L.
See Figure 4 for an illustration. Let H; = {H, (¢q) | ¢ €
Q}U{H;(q) | g€ Q}.

To compute H; from H;y1, we create an instance of
intersection detection between the line segments E; \
E;4+1 and the half-planes H;1.

We analyze what intersections can occur for the half-
planes defined by a query ¢ = (v,T). We observe that
on the plane Ly, since F;11 is a 1/r sample of E;, Ly N
E;q is also a 1/r sample of Ly N E;. By a standard
analysis of Clarkson and Shor [5], this implies that the
number of points of LU E; that lie within HZTH(q) and
Hiﬂ_l(q) is at most O(rlogn) w.h.p. Note that this is
exactly the intersections between F; \ E; 1 and H, ZT 11(9)

and H},,(q), and thus the total number of intersections
between F; \ E;y1 and H;4+1 is O(nrlogn).

For a query ¢ = (v,T), three types of events may

occur:

1. E;y1NLy was empty and E;N Ly is non-empty.
In this case, we can inspect the points of E;N Lt (of
which there at most O(rlogn) w.h.p.) and either
compute H;(q) and Hii(q) or deduce that P is not
carveable in linear time in the size of F; N Lt as in
Theorem 2.

2. E;NLr contains a point that lies in both HJH
and H j 1+ Let e denote the edge that induces this
point. Let e’ and e' be the edges of E;,; that
defined HzT 41 and Hf 1 respectively. Observe that
e,el, et are the triple of edges that certify that P
is not carvable by Observation 2.

3. The points of E; N Ly either lie in H;+1(Q) or

Hiil(q). In this case, we can compute Hj(q) and

148



CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

H}(q) from E;N Ly in linear time following a similar
procedure to find the most extreme halfplane as in
Theorem 2.

In all cases, either we conclude that the polytope P
is not carveable or we compute H;. If we have com-
puted Hp, we have extreme half-planes for every ver-
tex of every facial triangle T. At this point, we can
conclude that no vertex of any facial triangle T lies
within CH (int (P) N Ly ), but it is still possible that
some portion of the interior of a facial triangle T inter-
sects CH (int (P) N Ly). However, as we computed the
extreme half-planes for every vertex, we can check in
O(1) time whether one of these half-planes is a separat-
ing half-plane satisfying Theorem 1(c).

To analyze the runtime, we use an algorithm for in-
tersection detection between half-planes and line seg-
ments O(logn/logr) times with O(n) half-planes and
O(nrlogn) intersections. Step 1 and 3 of the above
run in time linear in the number of intersections, i.e.
O(nrlogn) total time. O

Since line segment intersection can be reduced to ray
shooting among halfplanes, the algorithm of Agarwal
and Matousek[1] for ray shooting imply that T'(n, k) =
O(n®/?te 4 nl/2+e . ) for any € > 0. Thus we conclude
the following corollary by choosing r = O(1).

Corollary 4 For any € > 0, there exists a Las Vegas
algorithm to determine if a polytope P is carveable by
half-planes that runs in time O(n®/?1€) with high prob-
ability. Furthermore, if P is carveable this algorithm
outputs a set of cuts to carve P.

We note that using the intersection reporting data struc-
ture between triangles® and line segments in R3 by Ezra
and Sharir [11] gives a better runtime of T'(n,k) =
O(n®/?*% + Eklogn), but does not improve the overall
runtime of our algorithm. It is plausible to believe that
this exponent of 3/2 is the best we can hope for due to
lower bounds for Hopcroft’s problem in 3D [10].

3 Ray Sweeps

In this section, we consider cutting material with rays.
This models cuts that can be performed with various
kinds of tools, such as a powerful waterjet 2, or a laser
cutter 3. Given a target polytope P, we wish to devise
a set of cuts to carve P out of arbitrary initial material
C D P. In particular, C' is cut into pieces, and one
of the pieces is int (P) (and the remaining are leftovers
which can be discarded). However, we would like this
to be independent of C', so we may use the same set of
cuts to carve P from different pieces of initial material.
We also classify shapes P that admit such a carving.

LA half-plane can be simulated by a sufficiently large triangle.
2https://youtu.be/pemgwRrCs78
3https://youtu.be/J20yk3ck8Z8
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Figure 6: A polytope for which all faces are exter-
nally visible that cannot be cut with ray sweeps, since
ray sweeps require bounded length. In particular, the
shaded face would require a ray sweep of infinite length
(i.e., a space-filling curve).

3.1 Model

We would like our model to capture the finite set of cuts
that can be made using the tools described previously,
and they are commonly operated by moving in a sweep-
ing motion to separate material. Thus, we define our
cuts as a set of ray sweeps. Consider a ray R defined by
an endpoint a and interior point b. A sweep is an inter-
polation where a or b (or both) travel along an arbitrary
continuous path of bounded length.

The reason we require bounded length is because
without it, our model would allow us to cut entire faces
using the endpoint of a ray, via space-filling curves. Fig-
ure 6 is an example of a polytope which cannot be cut
using ray sweeps, specifically because of the bounded
length requirement. Without this requirement, any
polytope for which all faces are entirely externally visi-
ble could be carved. We use this more restrictive model
because it is more representative of how an actual ma-
chine could be used to get flat faces.

Given a (triangulated) polytope P, we determine if
there is a set of ray sweeps R such that, for any P-
containing set C' O P, the set C'\ (Nger R) has a con-
nected component (i.e., maximal connected open sub-
set) equal to int (P). If such a set of ray sweeps exists,
then we also will be able to output it.

As in subsection 2.2, since we only allow finitely many
sweeps of bounded length (and hence do not permit
space-filling curves), it suffices to ask if each facial tri-
angle can be cut independently. Thus, in this section,
we attempt to solve the following two-dimensional prob-
lem: Given a triangle T C R? on the plane, and a set
Br C R? which is the disjoint union of simple polygons,
is there a set of ray sweeps R inside the plane such that
T C Uper R and each R € R has R Nint (Br) = &7
If we can solve this 2D problem in time t(k), where k
is the number of vertices forming the polygons of Br,
then we can classify triangulated polytopes P that can
be carved using ray sweeps in time O(n - t(n)).

In fact, we show that sweeps of a special form suffice:
A linear ray sweep is one for which the endpoint a can
be linearly interpolated between two points, and the
interior point b is constant.
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Figure 7: An example of the angle sweep performed in
the proof of Theorem 5 around a vertex v. The events
are denoted with the red lines/rays, and the valid ray
sweeps are coloured.

3.2 2D Cuttable Regions

Compared to Section 2, our approach in this section is
reversed. Rather than directly checking if each triangle
can be carved, we first map out the carveable regions
along the plane containing the triangle, and then after-
wards we check if the triangle itself is contained within
those regions.

Theorem 5 Given a set B C R? which is the disjoint
union of simple polygons with a total of k vertices, there
is an O(k?logk) time algorithm that can find a set of
linear ray sweeps with total complexity O(k?), the union
of which is exactly the union of all rays R C R such that
RNint(B) =@.

Proof. For each vertex v of B, we compute a set of lin-
ear ray sweeps A,, each of which passes through v, and
none of which intersect int (B). At a high level, this al-
gorithm rotates a line passing through v, and maintains
the maximal rays in both directions through the line (if
any) that include v and do not intersect int (B).

For the vertex v in B, in order to compute A,, we
perform an angle sweep around v, where we rotate a
line that at all times passes through v. The events of
our angle sweep are the set of other vertices in B. Com-
pute the ray starting from v through every other vertex
in B, and sort all other vertices in B by the angles of
those rays (with an arbitrary branch cut). The other
vertices form the events of our angle sweep. Now, per-
form an angle sweep that continuously sweeps a line [,
while maintaining a data structure containing the order
of all edge interiors in B (i.e., edges without their end-
points) intersected crossed by I, along with their order
relative to v along [. Any standard binary search tree
suffices for this purpose. Note that the wording crossed
implies that it is okay for [ to intersect an edge interior
to which it is parallel. Between two events, we check if
along [ there is a ray from v to infinity that does not
intersect any edge interiors in B (i.e., we check if v is
either the first or last element along [ according to our

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 8: An example of a pentagon that cannot be
cut with ray sweeps for a given set of obstacles. The
bordering linear ray sweeps are shown.

data structure). If so, we have found a linear ray sweep
between these two events. Extend the ray backwards to
the first/last element along ! (depending on the direc-
tion) at both events. The linear ray sweep then linearly
interpolates between those two extended rays, using v
as a pivot point. See Figure 7 for an illustration.

To show the correctness of this algorithm, first ob-
serve that any ray passing through a vertex of B is con-
tained in one of the linear ray sweeps. Then, we claim
that any valid ray V* not intersecting a vertex of B can
be cut using rays which intersect at least one vertex of
B. To see this, let V. C V* be a ray with endpoint
p € V*, an arbitrary point cut by V*. Consider rotat-
ing V around p until it hits a vertex (possibly many) of
B, call this new ray V’. Observe that V' intersects a
vertex of B as desired, and still contains p. Since p was
an arbitrary point of V*, the claim follows. Hence, our
algorithm produces linear ray sweeps that together cut
all rays not intersecting B.

Since there are k vertices and each angle sweep takes
O(klogk) time both to sort and to perform, this algo-
rithm runs in O(k? log k) time in total. O

3.3 Decision Algorithm

Theorem 6 Let B be a set of interior-disjoint simple
polygons in R? with a total of k vertices, let T be a
triangle in R%. Then, in O(k*) time, we can check if
there is a set of ray sweeps R such that T C UrerR
so that each ray sweep R € R has RNint(B) = @. If
there s, then we can also output it in the same time
complezity.

Proof. Apply Theorem 5 to get a set of O(k?) lin-
ear ray sweeps whose union is equal to the set of all
area that can be carved via rays that do not intersect
int (B). Take the arrangement of all lines containing
each ray or line segment forming the boundary of each
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ray sweep. This arrangement can be computed as a
doubly-connected edge list in O(k*) time using a stan-
dard incremental construction [7, Theorem 8.6].

For each edge in the graph formed by the arrange-
ment, we include information about which ray sweep
boundaries contain this edge. Then, we can traverse
the cells of the arrangement with a depth-first search,
while maintaining the current set of regions in which
the current cell is contained, updating as we traverse
each edge. We record, for each cell, whether or not it
is part of any region. In this way, we obtain informa-
tion about which cells are included in the union of the
regions in O(k?*) time (linear in the complexity of the
arrangement).

Finally, consider each cell of the arrangement. Check
if the cell intersects T'. If so, check if it is marked as
being in the interior of at least one linear ray sweep that
can be carved. If it is not, then T cannot be carved. If
we determine that all cells intersecting T' can be carved,
then 7T itself can also be carved. The time complexity
to check if each cell intersects T is also O(k*), and hence
the total time complexity of this algorithm is O(k?), as
desired. g

Corollary 7 Let P be a triangulated polytope with n
faces. Then, there is an algorithm running in O(n®)
time which can determine if P can be carved with ray
sweeps. Moreover, if it can, then the algorithm can out-
put a set of linear ray sweeps carving P.

Proof. Consider each of the facial triangle T' of P sep-
arately. Let Lp be the plane containing 7', and com-
pute the set of disjoint open polygonal regions By =
Ly Nint (P). If Br is empty, then T can be cut with
a single ray sweep. If Bp is non-empty, apply Theo-
rem 6 to determine if 7" can be cut with ray sweeps.
Maintain a list of ray sweeps used, to be output if all
triangles can be cut with ray sweeps. There are n facial
triangles, hence this algorithm runs in O(n®) time. [

4 Conclusion

In this paper we discussed two models (half-planes and
ray sweeps) of carving three-dimensional polytopes. We
focused on the decision variant of each, while retaining
the ability to generate a list of cuts when the input poly-
topes are carveable. Interestingly, even when a polytope
P is not carveable our algorithms can all be modified to
find a minimal carveable polytope that contains P. This
could be quite useful in real-world applications, where
a small number of additional cuts could be made using
a more specialized tool.

There are several natural resulting open questions
from our work:

e Is there a deterministic algorithm for half-plane

carving running in subquadratic time?
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e Is there a faster algorithm for 2D ray sweep carv-
ing that makes use of the triangles to be carved
directly?

e Are there efficient algorithms for optimization vari-
ants of our problems? Either minimizing total
length of cuts or minimizing the number of cuts.
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Improved upper bounds for the Heilbronn’s Problem for k-gons

Rishikesh Gajjala*

Abstract

The Heilbronn triangle problem asks for the placement
of n points in a unit square that maximizes the smallest
area of a triangle formed by any three of those points.
In 1972, Schmidt considered a natural generalization of
this problem. He asked for the placement of n points
in a unit square that maximizes the smallest area of
the convex hull formed by any four of those points. He
showed a lower bound of Q(n~3/2), which was improved
to Q(n=3/2logn) by Leffman.

A trivial upper bound of 3/n could be obtained and
Schmidt asked if this can be improved asymptotically.
However, despite several efforts, no asymptotic improve-
ment over the trivial upper bound was known for the
last 50 years, and the problem started to get the tag of
being notoriously hard. Szemerédi posed the question
of whether one can, at least, improve the constant in
this trivial upper bound. In this work, we answer this
question by proving an upper bound of 2/n + o(1/n).
We also extend our results to any convex hulls formed
by k& > 4 points.

1 Introduction

Given a constant k > 3 and a set P = {Py, P»,..., P,}
of n > k points on the unit square [0, 1]?, let Ax(P)
be the area of the smallest convex hull among all con-
vex hulls determined by subsets of k£ points in P. The
supremum value of Ag(P) over all choices of P is de-
noted by Ag(n). The Heilbronn triangle problem asks
for the value of As(n).

The Heilbronn triangle problem is one of the funda-
mental problems in discrete geometry and discrepancy
theory and has a rich history. Paul Erdos proved that
Az(n) = Q (#) This was believed to be the upper
bound for some time until Komlds, Pintz and Szemerédi
[12] proved that

n2

Aa(n) = 0 (logn)

Over a series of works, the upper bounds were improved
by Roth [16, 17, 18, 19] and Schmidt [20]. The current
best-known upper bound is due to Komléds, Pintz and
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Szemerédi [11]
9cvlogn

This has been recently claimed to be improved by Co-
hen, Pohoata and Zakharov [7] to O (n=8/7~1/2000),

There has also been work on several variants of this
problem. Jiang, Li and Vitany [10] and Benevides, Hop-
pen, Lefmann and Odermann [4] studied the case in
which the points were randomly distributed. The prob-
lem was also explored in higher dimensions by placing
n points in d-dimensional unit cubes [0, 1]¢ instead of a
unit square [1, 2, 3, 6, 13, 15].

Schmidt asked about the value of Ag(n) and proved
that Ag4(n) = Q(15) [20]. Bertraln-Kretzberg,
Hofmeister and Lefmann generalized this result to k-
gons by proving that Ag(n) = Q (,}1) [5]. This was

nk—2

improved by Lefmann[14] to

Ay(n) = Q <W>

EE—

2  Our results

3
A trivial upper bound of Ay(n) < — can be obtained by

subdividing the unit square into squares of side length
3

\/> using the pigeonhole principle. However, despite
n

several efforts to improve this upper bound (asymptot-
ically) since it was posed in 1972, there has been no
progress! Szemerédi asked if at least the constants in
this upper bound can be improved [21]. In this work,
we answer this question by proving the following theo-
rem.

2 1
Theorem 1 Ay(n) < —+o ()
n n

We also generalize our result to general k-gons for any
constant k > 4.

k—2 1
Theorem 2 Ag(n) < ——+o0 ()
n n
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3 Convex quadrilaterals: Proof of Theorem 1

We solve a more general problem by having the points
on a unit rectangle (instead of a unit square). Given a
set P = {P,P,,...,P,} of n > 3 points on the unit
rectangle [0,d] x [0,d!] and k < n, let A’j(P) be the
minimum area of the convex hull determined by a set of
k points in P for any 0 < d < 1. The supremum value
of A’1,(P) over all choices of P is denoted by A} (n). It
is easy to see that by definition

Ag(n) < Ag(n)

For k = 4, when there are n points, in the argument to
obtain a trivial bound of A)(n) < 7 ve partition

the unit rectangle into at most (n — 1)/3 smaller rect-
angles. This would guarantee that there exists a small
rectangle containing at least 4 points. Naturally, one
can also extend this idea to make sure there are at most

n—1
smaller rectangles and force n’ > 4 points

n' —1
into one rectangle. This gives us a relation between
Al(n) and A)(n'), which is formalized in Observation
3.

Observation 3 For 4 <n’' <n,

n—1

Ay < | JlAﬁmn’)

n —1

Proof. Partition the unit area into a grid with

-1
-1 -1
n rectangles of area n . Since there
n' —1 n' —1
. n—1 n—1
are n points and < rectangles, by the
n' —1 n' —1

pigeonhole principle, one of the smaller rectangles (with
their boundary included) has at least n’ points. There-
fore, there always exists m’ points within an area at

-1
n—1
most { ; 1J . It now follows by a scaling argu-
n —
ment that there exist four points within an area at most
-1
n—1
Al (n'). O
Ee

When n' = 4, this gives the trivial bound of Aj(n) <
3
n—3
tuning the value of n’ to be 6. We start with finding

the exact value of A} (6).

~ 3/n as expected. We can do slightly better by

Observation 4 A/(6) =1/2

Proof. Let C be the centre of the rectangle [0,d] x
[0, d~!] and P be a set of any six points in [0, d] x[0,d~1].
Pick an arbitrary point P € P and extend the line seg-
ment PC into a line. The extended line PC' cuts the
rectangle [0,d] x [0,d 1] into two convex parts, and by

symmetry, both these parts have the same area, i.e.,
1/2. From the pigeonhole principle, at least 3 of the re-
maining 5 points lie on one side of the extended line PC'.
Therefore, 4 points (including P) exist, which are con-
tained in a convex shape whose area is 1/2. Therefore,
A (6) <1/2.

(0,d=1) (d,d™1)

(0,0.5d 1)@ @(d,0.5d71)

[ L]
(0,0) (d,0)
Figure 1: A}(6) > 1/2

It may be noted the bound of 1/2 is achieved in Figure
1. Therefore A/} (6) > 1/2 O

-1
1 -1 2.5
Corollary 5 Ay(n) < 5 {n 3 J < —

Proof. By substituting n’ = 6 in Observation 3 and
using Observation 4, we get

n—1]" 1ln=1"" 25
/ < l _ = <
O = IPNORH =

O

We will now extend the idea of Observation 4 to all
n of the form 2° + 2 for any s > 2, i.e., for all n of

such form, we prove Ay(n) < 5 in Theorem 8 using
n—

Observation 6 and Lemma 7.

Observation 6 For any point P in a convex polygon
C, there exists a line through P which partitions C' into
two halves of equal area.

Proof. Let A be the area of C. Pick any arbitrary line
L through P and let the areas of the convex polygons
on both of its sides of L be L; and Lo such that L; <
A/2 < Lg. By rotating the line by 180° around P, we
get Ly <1/2 < L;. Since Ly changes continuously as a
function of the angle of rotation €, by the intermediate
value theorem, it must have achieved 1/2 in between for
some 6. O

Lemma 7 If a convez polygon of area A has 2* - 3 + 2

points, then there is a convex polygon of area A/2 which
contains at least 2°=1 - B 4+ 2 points.
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Proof. Pick one of the 2¢ - 8 4 2 points arbitrarily, say
P. From Observation 6, there is a line L through P
cutting the polygon into two halves. Note that by the
pigeonhole principle, one of the halves would have at
least 2°=1 - 3 + 1 points. By including P in this region,
we get a convex polygon of area A/2, containing at least
2=1. 3 4+ 2 points. O

We first introduce some new notation. Given a set
Q ={Q1,Q2,...,Q,} of n > 3 points on an arbitrary
conver object C of unit area, let A$(Q) be the minimum
area of the convex hull determined by some & points in
Q. The supremum value of Ai (Q) over all choices of Q
is denoted by A¢(n). Let A} (n) denote the supremum
value of A¢(n) over all convex objects of unit area. It
is easy to see that by definition

Ap(n) < Ai(n) < Af(n)
Theorem 8 Ifn = 2°+2 for some integer s > 0, then

1 2
Ay(n) < A(n) € 5g =

n—2

Proof. Let Q = {Q1,Qx2,...,Qn} be a set of n points.
We will prove a stronger statement of

1

Ag(n) S 2571

Observation 9 For every i € [0,s — 1], there exists a
convex polygon of area at most 5 which has at least

257 + 2 points from Q.

Proof. We prove this by induction on i. When i = 0,

the claim is true by definition. Suppose there exists a

convex polygon of area at most 5 with at least 257742

points from @, then from Lemma 7, for ¢ < s — 1, there
1 .

WT with at

least 2°~(+1) 4+ 2 points from Q O

exists a convex polygon of area at most

By substituting i = s — 1 in Observation 9, Theorem 8
follows. 0

One may note that this would give an upper bound
of = 2/n for many arbitrarily large n of the form 2° + 2.
However, there are also several arbitrarily large n of the
form, say, 2° + 1, for which this bound is not useful. We
fix this using Observation 3.

2 1
Corollary 10 Ay(n) < —+o (>
n n

Proof. For every n, there exists some ¢ such that

27l L o< n <242

Let n/ = 21951 4+ 2. From Theorem 8,

2 2
A/ /<
4(n)*n’—2 n' —1
n—1 >n—1 n—n'
n —1 n —1 —n -1
From Observation 3,
A (n) < AL () n—1 *1< 2 /-1 2
4 =1 n —1 “n =1 n—-n n-—n
2n’ 2 1
= — = — O —_—
n+n(nfn’) n+ <n1‘5>
O

(0,d=1) (0.5d,d~1) (d,d=1)

(0,0.5d 1@ (0.5d,0.5d" 1)@ @(d,0.5d71)

@ —@ L
(0,0) (0.5d,0) (d,0)

Figure 2: A}(9) > 1/4

From Figure 2, it is easy to see that A4(9) > 1/4.
We conjecture that the other direction is also true, i.e.,
Ny(9) < 1/4

Conjecture 1 A}(9)=1/4

If true, Conjecture 1 would directly imply that
A4 (’I’L) S

9. We also note that finding the exact values of Ag(n)
is of independent interest and has been well studied for
k=318,9, 22

One may note that our analysis will extend to gen-
eral convex figures with unit area (instead of just unit

squares), i.e.,
2 1
Al (n) < ~to (n>

5 from Observation 3 by picking n’ to be

4 Convex k-gons: Proof of Theorem 2

In this section, we extend our proofs for k£ = 4 to give
upper bounds on Ag(n) for any constant k.

Proposition 11 (Analogue of Observation 3) For
n' <mn,

n—1
n —1

agm < | 274 ago)
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Proof. The proof of Proposition 11 directly extends
from Observation 3. d

Theorem 12 (Analogue of Theorem 8) If n =
25 (k) — 25%1 + 2 for some integer s > 0, then

k—2

1
< A/ < —
Ag(n) < Al(n) < % n_2

Proof. Let Q@ = {Q1,Q2,...,Qn} be a set of n points.
We will prove a stronger statement of

1
Ajl(n) < 9
Observation 13 For every i € [0,s], there exists a

convez polygon of area at most 5 with at least 25~ (k) —

25t1=% L 9 points from Q.

Proof. We prove this by induction on i. When i = 0,
the claim is true by definition. Suppose there exists
a convex polygon of area at most 5 with at least

2574 (k) — 25174+ 2 points from Q, then from Lemma 7,
for i < s, there exists a convex polygon of area at most

sy with at least 250+ (k) — 25F1=(+1) 4 9 points
from Q. O

By substituting ¢ = s in Observation 13, Theorem 12
follows. U

-2 1
Corollary 14 Ag(n) < kT +o (n)

Proof. For every n, there exists some ¢ such that
271(k) =2 2 < n < 24(k) — 20T 42

Let n/ = 2[0-5%1 (k) — 210-51141 1 9 From Theorem 12,

k-2 k-2

n—-2 n -1

n—1 >n71 1>nfn’
n —1 n' —1 —n -1

Aj(n') <

From Proposition 11,

k—2 o' —1 k-2

n—n'

Ajn) < AW)["”JI <

n —1

:(1+"/).(k;_2):k;2+0(ni5>

O

n—1 n—n'

1

. / — = —
Conjecture 2 A} (a(k—1)) 2(a—1)

fora<k-1

1
One can prove that A} (a(k—1)) > a1 by placing

2(a
the points in the corners of a ax (k— 1() grid. We conjec-
ture that this is, in fact, the optimal placement. When
« = 2, this is indeed true by Lemma 7. Conjecture 1
is a special case of Conjecture 2 when k = 4. If true,
Conjecture 2 would imply an upper bound of ~ k/(2n)
One may notice that Conjecture 2 can not be ex-
tended to a < k—1, as at least k points become collinear
in that case.
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The exact balanced upper chromatic number of the n-cube over ¢ elements *

Gabriela Araujo-Pardof

Amanda Montejanol

Abstract

We consider colorings of the cube C}" defined as the set
of lattice points in [0, — 1]”. The geometric lines of
this cube are all the subsets of ¢ collinear points; these
are the lines typically used in multidimensional tic-tac-
toe. Given a coloring, a geometric line is rainbow if all
its points have different colors. The coloring is balanced
if the color class sizes differ in at most one. In this
paper, we determine the exact value of the balanced up-
per chromatic number of C}', for any positive integers
n and t > 4n — 2. That is, we find the largest integer
k for which there is a balanced k-coloring of C}* with-
out rainbow geometric lines. This problem is related
to the impossibility of the existence of a rainbow Ram-
sey counterpart of the famous Hales—Jewett theorem in
Ramsey theory.

1 Introduction

The n-cube on t elements, denoted by C}’, is the set
of lattice points with integer coordinates in the interval
[0,¢t — 1]. The geometric lines of this cube are all the
subsets of ¢ collinear points. They satisfy that, for each
0 < i < t—1, the i*" coordinates of the ¢ points are either
all equal or all different. These correspond to the lines
typically used in multidimensional tic-tac-toe games [6].
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We consider colorings of the points of C}'. Given a col-
oring, we say that a geometric line is rainbow if its ¢
points are colored with ¢ different colors. A coloring is
balanced if each color is used almost the same number
of times, more precisely, if all color class sizes differ by
at most one. (When the color classes are exactly the
same size, these colorings are also called equinumerous
[19].) A coloring is rainbow-free if none of its geometric
lines are rainbow. The largest integer & for which there
is a balanced rainbow-free k-coloring of C} is called the
balanced upper chromatic number of C}*. In this paper,
we determine the balanced upper chromatic number of
7, for every n > 2 and every t > 4n — 2.

To place this problem in a general context, we look
back in history. Starting in the 1930s, Paul Erdos and
George Szekeres [13] popularized what is now known
as Ramsey theory [15]. This theory is based on Ram-
sey’s idea that any sufficiently large structure contains
a regular substructure [24] or, in the words of Theodore
Motzkin, “complete disorder is impossible” [23]. An in-
teresting branch of this area is what is known in the lit-
erature as rainbow or anti Ramsey theory (see [9, 10, 12]
and many other references cited in [19]), which studies
the existence of special rainbow (totally multicolored)
subsets, provided that the color ground set is sufficiently
large and that all colors are well represented. In con-
trast, Ramsey theory (in the context of colorings) stud-
ies the existence of special monochromatic (one color)
subsets in colorings of large enough sets.

Many results in Ramsey theory have a rainbow Ram-
sey version. For example, van der Waerden’s theorem
[25, 26] states that, for n large enough, any k-coloring
of the integers {1,2,3,...,n} contains a monochromatic
arithmetic progression of a given length ¢. The rainbow
Ramsey versions of this result usually impose the con-
dition that each color appears with a minimum density.
The equinumerous version for 3-term arithmetic pro-
gressions and 3 colors was proved in [20]. This result
was originally conjectured in [19], where they explore
other rainbow variants. In particular, they propose this
interesting problem: for fixed ¢ > 3, find the minimum
number of colors k such that, for every n, any balanced
k-coloring of the set {1,2,...,kn} has a rainbow arith-
metic progression of length ¢. This is similar to the line
of work of this paper (see more below).

A deviation of this trend occurs when looking at the
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famous Hales-Jewett theorem [6, 16] (a generalization
of van der Waerden’s theorem) that establishes the ex-
istence of monochromatic geometric lines for any k-
coloring of the cube C}* and n large enough. (This the-
orem is actually stronger guaranteeing the existence of
a monochromatic combinatorial line. The set of combi-
natorial lines is a subset of the set of geometric lines as
defined above, see Section 1.1 or [6] for a precise defini-
tion.) The rainbow Ramsey version of this result would
state that, given k and t (k > t), any k-coloring of C}*
contains a rainbow geometric line, for any n suficiently
large. However, this has been disproved even for bal-
anced colorings [19, 22] (see the note after Inequality
(2) in Section 1.2). Given this impossibility, a natural
direction is to investigate how large the number of colors
k needs to be in order to guarantee a rainbow geometric
line in any balanced k-coloring of C}*. This threshold is
settled in this paper for any n and t > 4n — 2. (Note
that as long as the number of colors in a balanced color-
ing is larger than the balanced upper chromatic number
of C7, the existence of a rainbow geometric line is guar-
anteed.)

The balanced upper chromatic number has been stud-
ied for cyclic projective planes, projective spaces, for
the desarguesian projective planes, and for the cube
[4, 8, 22]. A similar parameter has been studied in the
setting of hypergraphs for general (not necessarily bal-
anced) colorings [3, 5, 27] and for mixed colorings [21].
Similar approaches involving arithmetic structures are
handled in [1, 11, 14, 18].

1.1 The n-cube and its geometric lines

We consider the n-cube overt elements, denoted by C7',
defined as the set of points (ordered n-tuples) on the set
{0,1,...,t —1}. That is,

Cy ={x=(r1,22,...,2pn) : 0< 0, <t —1,m; € Z}.
We typically use “bold fonts” to represent the points
x of CJ' as above. A geometric line in the n-cube C}'
consists of exactly t collinear points xg, X1, X2, ... X1
of Cf'. Formally, a set of ¢ distinct points of C}' is a
geometric line if there is an order of the points, such
that when we write their coordinates in the following
array

X0 2(330,1’ Z0,2, Zo,j, ZTo,n—1, xo,n)
x1  =(211, T12, Ty, Tin—1, Tin)
X2 =($2,1, x22, x2,5, L2 n—1, xZ,n)
Xt—1 = (xt—l,laxt—l,% cee L1455 - - It—l,n—lvxt—l,n)

each of the n columns satisfies one of the following con-
ditions:

(a) The entries are all equal to some fixed value a €

{0,1,...,t—1}.
(b) The entries order
0,1,...,t—1.

appear in  increasing

(c) The entries appear in decreasing order ¢t — 1,¢t —
2,...,1,0.

(The lines satisfying only conditions (a) and (b) are
called combinatorial lines). Hence, each line in C}
can be identified with a vector (l1,l2,...,l,), where
the entries correspond to the types, (a), (b) or (c),
of each column. That is, for every 1 < i < n,
l; € {b,c,0,1,2,...;t — 1}. Note that columns of
type (a) are indicated by the actual fixed value [;
to be used. For example, the line L with a vector
(21,0,37,6,b,¢,6,34,2,10) is identified as the following
line in C}9.

xo = (21,0, 37,6,0, 40,6, 34, 2, 10)
x; = (21,1, 37,6,1, 39,6, 34,2, 10)
x> = (21,2, 37,6,2, 386,342, 10)

x3s = (21, 38, 37, 6, 38, 2, 6, 34, 2, 10)

x39 = (21,39, 37, 6,39, 1, 6, 34, 2, 10)
x40 = (21,40, 37, 6, 40, 0, 6, 34, 2, 10)

It is important to observe that there must be at least
one column of type (b) or (¢) so that the ¢ points are
different. By convention, to avoid describing the same
line in two different ways, we always assume that the
first column of type (b) or (c) must be of type (b). The
set of geometric lines of C}* is denoted by £(C{"). Since
each geometric line is contained in a straight line in R",
two distinct points in C}* belong to at most one geo-
metric line, and two different geometric lines intersect
in at most one point. The number of geometric lines is
known to be

() = )

as shown in [6]. Note that this fact can easily be
seen using our description of the geometric lines above.
There are (t + 2)" vectors (l1,la,...,1,) with entries in
{b,¢,0,1,2,...,t =1} and " of them have all entries in
{0,1,2,...,t — 1}. We divide by 2 because in half of
these (¢t +2)™ — ™ vectors (having at least one entry in
{b,c}) the first entry in {b,c} is b and in the other half
itise.
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1.2 The problem and main result

We consider the following coloring problem. Let H be a
hypergraph whose hyperedges have at least two vertices.
The balanced upper chromatic number of H, denoted by
X, (H), is defined as the largest integer k for which there
is a balanced k-coloring of the vertices of H without
rainbow edges [4].

In the rest of the paper, we associate the n-cube over
t elements to the hypergraph whose set of vertices is C}"
and set of hyperedges is £(C}'). In order to simplify
the exposition, we abuse the notation refering to this
t-uniform hypergraph simply as C}* and to its balanced
upper chromatic number as X, (C*). Our goal is to de-
termine ¥, (C}') for any positive integer n and t large
enough (with respect to n).

As CT is a single point, we consider ¢t > 2. Observe
that any two points in the cube C§ are in a line. Then,
for any positive integer n, X, (C%) = 1. In general, if we
have fewer colors than points on a line, then no line is
rainbow. Hence, X,(C}') > ¢t — 1. The nontrivial lower
bound

wenz(3) @)

was obtained in [22] for any even ¢ > 4. Note that
this implies that given k > ¢, for any sufficiently large
n (namely, any n such that (¢/2)" > k) there are bal-
anced k-colorings of C}* without rainbow lines, showing
the impossibility of the rainbow Ramsey version of the
Hales-Jewett theorem stated in the introduction.

On the other hand, assigning different colors to all
points generates a t™-coloring in which all lines are rain-
bow. This gives the trivial upper bound %, (C}) <
t™ — 1. To avoid rainbow lines, we need to have at least
two points of the same color in each line. In this case,
we say that the color blocks the line. In particular, any
coloring with at most [£L(C}*)| — 1 color classes of size
two and all other classes (if any) of size one would fail
to block all the lines. Provided that ¢t™ > 2|L(C}")|, the
smallest of such colorings has t" — |£(C}")| + 1 colors
and thus

Xo(CF) < t" = [L(C)]. (3)

This implies the following upper bound.

Proposition 1 Let n and t be positive integers such

2
that t > . Then
- y2-1

3t — (t + 2)"

< (O <
Xb(ct ) > 9

Proof. This is a direct application of Identity (1) and
Inequality (3), noting that the former holds provided
that t™ > 2|L(C}")| = (t +2)™ — t", which is equivalent

tot > . O
< e 1
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Surprisingly, this upper bound is best possible for ¢
large enough as shown by our main result.

Theorem 2 For integers n > 2 and t > 4n — 2, the
balanced upper chromatic number of C{* is

3t — (t + 2)"

Xp(Cy') = D)

We prove this theorem in Section 2 and finish the
paper with a series of remarks and open questions in
Section 3.

2 Proof of Theorem 2

In order to prove Theorem 2, we reach the upper
bound in Proposition 1 by providing an explicit bal-
anced (W)—coloring of C}* with no rainbow lines,
for every n > 2 and t > 4n — 2. As detailed in Sec-
tion 2.4, this is equivalent to proving the existence of
what we call a double-matching of C}', which could
be intuitively described as a “disjoint” selection of two
points per line. Hence, one could also refer to a double-
matching as a double-covering, a double-transversal, or
a double-SDR (a “double” System of Distinct Represen-
tatives). To complete this task, we use an auxiliary in-
jective function defined in Section 2.1 and heavily make
use of the symmetry of the lines within the n-cube as de-
scribed in Section 2.2. The double-matching is provided
in Section 2.3, which includes the core of the proof.

2.1 An injective function

Let m and k be integers with 0 < k < 2(m —1). The
Hall’s Marriage Theorem [17] guarantees the existence
of an injective function

P <{0,1,2,...,m1}) . ({0,1,2,...,m1}>

’ k kE+1
such that, for any S < {0,1,2,...,m — 1} with
k elements, it holds that S C gmx(S). An ex-
plicit such function g, was given in [2].  This
function, adapted to our setting, can be de-
fined as follows. Given S = {s1,82,...,8k} C
{0,1,2,...,m—1} where s3 <sg<---<8g, let
so=-1, r = min{s; —2i:7€{0,1,2,...,k}}, and

¢(S) = max{i € {0,1,2,...,k} : s; — 20 = r}, the
largest of the subindices for which s; — 2i is as small
as possible. Then g, x(S) = S U{l + sg4(s)}. Note
that when k = 0, we have that S = ), ¢(S) = 0, and

2.2 Symmetric pairs and equivalence classes

Let t > 2 and 0 < m < t — 1 be integers. Let
m=t—1—m={m,t —1—m}. We say that m and
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t — 1 —m are symmetric and refer to m as a symmetric
pair. Further, we write m to refer to the smallest ele-
ment in the pair m. It is important to note that when
tis odd and m = (t —1)/2, we have that m =t —1—m
and so ™ consists of a single element. For convenience,
we still call (¢t —1)/2 a symmetric pair observing that
it is actually not used later in the proof when an actual
pair of points is selected.

We partition the set of points C}' into equivalence
classes. We say that two points (z1,xs,...,2,) and
(y1,Y2,-..,Yn) are equivalent if ; = y; or x;+y; = t—1
for all 1 < ¢ < n, that is, if each pair of correspond-
ing entries is a symmetric pair. The equivalence class
containing the point x = (1, x3,...,2,) is denoted by
X={(y1,y2,---,Yn) 1 yi €T; for all 1 <i < n}.

Note that two points in the same line are equivalent
if and only if they are symmetric around the center of
the line. In other words, a line and an equivalence class
either do not intersect, intersect only at the center point
of the line (which could happen only when m is odd),
or intersect at exactly two points. For simplicity, if the
elements of A are listed, we avoid the braces when ap-
plying any functions to A. For example, we typically
write ¢(3,4) instead of ¢({3,4}).

2.3 A double-matching

Let t > 4n — 2 be an integer. In what follows, we asso-
ciate each line in £(C}*) with two of its points in such a
way that each point is associated with at most one line.
We refer to this association as a double-matching for
C}'. Moreover, our double-matching satisfies that the
two points associated with each line are equivalent and
different (i.e., they are not the center of the line). We
present this matching as a function f : £ (C}") — (02‘) ,
where f(L) C L and f(L)N f(L') = 0 for any two dis-
tinct lines L, L’ € L(C}).

For a given line L € L(C}) with vector
<l1,lg,...,ln>, let Ay = {lz 2l; € {071,...7t— 1}} and
Ap={l;:l; € A}, Then A C {0,1,...,[L] — 1},
and, setting k = \XLL we have 0 < kK < n—-1 <
(£ —1) < 1([4] —1). Observe that selecting a point
Xy € L means fixing an index w € [0,¢ — 1] such that
the it entry of x,, satisfies that

l; ifliEAL,
Toi = w if I; = b,
t—1—w ifl;=c.

The choice of w will be done by means of the extra
element assigned to the set Ap, = {s1,89,...,s;} with
51 < S9 < .-+ < S by the injective function 9r) ke
More precisely, we define

f(L) =LNx, (4)

where R

l; if l; € 14[‘7

T; = .

1+S¢(2L) lfli¢AL.
__Then the set of different coordinates of x is equal to
AL U{l+s,,)} =9: x(AL). This means, in particu-
lar, that 1+ s, 3, € {0,1,...,[£] =1} \ A, and that
z; € {0,1,...,[£] — 1} for all 1 < i < n. Hence, if the
point y is one of the two points matched to L, then its
entries have the form

l; ile'G‘AL7
yi = 1 +S¢(A\L) if l; = b, (5)
t=1-(1+s,5,) ifli=c
forall1 <i<mn,or
l; ifl; € Ag,
yi=qt=1-(14s,5,) ifl=b (6)
1+S¢(A\L) ifli:C,

for all 1 < ¢ < n. In the proof of Theorem 3, we check
that 1+ 5,7 ) < (t — 1)/2, showing that these two
points are indeed different.

Example:

Following up the geometric line L € L(C}?) defined
in Section 1.1, with vector (21,b,37,6,b, ¢, 6,34,2,10),

we have that A, = {21,37,6,34,2,10} and
A, = {21,37,6,34,2,10} = {2.3,6,10,19} be-

cause 21 = 19, 37 = 3, 6 = 34 = 6, 2 = 2 and 10 = 10.
Applying the function ¢ in Section 2.1 to S = Ap, we
have sg = —1, s1 =2, s =3, s3 =6, s4 = 10, s5 = 19,
r=min{s; —2i:0 < ¢ <5} =min{-1,0,-1,0,2,9} =
—1, and the maximum of the subindices achiev-
ing r is ¢(S) = ¢(Ar) = max{0,2} = 2. This
yields x=(19,1+ s9,3,6,1+ s2,1+ 52,6,6,2,10) =
(19,4,3,6,4,4,6,6,2,10), and  f(L) -
L N % = {(21,4,37,6,4,36,6,34,2, 10),
(21,36,37,6,36,4,6,34,2,10)} = {x4,X36}-

Theorem 3 The function f is a double-matching of C}'
for any integers n > 2 and t > 4n — 2.

Proof. Using the same notation as the one used above
for the definition of the function f, we first argue that f
is well-defined. Although, it is clear (by definition) that
the points given by (5) and (6) are on the line L, we need
to verify that these two points are actually different.
This is clear when 1+ s, 7, # t—1— (1+ qu(KL))'
But these two values could potentially be equal when ¢
is odd and 1 + S4(AL) = % We note that this can-
not happen due to how s S(Ay) is chosen. Indeed, since
gb(ﬁL) <k<n-1and Sg(AL) 2¢(/TL) < s; — 2i for
all 0 < i <k, then (using ¢ = 0) we have

Spiy S20(A) —1<2%k—1<2n—1)—1=2n-3.
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Moreover, the condition t > 4n—2 for ¢ odd is equivalent
tot > 4n — 1 and thus
1+S¢(EL) §2n2§2<tzl> —2:¥ < %
We now check the two conditions f(L) C L
and f(L)Nf(L') =0 for any two distinct lines
L,L' € L(C}"). The first condition is guaranteed by
(4). To prove the second condition, suppose that
y € f(L)N f(L") for some point y = (y1,Y2,...,Yn) €
Cy and for some lines L, L' € L(C}) identified with
the vectors (ly,la,...,1,) and (I},15,... 1), respec-
tively. We prove that L = L’. Consider the set
B ={y;:1<i<n}andsay |B| =k+ 1. By definition
of f, we have that B = 9[%],16(20 = 9[51,k(2L’)~ Since
gri).k Is injective, then A\L = A\Lr. By definition of g,
we have that B = /TLU{IJrsd)(gL)} = EL/U{1+5¢(XU)}
and thus 1+S¢(§L) = 1+S¢(A\L’)' Let w = 1+s¢(2L) =
1+ S4(A,) and j be the smallest index ¢ such that
¥; = w. Note that whenever y; € {w,t — 1 — w}, we
have that I;,1; € {b,c}; and when y; ¢ {w,t — 1 — w},
we have that [;,1; € {0,1,2,...,¢ — 1}. More precisely,

yi if g € B\ {w},
li=li=qb ify =y,
C lfyZ:t—l—yJ

Therefore, L = L’ which concludes the proof. O

Figure 1 shows a visual example of this matching
when n = 3 and ¢t = 12. In this figure, the pairs of
red points on the same horizontal line are assigned to
that line; the pairs of green points on the same vertical
line are assigned to that line; and in general, the pairs of
points with the same color ¢ on a geometric line L and
in the same direction of a line with color ¢ indicated by
the key at the bottom of the figure are assigned to L.

2.4 Balanced colorings from double-matchings

The following lower bound for X, (C7*) follows from the
existence of double-matchings.

Theorem 4 For integers n > 2 and t > 4n — 2,

3t" — (t+2)"
—

Proof. We need to show that there is a balanced
(3t™ — (t+2)™)/2 coloring of C}* with no rainbow
lines. This means that each line must have at least
two points of the same color. Note that, by iden-
tity (1), we have (3t™ — (t +2)")/2 = |C}| — |[L(C})],
and the hypothesis t > 4n — 2 guarantees that
|Cy| = t™ > 3t™ — (t + 2)™ =2|L(C}")|. Because the col-
oring is balanced, |£(C}")| colors must be used twice and

Xo(CF) =
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Figure 1: A double-matching for C%,.

the remaining |C'| —2|L(C}")| colors must be used once.
In other words, our coloring must satisfy that each of
the |£(C}")| colors that appear twice blocks a geometric
line. To achieve this, we use the same color for the two
points assigned to each line in £(C}*) by the function f,
using different colors for different lines. The remaining
|CH| — | L£(C})| points use the |C}*| —|L(C')| colors that
appear once. O

3 Final remarks

Comparing the bounds for ¢ in Proposition 1 and The-
orem 4, for n > 2, we note that 2/(/2 — 1) < 4n — 2.
Indeed, n > 2 > 2/(4 — e) implies that

dn—2 4

e < =
n 1+

-
2n—1
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This together with the fact that (1 + 37)?""! < e,
gives

1 2n
1 4.
( +2n—1) <

Thus 515 < ¥/2—1 and so 2/(¥/2 —1) < 4n — 2.
Then the best range of ¢ for which we can guarantee
the identity in Theorem 2 is ¢ > 4n — 2. For integer
values of ¢ such that 2/({/2 — 1) < t < 4n — 2, there
is still a possibility that Theorem 2 holds but a dif-
ferent coloring needs to be found. For the remaining
values 3 < t < 2/({‘@ — 1) any coloring of C}* with
no rainbow geometric lines must use a color at least
three times. For every m > 2, consider the set of in-
tegers J,, := {[2/(¥/2—1)],...,4n — 3}. For instance,
Jo = {5} and J3 = {8,9}. In the plane and in the space
Theorem 2 holds for t > 6 and ¢ > 10, respectively. We
were able to extend the result for values of ¢ in Jo = {5}
when n = 2, and for values of ¢ in J5 = {8,9} for n = 3.

1000e
09000
00800 )
00000 |~
000N

Figure 2: A balanced 13-coloring C? with no rainbow
lines. We use the labels {1,2,...,13} to indicate the
colors, and the corresponding double matching is indi-
cated in red, blue, green, and yellow as shown by the
key.

Theorem 5 In the plane, X,(C?) = t> — 2t — 2 for any
t>5.

Proof. When t > 4n — 2 = 6, the balanced (t? —2t—2)-
coloring of C? with no rainbow lines is guaranteed by
Theorem 4. The balanced 13-coloring of C2 with no
rainbow geometric lines shown in Figure 2 extends the
lower bound in Theorem 4 to t = 5 when n = 2. O
Theorem 6 In the space, X,(C3) = t3 — 3t — 6t — 4
fort > 8.

Proof. When t > 4n — 2 = 10, the balanced (3 —
3t2 — 6t — 4)-coloring of C? with no rainbow lines is
guaranteed by Theorem 4. When ¢t = 8, we have that
t3 — 3t2 — 6t —4 = 268 and the upper bound in The-
orem 1 still applies, that is, ¥,(Cg) < 268. However,
the double matching in Theorem 3 does not exist. The
double-matching in Figure 3 generates a balanced 268-
coloring of C§ with no rainbow lines extending the lower
bound in Theorem 4 to t > 8 (we used this matching
to find one for ¢ = 9). In this matching there are only

t3 —2|L(C3)| = 3 — 2(3t> + 6t + 4) = 512 — 488 = 24
points that are not assigned to lines (uncolored in Fig-

ure 3). O
(N N N N N N N J
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Figure 3: A double-matching for C3. The hollow points
are a modification of the general construction for a
double-matching of Ct?’ when ¢ > 10.

We finish by conjecturing the following identity for
any dimension.

Conjecture 1 For integers n > 2 and t > (75171’ we
have

_ 3" — (t+2)"

w(Cr) =

The question of determining X, (Cy*) for 3 <t < 4n — 2
still remains open for higher dimensions and for
4 <t <7 in the space.
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Open Problems from CCCG 2024

Reymond Akpanya*

The following is a list of the problems presented during
the open problem session at the 36th annual Candian
Conference on Computational Geometry (CCCG), held
at Brock University from July 17th to July 20th, 2024.

This year, the open problem session was held on the
first day of the conference. While this is fairly typical for
CCCG, it not always the case. This year a few attendees
expressed that they thought it would be beneficial for
the community if this schedule became the standard
for future editions of CCCG. The authors of this docu-
ment agree. Having the open problem session early in
the program provides extra time for collaboration and
progress to occur organically before attendees have to
return home.

In this document, we include all progress (to the best
of our knowledge) on the presented problems which
was completed during CCCG. Further, courtesy of Erik
Demaine a CoAuthor server has been created to track
progress on these problems. Available (TBD)

Doming Polygons
Joseph O’Rourke
Smith College
jorourke@smith.edu

Figure 1: Examples of doming an equilateral triangle, a
square, and a regular pentagon (left to right).[GAD"24]

Given a convex polygon P, does there exists a
convex polyhedron @ such that one face of Q is P
and the remaining faces of Q admit a partition by
congruent equilateral triangles. If such a polyhedron
Q exists for the polygon P, we say that the polygon
P can be domed, see Figure 1 for illustrations.

*RWTH Aachen University, Aachen, Germany.
akpanya@rwth-aachen.de
tBrock University, Saint Catharines, Canada. brivier@brocku.

reymond.

ca
fUniversity of Massachusetts Lowell, USA. frederick_stock@
student.uml.edu
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For all 3 < n < 12 with n # 7, we know that there
exists a convex n-gon that can be domed. From the
Gauss-Bonnet theorem, one can easily show there
exists no convex n-gon with n > 55 that can be
domed, hence we have an upper bound of n < 55.
With a more detailed analysis of curvature, one can
establish that there can be at most 11 vertices in the
dome, which, when combined with an analysis of
the degree of vertices in the base, a stronger bound
of n < 24 can be achieved. The questions posed are
the following.

1. Does there exist a convex 7-gon that can be
domed?

2. Does there exist a convex n-gon with n > 12
that can be domed?

3. Does there exist a non-equilateral triangle that
can be domed?
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Inside-Out-Dissections
Joseph O’Rourke
Smith College
jorourke@smith.edu

Given a polygon (polyhedron) P;, can we decom-
pose P into k pieces and then rearrange them by
only applying rotations and translations to the dif-
ferent pieces such that (1) the rearranged pieces
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A A

Figure 2: An inside-out-dissection of a triangle using four
partitions by Aaron Meyerowitz.[Mey14]

form a polygon (polyhedron) P, that is congruent
to P, and (2) the boundary of P, is composed of
internal cuts of the dissection of P;?

If we can, we say that P; can be inside-out-
dissected (Figures 2, 3, 4). The goal is to find
the minimum k for a class of polygon (polyhedron).
For example, any triangle can be done with k = 4
(Figure 2). Therefore, any n-gon can be triangu-
lated with n — 2 triangles and be naively inside-out-
dissected with k =4 - (n — 2). The questions posed
are the following.

1. Can the bound of 4 times the number of trian-
gles in the triangulation of P; be beaten?

2. Can every (or any) tetrahedron be inside-out-
dissected?

4

(a) (b)

Figure 3: Subdivision of a regular tetrahedron with edge
length 1 into 24 regular tetrahedra and 10 regular octahedra
with all edges having length %: This subdivision can be
used to construct an inside-out dissection of the initial
tetrahedron

Reversible hinged dissections [ADL20] are a simi-
lar concept. Here we are given two shapes and asked
if we can dissect one of them and reassemble the
pieces to form the other. There is an extra constraint
requiring that the two shapes are connected by a
continuous movement where pieces are connected
at vertices (hinges) and they are allowed to rotate
around such vertices. The “reversible” qualifier de-
scribes yet another constraint where the boundary

(a) (b)

Figure 4: Subdividing a square into a non-convex polygon
and 8 congruent isosceles triangles; This subdivision can
be exploited to create an inside out-dissection of the given
square.

of one shape must lie in the interior of the other.
Akiyama, Demaine and Langerman characterized
such dissections showing that they exist if the two
shapes are common nets of the same polyhedron.
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Contiguous Boundary Guarding of Art Galleries
Tom Shermer

Simon Fraser Univeristy

shermer@cs.sfu.ca

A paper presented at this year’s CCCG [KCHA24]
discussed the Contiguous Watchtower Problem. You
are given a terrain T (a 2D polygonal chain), the
goal is to find a placement for watchtowers to guard
the terrain. Watchtowers are vertical segments with
the bottom endpoint on the terrain. A watchtower
w guards a point p € T if p is visible to the top
endpoint of w; a straight line segment can be drawn
from p to the top endpoint without crossing T'. This
problem is called the Contiguous Watchtower Prob-
lem as there is an additional constraint: the watch-
towers can only guard a contiguous set of points
along T. This inspired the following art gallery
variant:

Given a simple polygon in the plane, we wish to
guard its boundary (its interior is not necessarily
covered) using the standard formulation of the art
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gallery problem, with one exception: A guard is
only allowed to guard one contiguous region of the
boundary (see Figure 5). So for example, Note

(a) (b)

Figure 5: A polygon P representing an art gallery to be
guarded. A guard positioned at the small solid black disc
either guards the portion of the boundary of P highlighted
in (a), or the one highlighted in (b) (and not both).If the
polygon is thin enough, i.e., if € is small enough, then it is
impossible to guard more than 2 full segments (except near
the bottom vertices), yielding a linear lower bound on the
number of guards. This example was presented by Ahmad
Biniaz during a coffee break at CCCG.

that hardness proofs for typical art gallery variants
require guards to guard several disconnected regions
of a polygonal domain, so maybe this is in P? The
questions posed are the following.

1. What are the combinatorial bounds on the
minimum number of guards in the worst case?

2. Does there exists a polynomial time algorithm
that computes the minimum number of guards
and their positions?
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Max-Clique of Grounded Line Segments
Debajyoti Mondal

University of Saskatchewan
d.mondal@usask.ca

A grounded string graph is an intersection graph
of a set of polygonal lines (or strings), where the
polylines lie above a common horizontal line ¢ and
have exactly one endpoint on ¢. Given an intersec-
tion representation of such a graph, a maximum
independent set can be computed in polynomial
time [KMPV17] but finding a maximum clique is
known to be APX-hard [KMMN22]. The hardness
result holds even when each string is restricted to
be a polyline with 1 bend. A natural problem in
this context is to determine the time complexity
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of finding a maximum clique in grounded segment
representations, i.e., when the strings are line seg-
ments [KMMN22]. Since a unit-segment graph is
a proper subclass of the class of segment graphs
[CJ17], it may be interesting to first tackle the prob-
lem for unit-segment graphs irrespective of whether
the segments are grounded or not. We thus pose
the following open question.

Figure 6: (a) Six unit segments grounded on ¢ and
labeled a, ..., f. (b) The corresponding intersection graph,
called the unit-segment graph. In this example, the only
maximum clique is {c,d, e} (highlighted in yellow).

Open Question: Does there exist a polynomial
time algorithm to find a maximum clique in a
(grounded) unit-segment graph (see Figure 6)?
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Independent Set for Outer-String Graphs in

a Polygon With Holes

Robert Barish

Institute of Medical Science, University of Tokyo
rdbarish@gmail.com

Recall that an outerstring graph G is a geomet-
ric intersection graph of Jordan curves, Ji, ..., J,,
where one point on each curve falls along the bound-
ary of the disk and all other points are internal to
or fall along the boundary of the disk. Here, in the
special case where G is an intersection graph of n
chords in a circle, assuming the real RAM model,
and provided an intersection model (or diagram)
for the chords, we know that an O(n?) algorithm
exists for the problem of finding a Maximum Inde-
pendent Set (MIS) of vertices. Specifically, an O(n?)
algorithm was originally given by [Gav73], and this
was subsequently improved to have an O(n?) time
complexity [AIM91],[GT94],[Sup87].

Much more recently, letting G be an outerstring
graph admitting an intersection model where all
Jordan curves are chains of straight-line segments
connected at their endpoints, and where there are a
total of r straight line segments for all curves (i.e.,
where 7 is the total number of straight-line segments
in the intersection model), [KMPV17] showed that
an O(r?) algorithm exists for finding a maximum
independent set of vertices for G.

Provided this context, let’s now consider a vari-
ation on the notion of outerstring graphs in which
we require the existence of an intersection model
where: (i) all points along the intersecting Jordan
curves are internal to or fall along the boundary of
a simple polygon with holes P (note that the curves
are not permitted to enter the holes); (ii) all Jor-
dan curves are segmented curves corresponding to
chains of straight-line segments connected at their
endpoints; (iii) all Jordan curves have a point along
either the outer boundary of P or the boundary
of a hole in P. Letting h be the number of holes
in P, perhaps we can call such outerstring graphs
h-weak-outerstring graphs (Figuer 7).

b —d ()

| oG
a) (b)

(
Figure 7: (a) A model of a 2-weak-outerstring graph
G (with r = 19). (b) The corresponding G; the only
maximum independent set is {a, b, e, f} (shaded in grey).
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Question: Assuming the real RAM model and
letting G be an instance of an h-weak-outerstring
graph, is there a Fixed-Parameter Tractable (FPT)
algorithm for finding a maximum independent set
of vertices for G where the one or more parameters
depend on the number of holes h in an interesting
way? Briefly, what I mean here by “interesting” is
that we don’t simply count the number of Jordan
curves we need to “cut through” in the diagram to
draw connecting lines between the holes and the
outer boundary, reducing to the current problem
to the one [KMPV17] originally considered. We
can also pose the same question for the problem of
recognizing G as an h-weak-outerstring graph.
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Complexity of 2D Snake Cube Puzzles
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Alex Dang' Erik D. Demainef Kaylee Jif

Pitchayut Saengrungkongkaf

Abstract

Given a chain of HW cubes where each cube is marked
“turn 90°” or “go straight”, when can it fold into a
1 x H x W rectangular box? We prove several variants
of this (still) open problem NP-hard: (1) allowing some
cubes to be wildcard (can turn or go straight); (2) allow-
ing a larger box with empty spaces (simplifying a proof
from CCCG 2022); (3) growing the box (and the number
of cubes) to 2x H x W (improving a prior 3D result from
height 8 to 2); (4) with triangular prisms rather than
cubes, each specified as going straight, turning 60°, or
turning 120°; and (5) allowing the cubes to be encoded
implicitly to compress exponentially large repetitions.

1 Introduction

Snake Cube [1] is a physical puzzle consisting of
wooden unit cubes joined in a chain by an elastic string
running through the interior of each cube. For every
cube other than the first and last, the string constrains
the two neighboring cubes to be at opposite or adja-
cent faces of this cube, in other words, whether the
chain must continue straight or turn at a 90° angle.
In the various manufactured puzzles, the objective is to
re-arrange a chain of 27 cubes into a 3 x 3 x 3 box.

To generalize this puzzle, we ask: given a chain of
DHW cubes, where D, H,W are positive integers, is
it possible to rearrange the cubes to form a D x H x
W rectangular box? We call this problem D x H X
W SNAKE CUBE. Previous results on its complexity
include:

e Abel et al. [1] proved 8 x H x W SNAKE CUBE is
NP-complete by reduction from 3-PARTITION.

e Demaine et al. [2] proved 2D SNAKE CUBE PACK-
ING—deciding whether a chain of cubes can pack
(but not necessarily fill) a 1 x H x W rectangu-
lar box where all cubes are constrained to align
with the box—is NP-complete by reduction from

*Artificial first author to highlight that the other authors (in
alphabetical order) worked as an equal group. Please include all
authors (including this one) in your bibliography, and refer to the
authors as “MIT Hardness Group” (without “et al.”).
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32 Vassar St., Cambridge, MA 02139, USA, {nithidan,alexdang,
edemaine, kayleeji, psaeng } @mit.edu
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LINKED PLANAR 3SAT. This result also holds for
a closed chain [2].

Both [1] and [2] pose the (still) open problem of deter-
mining the complexity of 1 x H x W SNAKE CUBE:

Open Problem 1 (2D Snake Cube) Is 1 x H x W
SNAKE CUBE NP-hard?

1.1 Our Results

In this paper, we prove NP-hardness of several varia-
tions of Open Problem 1:

e In Section 4, we prove NP-completeness of 2D
SNAKE CUBE WITH WILDCARDS where at some
cubes there is a free choice between straight or turn.
This is motivated by a variant of the snake cube
puzzle where a slit cut into a cube allows the chain
to continue at a 90° or 180° angle.

We also give an alternative proof that 2D SNAKE
CUBE PACKING is NP-complete, simplifying [2].

e In Section 5, we prove that 2x H x W SNAKE CUBE
is NP-complete. This improves the result of Abel
et al. [1] from D =8 to D = 2.

e In Section 6, we prove NP-completeness of HEXAG-
ONAL 2D SNAKE CUBE PACKING: deciding
whether a chain of hexagonal prisms each specified
as going straight, turning 60°, or turning 120° can
be packed into a 60°, H x W parallelogram. Sim-
ilar to [2], we extend this result to closed chains.
One can view this as an improvement to [3] in that
angles can be restricted to be in {60°,120°}.

e In Section 7, we prove weak NP-hardness of 2D
SNAKE CUBE, allowing the chain of cubes to be
encoded to efficiently represent repeated sequences.

The first three results are reductions from NUMERI-
CAL 3D MATCHING following a similar framework de-
tailed in Section 3, while the last result is a reduction
from 2-PARTITION. We introduce both base problems
in Section 2.

Not all results are proven fully in this paper. All
omitted details can be found in the full version of the

paper.
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2 Preliminaries

We define our exact problems in mathematical terms.

A box is the D x H x W rectangular cuboid that the
cubes of the snake-cube puzzle must fit into. This box
can be visualized as a cubic grid where each cube oc-
cupies one space of the grid. A program is a length-k
string of instructions P = p;...pi, where each in-
struction is either the character T or S. The chain is the
corresponding sequence of adjacent cubes (cy,...,ck)
following the program such that each instruction p;
(where i € {2,...,k — 1}) constrains the angle between
the 3 cubes ¢;—1, ¢;, ¢;+1 to be 90° for p; = T (i.e., a turn)
and 180° for p; = S (i.e., a straight). A length-k seg-
ment refers to a length-k subchain where all cubes are
constrained to form a straight line (e.g., the subchain
following the instructions TSSST refers to a length-5 seg-
ment). If s is a sequence of instructions, let (s)* denote s
repeated k times (e.g., T(ST)? is equivalent to TSTSTST).
The input to all problems is the box and program. In
2D SNAKE CUBE WITH WILDCARDS, each instruction
may also be a third character * denoting that the angle
can be either 90° or 180°. The instructions in HEXAG-
ONAL 2D SNAKE CUBE PACKING use three different
characters introduced in Section 6.

2D SNAKE CUBE WITH WILDCARDS, 2 X H x W
SNAKE CUBE, and HEXAGONAL 2D SNAKE CUBE
PACKING are in NP, because verification only requires
checking all constraints, which takes linear time with
respect to the size of the box.

2.1 Reduction Base Problems

Given a multiset A = {a1,a2,...,a,} of positive inte-
gers, 2-Partition is the problem of deciding whether
there exists a partition of A into disjoint union A; LJ Ao
such that the sums of elements in A; and in Ay are
equal. This problem is known to be weakly NP-hard
when the number a;’s are encoded in binary (thus may
have exponential value) [4, Subsection A3.2].

For any given target sum ¢ and sequences (a;)f,
(b)), and (¢;)f,, each consisting of n posi-
tive integers, Numerical 3-Dimensional Matching
(N3DM) is a problem to decide whether there exist
permutations o and 7 of set {1,...,n} that satisfies
a; + bg(j) + ¢y = t for all . This problem is known
to be NP-hard even when the numbers are encoded in
unary [4, Subsection A3.2]. We refer to a solution to an
instance of N3DM as a matching.

Since we can transform an instance of N3DM by set-
ting af = a; +4X, b, = b +2X, ¢, = ¢; + X, and
t' = t+ 7X, for a large integer X (linear in t), the
following proposition holds.

Proposition 2 N3DM s NP-hard even when we as-
sume that a; € (0.5¢,0.6t), b; € (0.25¢,0.3t), and
¢; € (0.125¢,0.15t) for all1 <i < n.

3 Overview of Reductions from N3DM

The reductions in Sections 4, 5, and 6 all share a very
similar infrastructure, which we informally outline here.
In this overview, we let D = 1. We explain how to adapt
this framework to D = 2 in Section 5.

We reduce from the variant of N3DM in Proposi-
tion 2. Let (a;)"q, (b:)™ 4, (¢;)f_,, and ¢ be an instance
of N3DM. We choose the following parameters: the gap
width g = ©(n), the height of the block h = ©(n?), and
the width multiplier m = ©(n3).

The structure of the reduction is as follows. The di-
mensions of the box are Dx HXW = 1x(nh+(n+1)g) x
(mt + 4g). The numbers (a;)7, (bi)I—q, and (¢;),
are represented by block gadgets ((A;))" ¢, ((Bi))i1,
and ((C;))™,, which are instructions that can gener-
ate blocks (A;)_q, (B;)",, and (C;)"_; of dimensions
1 x hxma;, 1 x h xmb;, and 1 X h X mc;, respec-
tively. Blocks typically consist of h segments as shown
in Figure la, but details vary in different variants. In
the instructions, each block gadget will be separated by
a wiring gadget, a sequence of instructions that al-
lows connecting between two adjacent blocks no matter
where they are in the grid.

h|H
|
ma;
(a) A typical block
mai
A
h A Boy || Cra)
T g
As BU(Q) C"V(Q)
H
A, Bom)|| Cr(m)
\/
- = >

(b) The high-level structure of the reduction

Figure 1: The reduction

If a matching exists (i.e., there exist two permutations
o and 7 of {1,2,...,n} such that a; + by(;) + cr(i) =t
for all ), then (ignoring the wiring gadget) one can ar-
range the blocks into a perfect 1 x nh x mt rectangle
by aligning each triple of blocks A;, By (;), and Cr(;) to-
gether in the same row. Since our box is slightly larger
than 1 x nh x mt, we can place the blocks such that
there is a gap g between neighboring blocks and be-
tween each block and the boundary of the rectangular
box. The gap ¢ is chosen so there is sufficient space
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for a subchain following the wiring gadget to connect
all the blocks. Wires detour around blocks and do not
cross; the explicit algorithm will be given in Lemma 4.
Finally, depending on the variant, there may be addi-
tional instructions at the end of the program to fill in
the remaining space in the box. Figure 1b depicts the
overall reduction structure.

In the other direction, we also need to show that the
existence of a chain following the program forces the ex-
istence of matching, even if the block gadgets (A;), (B;),
and (C;) do not fold into perfectly aligned and evenly
spaced blocks (e.g., if part of a subchain following (B;)
may go into gaps between subchains following (A;)). In
the following subsection, we prove Lemma 3 that shows
the existence of a chain following the program necessi-
tates the existence of a matching, even if blocks do not
fold ideally.

3.1 Segment Packing Lemma

We view each block as h segments; for instance,
the block gadget (A;) specifies h consecutive ma;-
segments. Thus, we have 3nh segments, h of each length
Mmai,...,May, mby,...,mb,, mcy, ..., mc, to pack into
the box. This motivates the following “Segment Pack-
ing Lemma”.

Lemma 3 (Segment Packing Lemma) Let (a;)!,
(bi)_q, (ci)P—q, t be an instance of N3DM satisfying
the conditions in Proposition 2. Let m and h be positive
integers, and consider a 1 x H x W box where W > mt
and nh < H < m. Suppose there are 3nh segments of
3n types A1,..., A, B1,...., By, and Cy,...,Cy. If all
of the following are true, then there exists an N3DM
matching:

o W<m(t+1) and H <nh+ J5;

o for alll <i<n, all segments of type A;, B;, and
C; have lengths ma;, mb;, and mc;, respectively;

e there are exactly h segments of each type; and

® 10 two segments of the same type are more than h
rows vertically apart (note that since m > H, all
3nh segments must lie horizontally in the box.).

Proof. (Sketch) We call ma;-segments A-segments,
and analogously for B-segments and C-segments. From
constraints in Proposition 2, each row of the box must
be of one of the following four categories: (1) a good row,
which contains exactly one A-segment, one B-segment,
and one C-segment; (2) an A-bad row, which contains
no A-segment; (3) a B-bad row, which contains one A-
segment but contains no B-segment; and (4) a C-bad
row, which contains one A-segment, one B-segment, but
no C-segment. Let ngo0d, M4, np, and nc denote the
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number of good rows, A-bad rows, B-bad rows, and C-
bad rows, respectively. Due to the constraints of Propo-
sition 2 and W < m(t+ 1), we count the number of A-,
B-, and C-segments to derive the following inequalities:

nA:H—nh<%
n3§2n,4+4%<%

nCSGnA—&-QnB—&-T’B < %
Therefore, ny +ng + ne < h.

Finally, we color each row by its residue modulo h.
Thus, there are either n or n+1 of each color. Moreover,
there exists color ¢ that colors only good rows. Since
segment of the same type are less than h rows apart,
there is exactly one segment of each type colored ¢ and
exactly n rows of color c¢. For each row of color ¢, let
ma;, mb;, and mcy, be the segment lengths. Then,

ma; +mb; +me, <W < m(t—|—1) = ai—i—bj +c, < t.

Summing the inequality for each row of color ¢ gives
nt < nt, so all inequalities must be equalities. There-
fore, a; + b; + ¢ =t for each row of color ¢, forming a
solution to the instance of N3DM. O

3.2 Connecting Wires

This subsection concerns the wiring part. It guaran-
tees that, if the gap is large enough, there exists a way
to place wiring gadgets without crossing, regardless of
the arrangement of blocks forced by a solution to the
instance of N3DM. This lemma was adapted from [5,
Lemma 5].

f2
S92 X2

sa%*fo

Wx

=
<
L

Figure 2: Example of the setup for wire packing when
n = 3. Red area represents available space.

The setup for this lemma is depicted in Figure 2
and goes as follows: given a bounding box of size
H' x wy and locations of rectangles X1, Xs,..., X,
with widths x1,xs,...,x,, respectively, and the same
height h’/. Each row contains at most one rectangle, but
the rectangles are in arbitrary order from top to bottom.
Note that the “rectangles” are not the same as blocks; a
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rectangle consists of squares, and a square is filled with
2 x 2 cubes which will be discussed further in Section 4
when applying this lemma to prove the existence of a
chain. Define a wire connecting squares a and b to be a
sequence of adjacent squares with the first and the last
squares are adjacent to a and b, respectively.

Lemma 4 (Wire Lemma) Assume the above setup
with min; x; > wx /2, and all rectangles are at least
g > 100n squares apart. Define the available space
to be a set of squares in the extension of all rectangles
on each edge by ¢g'/2. For each i = 0,1,...,n, let ¢;
be an even integer in [8nwx,12nwx]. Let s; and f;
be the bottom-left and top-left corners of rectangle X;,
and fo,Sn+1 be two chosen squares at the bottom-left
of the available space. Then, one can draw n + 1 dis-
joint wires Wy, ..., Wy, in the available space, where W;
has length exactly £; and W; connects f; to s;41 for all
i €{0,1,...,n}. Furthermore, no two cells from differ-
ent wires W; and W; are adjacent.

Proof. (Sketch) We will briefly explain an algorithm
to place the wires Wy, ..., W, inductively. First, mark
squares mg = fo, M1, .., My, Mpt1 = Sp41 in the same
row in this order; all of these should be near the bottom-
left of overall available space. We will construct wires
(U;), and (V;)"_; such that U; connecting m;_1 to
si, and V; connecting m; to f;. Then, W, is a con-
catenation of wire U1, square m;, and wire V; for all
i € {1,...,n—1}. Moreover, Wy = Uy and W,, = V.
We also reserve space of width 40n squares above and
below each rectangle and 10n squares on the left of each
rectangle. The two main stages of placing wires are

(a) Place U; and V; without crossing Uy, Vi, ..., U;—1,
Vi—1. This process is done inductively.

(b) Adjust the length of the wire W; to be exactly ¢;
by placing the remaining length U; and V; inside
reserved space of rectangle X;, which has size at
least 40n x z;; the space can fit a wire of length
> 20nwx, large enough to contain the extra length.

To accomplish (a), place U; and V; by following these
steps simultaneously for each 4.

(i) Create a sequence of squares from m; to the top of
the available space, following along the left gaps.

(ii) Draw the wire down to the same row as s; between
the wires we have placed in (i) and the left edges of
all rectangles, and then draw the wire horizontally
to s;.

(iii) The current wire may cross U; or V; for some j < i
when they are horizontally connected to s; or fj.
In this case, replace the current wires by making
then go around other edges of rectangle X;.

To justify the size of available space, each of U; and V;
may contribute to at most 2 layers of wires on each edge
of the block with a space of one square between each
layer of wires. Combine this with the reserved space; we
need available space with width 40n+2-2-(2n) < 50n
on each edge of the rectangles.

The dominant contribution to the length of the wire
occurs when the wires have to go around other rectan-
gles since wx > nh' 4+ (n + 1)g’. However, there are
at most n blocks that a wire has to go around. Includ-
ing all other distances, the sufficient length of a wire is
Snwx. O

4 Snake Cube Puzzles in 1 x H x W box

In this section, we consider the 2-dimensional variants of
Snake Cube. We first consider 2D SNAKE CUBE WITH
WILDCARDS, where we allow the wildcard * that could
be used as either S or T. We will prove the following:

Theorem 5 2D SNAKE CUBE WITH WILDCARDS is
NP-hard.

Subsection 4.1 will sketch the proof of Theorem 5. Then,
in Subsection 4.2, we will explain how to modify this
proof to give an alternative proof of the following, which
was first proved in [2].

Theorem 6 2D SNAKE CUBE PACKING is NP-hard.

4.1 Proof with Wildcard Option

Given an instance of N3DM with target sum ¢, (a;)";,
(b,’)?zl, (Ci)?:p where a; € (0.5t, O.Gt), b; € (0.25t,0.3t>,
and ¢; € (0.125¢,0.15¢) for all ¢ (Proposition 2), we de-
fine these parameters to construct a string input to 2D
SNAKE CUBE WITH WILDCARDS.

g= gap width = 200n

m = multiplier of widths = 3000013

h = height of blocks = 20000n?

H = height of the grid =nh+ (n+1)g
W = width of the grid = mt+ 4g

Then, construct block gadgets A;, B;, and C; for all
1 <4 < n. The sequence for A; is given below, and the
sequences for B;, C; are analogous. These blocks will
fold into rectangles of size h x ma;, h x mb;, or h X mc;.

(Ag) = ()™ (Tr(s) e 2y

The program is given by

<A1>(*)16nW<A2>(*)16nW o (*)16nW<An>(*)16nW
(BL) ()™ (Ba) (¥)*™ . ()% (B ()5
(CL) ()G ()™ ()T Cr) (1) (),
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where the number ¢ of *’s at the end is to make the
length of the whole program exactly W H.

Chain = Matching. Each block gadget (A4;), (B;),
(C;) contains h segments that must be horizontal due
to its length. Thus, we have 3nh segments of 3n types
that fit the condition of Lemma 3. The lemma forces
the existence of matching.

Matching = Chain. Suppose there is a matching, so
we can place all blocks as shown in Figure 1b.

Apply the wire lemma to connect all these blocks
where each square in the lemma corresponds to 2 x 2
cubes in this construction. Hence, each block is at least
g = g/2 = 100n squares apart, and the width of the
bounding box is wx = W/2 squares. For wires among
A; blocks, Lemma 4 implies that there exists a sequence
of 8nwyx = 4nW squares of size 2 x 2 that connect all
of A; blocks. These squares can be filled with 16nW
* cubes as demonstrated in Figure 3. For wires among
B; blocks, the block size is roughly half of A;; thus,
we can reduce the parameter wx in the lemma by half.
Similarly, the parameter is reduced to a quarter for C;
blocks.

[ 1L A AT ]
| I Ay g
M m.r
L HEQ RN

Figure 3: Example of filling a wire with * tiles.

The wire between A,, and Bj is long enough to con-
nect the following cubes in order: (1) the last cube of
block A,, (2) the cube at the square marked as f, in
the application of Lemma 4 to connect wires between A;
blocks, (3) the cube at the square marked as sg in the
application of Lemma 4 to connect wires between B;,
and (4) the first cube of block B;. This is always possi-
ble since gaps are all connected, and the length needed
never exceeds 8nW + 4W + 4nW < 16nW. The wire
between B,, and C; can be placed similarly.

Lastly, notice that the construction we described so
far is aligned with the 2 x 2 polygrid, and the remaining
squares are connected because the blocks and wires are
topologically equivalent to a path with no closed loop.
From [6], there exists a Hamiltonian cycle in any con-
nected shape aligned with 2 x 2 polygrid. Thus, the
remaining wildcards can fill all the remaining space.

4.2 Proof Outline for Packing

To prove Theorem 6, the setup and the main proof are
almost the same. The only difference is that we cannot
use the wildcard *. To fix this, we make two modifi-
cations. First, we remove (¥)¢ at the end because we
do not need to fill the box. Second, we replace all *’s
between block gadgets with an equally long string of
T’s. By making squares in Lemma 4 correspond to 2 x 2
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cubes, wiring gadgets can connect different block gad-
gets using only T’s. This is possible because not all
cubes in the wires need to be used, and cubes outside
the wires may be used. We can make the wire length
exactly as specified by varying how the chain fills the
wires at turns. More details are available in the full
version of the paper.

5 Snake Cube Puzzles in 2 x H x W box

In this section, we outline our reduction from N3DM
to 2 x H x W SNAKE CUBE. A detailed proof can be
found in the full version of the paper.

Theorem 7 2 x H x W SNAKE CUBE is NP-hard.

We follow the block and wire reduction infrastructure
introduced in Section 3. Consider an instance of N3DM
(ai)_q, (b)Pq, (¢;)f, and ¢ satisfying the conditions
in Proposition 2. Define the parameters as follows.

g=1200n, k= 60000n2, m = 60000n3,
H=n(h+6g+4)+2, W =4g+mt+6.

In this variant, the blocks generated by the block gad-
gets have depth 2 (e.g., block A4; is of size 2 x h x ma;).
Like previously, the program consists of block gadgets
separated by wire gadgets. However, unlike previous
1 x H x W variants, a second layer results in fewer con-
straints on the shape of subchains following the block
gadget, so Lemma 3 no longer applies. To bypass this
issue, we introduce additional instructions at the be-
ginning of the program that specifies a shelf — the
structure shown in Figure 4 that constrains the folding
of the (4;), (B;), and (C;) subchains. The shelf is de-
signed so that it can only be made into a subchain the
intended way. The program is given by

<shelf> <A1>(T)96nW <A2>(T)96nW o (T)96nW <An>(T)96nW
<B1> (T)4871,W <BQ> (T)48nW o (T)48nW <Bn> (T)48nW
(CY(T)> A Co) (1)L (1) W (O (1),

where (T)? pads the string to length 2HW and (A4;) =
(s)mai=(TT(S)mei=2)2h=1g; (B;) and (C;) are defined
analogously.

Chain = Matching. Since the gap to the right of
each shelf is small (g < m), all cubes within a block
must fit entirely within one row of the shelf. By a similar
counting argument as in Lemma 3, there exists a row
containing exactly one A;, B;, and C} block in each
shelf, and the corresponding a;, b;, and ¢; must sum
to t.

Matching = Chain. Place all blocks as in Figure 1b
where segments in the blocks fill the top and bottom lay-
ers alternately. The remaining grid can be partitioned
into 2 x 4 x 4 blocks of space. We cite a result from [1]:
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h + 6g ;g
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J- mt + 3g
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Y

Figure 4: One layer of the “shelf” with 3 rows. The
chain moves to the other layer at discontinuities.

given a sequence (T)® of cubes entering a 2 x 2 x 2 block
of space, the cube chain can exit from any face. Thus,
traversing between 2 x 2 x 2 blocks of space with (T)%’s
has the same movement freedom as traversing between
cells in a 2D grid with wildcards. Thus, by grouping
2 x 2 x 2 cubic blocks together, the remaining proof is
equivalent to that in Section 4, except the wires are 2

2
times long to allow for detours around the shelf.

6 Snake Cube Puzzles with Hexagonal Prisms

In this section, we consider a version of a 2D Snake cube
with a chain of hexagonal prisms. When the prisms are
represented by points, the movement patterns form a
triangular grid. Thus, the problem becomes a triangular
grid variant of the flattening fixed-angle chains problem
in [2].

An infinite triangular grid is a two-dimensional lat-
tice generated by vectors v1 = (}) and vg = (‘S’frfg’gg );
each point represents a hexagonal prism. Two points
in a triangular grid are adjacent if they are distance 1
apart. A 60° parallelogram box of dimension H x W
is the set of HW points obtained by translating the set
{ivy + jug : i € {1,...,W},j € {1,...,H}} by some
lattice vector.

For this section, a program is a string that consists
of only characters S, Tgg, and Tip9, where S denotes
straights, Tgo denotes 60° turns (forming 120° angle),
and Ty99 denotes 120° turns (forming 60° angle). We say
that a chain C' = (p1,p2,...,pjs|) (length [s|) satisfies s
if and only if for every i € {2,3,...,|s| — 1}, the angle
between Pi—15 Pis Pi+1 is 180° if S; = S, 60° if S; = T120,
and 120° if s; = Teo. C is closed if and only if p; = p||.

Theorem 8 Both of the following problems are NP-
complete.

e BOUNDED TRIANGULAR PATH PACKING: given a
60° parallelogram box B, a program P, and two ad-
jacent vertices u and v on a boundary of B, decide

yE V4

Figure 5: The frame gadget and an example block gad-
get inside.

whether there is a chain connecting u and v satis-

fying P.

e TRIANGULAR CLOSED CHAIN: given a program P,
decide whether there is a closed chain satisfying P.

To prove the first problem NP-Hard, we use the same
reduction, except that block gadgets are 60° parallelo-
grams shown in Figure 5. Then, we can reduce the first
problem to the second problem, creating a frame gad-
get to force the chain by modulo a large prime condition
similar to [2] shown in Figure 5.

7 Weak-NP-hardness of 2D Snake Cube Puzzle

In this section, we consider 2D SNAKE CUBE, where the
chain must fill a 1 x H x W rectangle. However, we allow
the instructions to be encoded using the shorthand no-
tation, which keeps the inputs polynomial with respect
to the input integers. Since this modification means the
problem may no longer be in NP, this reduction only
proves NP-hardness. For any set S, let > .S be the sum
of its elements.

Let A be the multiset of positive integers, a 2-
PARTITION instance. We select H = 2|A| + 4 and
W =45 A+ 1. The program comprises the caps at
either end and |A| layers in between, encoding each a;
in A sequentially. The swivel points join each gadget
and allow the layers to flip horizontally. The orientation
of each layer left or right corresponds to assigning each
a; to either partition (Figure 6).

L 3 }Cap
o)
L_" R || » Layers
| N 3
£ = 3 }Cap

Figure 6: Chain for A = {1,2, 1}, emphasizing the dif-
ferent gadgets, highlighting the swivel points (in bolded
red), and demonstrating the 3 variants of layers.
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7.1 Gadgets

The starting cap is the subsequence (the ending cap
being the reverse):

w W41 _

()= ~T1(5)" 2TI(S) =

o,

Since W > H, the W-segments in the caps can only fit
horizontally. They must be at the top and bottom since
any other position would create an unfillable empty
space. This forces the position of the swivel points join-
ing the caps and the layers to be horizontally centered.
For each i, let A; = {a; : j € {1,...,i}}, w; =
4Z(A\Ai—1)+17 x; = (wi—l)/2, and h; = 2|A\Ai_1‘.
There are 3 variants of the corresponding layer gadget.
If 4a; < x; and h; > 2, the layer is the subsequence
(sections named for ease of discussion, see Figure 7):

T8 “arm”
&M (rr(s)" )T “padding”
(S)Ii*4ai+1(T)2(2ai71) “shift”
(s)mm2TT(s)™ P tiT. L. “return.”
Padding Shift
\ /
|
|
IO L O T
s \ J
7 () AV
/ ' \
Arm Return

Figure 7: Sample layer gadget with a; = 1, w; = 17,
h; = 6 with labeled sections.

If 4a; > x; and h > 2, informally the padding spills
over into the shift, resulting in these differences:

(S)h_2(TT(S)h_3)xi (TT(S)h—2)4ai—xi—1
(T)2(2ai717(4ai793i71))

“padding”
“shift.”

If h = 2, informally the padding can be visualized
as degenerating and subsuming the shift and return,
resulting in these changes from the first variant:

T(8)% (T)Q(Q‘“_UHS “padding.”

Each layer gadget has a w; x h; space available to it
and leaves behind a w;1 X h;y1 space while displac-
ing the swivel point horizontally by 2a; left or right.
To show this, we use induction starting from the first
layer. Note that the arm and padding sections are all
forced by space constraints. The shift section is forced
since turning the chain outward in the subsequence of
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repeated turns (T) would leave behind a 1 x 1 space.
This space can only be filled by the endpoints, which is
impossible because their positions are forced by the cap
gadgets. Then, the return section is also forced.

7.2 Reduction

If there exists a solution to 2-PARTITION, then construct
all the gadgets and flip the layer gadgets so that arms
for all numbers in A; point to the left, and those for
numbers in Ay point to the right. The horizontal dis-
placements of the swivel points must sum to 0, so the
last layer can connect to the upper cap.

If there exists a solution for 2D SNAKE CUBE, then
we have demonstrated the gadgets are forced to be con-
structed in the correct orientation. Since the last layer
gadget connects to the upper cap gadget, the horizon-
tal displacements of the swivel points must sum to O.
Reversing the above process produces a solution to the
2-PARTITION instance.
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On Erdos-Szekeres Maker-Breaker games®

Arun Kumar Dast

Abstract

The Erdds-Szekeres Maker-Breaker game is a two-player
competitive game where both players alternately place
points in the plane such that no three points are colin-
ear. The first player (Maker) starts the game by placing
her point and wants to obtain an empty convex poly-
gon of a given size k such that the vertices of the poly-
gon are chosen from these points and the second player
(Breaker) wants to prevent it. We show that Maker
wins the game for k¥ < 8 We also present a winning
strategy for Maker for any k in general when Maker is
allowed to place (1 + ) times more points (each round
on average) in comparison to Breaker, for any ¢ > 0.
Further, we address the models of the game for equi-
lateral empty convex polygons in the plane and empty
convex polygons in square grids.

1 Introduction

One of the most well-known problems in discrete geom-
etry is the Erdds-Szekeres Problem [6]. In this problem,
a positive integer k is given as input and we compute
the minimum number of points required in the plane
such that at least k out of them are in convex position.
The points must be placed in general position, i.e. no
three points are colinear. Erdds and Szekeres showed
that the answer is finite by proving that the number
is bounded from above by a function exponential in k.
Further Erdés [5] posed the problem of finding the min-
imum number of points in the plane in general position
(no three points are colinear) such that &k points out of
them can be chosen as the vertices of a convex polygon
that does not contain any other point from the point
set inside it. The empty convex polygon with k ver-
tices is referred to as a k-hole. By H (k) we denote the
minimum number of points such that any configuration
of H(k) points in general position contains a k-hole.
Horton [10] demonstrated that there are arbitrary large
point sets that do not contain a 7-hole, in contrast to
the finiteness of the previous question. For k-holes with
k < 7, positive results are present in the literature show-
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sity arun.kumar.das@fit.cvut.cz
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ing H(5) = 10 and H(6) = 30 [7, 9].

Competitive games between two players to achieve a
geometric structure we studied previously [8]. The nat-
ural competitive game arising from the Erd&s-Szekeres
problem is the endeavor of two players to achieve a k-
hole for a given positive integer k by alternately placing
points in general position in the plane. Depending on
the goal of the game, three variants of the two-player
game spawn from the Erdds-Szekeres problem.

1. Both players want to obtain a k-hole (Maker-
Maker). Whoever obtains the k-hole first is the

winner.

2. Both players want to avoid a k-hole (Awoider-
Awoider). Whoever obtains the k-hole first is the
loser.

3. The first player wants to obtain a k-hole and the
second wants to prevent it (Maker-Breaker).

Valla [12] posed the Maker-Maker variant of the game
as an open problem in his thesis. Kolipaka and Govin-
darajan [11] studied the Avoider-Avoider variant. They
proved that the game with & = 5 ends after round 9 and
the second player wins.

Later Aichholzer et al. [1] simplified the original proof
by Kolipaka and Govindarajan, and also introduced a
different variant of the game with colors, referred to as
bi-chromatic variant. Here the players alternately place
points in general position in the plane, the first player
placing red points and the second player placing blue
points. Aichholzer et al. [1] showed the winning strategy
for the second player for k& = 3 for the Avoider-Avoider
version, where the players try to avoid a monochromatic
k-hole. Then they introduced the Maker-Maker variant
of the bi-chromatic game where both the players try to
obtain a monochromatic k-hole. Besides considering the
k-holes, they considered the non-convex general holes
as well. The general hole of size k is an empty simple
polygon with k vertices. Aichholzer et al. [1] also showed
that the first player can win for £k = 5 in 9 turns in
the Maker-Maker variant. Further, they studied the
Maker-Breaker variant of the bi-chromatic game where
the first player (Maker) wants to obtain a k-hole with
only red vertices, and the second player (Breaker) just
wants to prevent it by placing blue vertices. For this
variant, Aichholzer et al. proved that the Maker wins
by placing 8 points of her color for a 5-hole and has a
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general winning strategy for general holes of any given
k.

In this paper, we study the Maker-Breaker variant
of the Erdés-Szekeres type game (ESMB) in the plane.
For notational brevity, we name two players Alice and
Bob. Both of them place one point in each round alter-
natively on R? maintaining the general position for all
the points throughout the game. Alice tries to obtain a
k-hole of a given size k. Alice wins the game if she can
obtain the k-hole and the game ends after a finite num-
ber of moves. Otherwise, we conclude that Bob wins
the game if he can always restrict Alice from forming a
k-hole. In our model, unlike the bi-chromatic variant,
Alice can use any point of her choice to form the empty
convex polygon of the desired size. To the best of our
knowledge, this variant was not studied previously and
only was pointed out as interesting and challenging for
k > 7 by Aichholzer et al[1].

We note that Alice can win the game for a given k
in r rounds if there is an empty (k — 1)-gon at the end
of the (r — 1)* round. Alice can extend this existing
hole by placing one point very closely without violating
the convexity of the newly formed hole. Thus, it can be
concluded from the existing literature proving H(6) =
30 [9] that Alice wins the game up to k < 7. But we
show that the minimum number of points required for
Alice to win is much less than H (k). Further, we show
Alice has a winning strategy for k = 8 even if H(7) could
be arbitrarily large [10]. Then we prove that Alice can
win the game for any k if the ratio of the number of
points placed by Alice and the points placed by Bob in
each round is (1 + ¢), for any small € > 0.

Then we address the question of obtaining equilateral
holes. This question has not been considered before and
only makes sense in terms of the game as there could be
arbitrarily large point sets such that all the distances
of point pairs are different. We prove that Alice can
obtain an equilateral k-hole for k = 4.

Finally, we address the variant of the game on grids.
The Erdés-Szekeres problem has been extensively stud-
ied concerning the position of points approximating the
integer lattice [4, 14]. We consider the Maker-Breaker
game on a square grid of size n X n. Both players must
place their points at the gridpoints. Considering this
constraint, in this version the players are allowed to vi-
olate the general position requirement. We characterize
the winning strategy of both players depending on the
size of n and k.

1.1 Results

We formally state the results as follows.

Theorem 1 Alice can win the ESMB game by obtain-
ing a T-hole from 15 points in the 8" round.

Theorem 2 Alice can win the ESMB game by obtain-
ing an 8-hole from 25 points in the 12" round.

Theorem 3 Alice can win the ESMB game by obtain-
ing a k-hole for any given positive integer k if the ratio
of the points placed by Alice to the points placed by Bob
is (14¢) for any € > 0.

Theorem 4 Alice wins the ESMB game for an equi-
lateral 4-hole by obtaining it from T points in the 4
round.

Theorem 5 Let us consider the ESMB game on an nx
n square grid where both the players have to place their
points on one of the vertices of the grid and they are
allowed to place three or more colinear points. Alice
can win the game by obtaining a k-hole for any positive
integer k > 2, if and only if n > f%]

1.2 Organization

The paper presents the winning strategies for Alice as
stated in Theorem 1, 2 and 3 in Section 2. Section 3
contains the study of equilateral holes for the ESMB
game in the plane and Section 4 contains the results for
the game on the square grid. Finally, the paper is con-
cluded in Section 5 presenting a list of open problems.

2 Winning strategies for Maker

We start with the formation of a 5-hole in the ESMB
game, which is a winning strategy for Alice when k& = 5.

Lemma 6 Alice wins the game by obtaining a 5-hole
from 7 points in the 4™ round.

Proof. Alice trivially obtains a 3-hole with 3 points in
the 2™ round. Then, Bob must place a point that is
not in a convex position with the other three to prevent
Alice from winning in the immediate next round. Now
Alice places A3 in such a way that she creates one or
more 4-holes. We can follow that one 4-hole remains
in the plane irrespective of the placement of Bs. Alice
extends it to a 5-hole by placing A4 accordingly. O

Now we show the winning strategy of Alice in the
ESMB game for k = 6,7, and 8 by assuming that the
game starts with a (k— 1)-hole and Bob places his point
as By followed by Alice’s point A; and so on.

Lemma 7 Starting with a 5-hole, Alice can obtain a
6-hole in the game within the next two rounds.
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Figure 1: Formation of a 6-hole.

Proof. We note that there are 5 chords of a 5-hole such
that each divides the 5-hole into a 4-hole and 3-hole.
Bob has to place By in the common intersection of all
the 4-holes to prevent Alice from winning in the imme-
diate next round. Since there are 5 such 3-holes Alice
can find two 4-holes intersecting only in one edge, after
the placement of By. One instance is depicted in Fig-
ure 1, where we start with the 5-hole ABCDFE and BoFE
is the common edge between two 4-holes ABByE and
CDEByj. Alice places A; in such a way that it creates
two 5-holes intersecting in one triangle (AByEA; in the
figure). If Bob places his point inside this triangle, then
two 5-holes remain in the plane. Namely ABByB1A;
and EB1ByCD for the instance in Figure 1. Otherwise,
Bob places his point inside only one of the two 5-holes.
Thus after placement of By, Alice extends the remaining
5-hole to a 6-hole in the next round. O

Lemma 8 Starting with a 6-hole, Alice can obtain a
7-hole in the game within the next two rounds.

Figure 2: Formation of a 7-hole.

Proof. A 6-hole has three chords such that each of
them divides the 6-hole into two 4-holes. An instance
is depicted in Figure 2. ABCDFEF is the initial 6-hole
and AD, BE, and CF are the chords dividing it into 4-
holes. Since Bob can place By inside the intersection of
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at most three out of these six 4-holes, Alice can find two
5-holes intersecting in one triangle after the placement
of By inside the 6-hole. She can extend these two 5-holes
into two 6-holes intersecting in one convex quadrilat-
eral. As a result after the placement of B; at least one
6-hole remains in the plane that can be extended to a 7-
hole in the next round. Figure 2 depicts the case where
By is inside three 4-holes namely ADEF, ABCF and
BCDE. Thus, Alice creates two 6-holes ABCA; DBy
and CA; DEF By by placing A;. Bob will try to place
Bj in the intersection of these two 6-holes formed af-
ter placement of A;, but B; can be placed inside at
most one of the two triangles AByCA; or AByDA;.
Even if Bob chooses one of them to place By inside,
either BiA1DEF By or ABC' Ay BBy remains a 6-hole
ensuring the formation of a 7-hole in the next round
by placing Ay accordingly. The other cases arising from
different placements of B, are analogous considering the
symmetry of the chords of the initial 6-hole. O

Combining Lemma 6, 7, and 8 we get the following
theorem.

Theorem 1 Alice can win the ESMB game by obtain-
ing a 7-hole from 15 points in the 8" round.

We note that in the cases of obtaining k-holes for
k =6 and 7, we considered the chords that divided the
(k—1)-hole into half where the size of the half was k—2.
As a result, after placement of By at least two (k — 2)-
holes remain in the plane. That gives Alice a chance to
create two (k — 1)-holes intersecting in a triangle or a
convex quadrilateral. This observation is not true when
we start with a 7-hole and as a result, we can not ensure
Alice’s winning within the next 2 rounds. We prove
Alice needs 5 more rounds to obtain an 8-hole starting
with a 7-hole.

Lemma 9 Starting with a 7-hole, Alice can obtain an
8-hole in the game within the next five rounds.

Proof. We begin with a similar approach as Lemma 8
that there are 7 chords in a 7-hole such that
each divides the hole into one 5-hole and one
4-hole. The chords are depicted in Figure 3
ABCDEFG. To play optimally Bob places By inside
the 7-hole. After the placement of By, Alice can place
Aj in such a way that there are two 6-holes in the plane
intersecting in one triangle. One instance is depicted in
Figure 3 (left) with the two 6-holes namely AByEFA; FG
and BCDFEA{By. If both the 6-holes remain after
placement of By Alice extends these two six holes into
two 7-holes by a similar strategy in Lemma 8 and wins in
the following round. Thus Bob must place B; inside at
least one of these two 6-holes. Furthermore, Bob does
not place B; inside the octagon ABCDFEA,FG such
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that five vertices of the octagon are lying on the same
side of the line passing through By and Bj, as this will
create a 7-hole. Thus we have the following observation.

Figure 3: Observation 1.

Observation 1 After the placement of By, there are
two 6-holes in the plane sharing exactly one common
edge. Alice can place As in such a way that it creates
two 6-holes and one T-hole. Moreover, both the 6-holes
share exactly one edge with the T-hole and these two
shared edges are adjacent to each other in the 7-hole.

Precisely the position of As as mentioned in Ob-
servation 1 is inside the intersection of the triangles
AByBB;, AByEB; and the triangle formed by the
= P
sides ByB1, ABy and A1 B;. Here @ denotes the pro-
longation of the segment AB from B. Now Bob must
place Bs inside the 7-hole to prevent Alice from winning
in the immediate next round. Thus after placement of
B, we have the following observation.

A B

E

Figure 4: Observation 2.

Observation 2 Alice can place Az in such a way that
after the placement of Bs there are two 6-holes in the
plane sharing exactly one verter.

Proof of Observation. Note that Bob does not place
By in such a way that there are two 6-holes sharing
only one vertex as this will help Alice to create two
7-holes sharing only one edge and win immediately.
Moreover, there will be two 6-holes involving the
vertices of the 7-hole (containing By and Bj) following
the same argument as Observation 1. If Alice can
force the placement of Bs such that the line passing
through Bs and Bj intersects either BgAs or As B
then Observation 2 holds. Thus to force such placement
of B Alice places Az in such a way that there are two
6-holes intersecting in one triangle such that none of
them contain both BygA; and AsB; as their edges. one
instance is depicted in Figure 4). A

Using Observation 2, Alice extends both the 6-holes
to two disjoint seven holes by placing A4 accordingly en-
suring the formation of an 8-hole in the next round. The
placement of A, for the instance considered in Figure 4
is depicted in Figure 5. O

Position
for Ay

Ay AB,

(=)

E

Figure 5: Placement of A4 to obtain an 8-hole.

Thus by combining Theorem 1 and Lemma 9, we have
the following theorem.

Theorem 2 Alice can win the ESMB game by obtain-
ing an 8-hole from 25 points in the 12 round.

2.1 Winning strategy for Maker in general with a
higher speed

Now we present a general strategy for Alice to win the
game when she benefits with a higher speed than Bob.
First, we assume in each round Alice places 2 points
while Bob places only 1. We show that Alice can obtain
any k-hole for any given k in 2(*~1 round.

Lemma 10 Alice can win a Maker-Breaker version of
the Erdos-Szekers game by obtaining a k-hole in 21
round for any given k if she is allowed to place two
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points in each round while Bob is allowed to place only
one point each round.

X
[ J

(]
X X

Point configuration after 2*=2) 4 2(-=3) younds.

Figure 6: Game configurations when Alice has double
speed than Bob.

Proof. We prove the lemma by describing the strat-
egy of Alice. Consider 2*=1) disjoint unit squares in
the plane. Alice places two points inside two different
empty squares in each round for the first 2*=2) rounds.
In the next 2(*=3) rounds she places her points only in
the squares where there are no points of Bob inside. She
can always find 2*=2) squares since Bob can only place
2(k=2) points in the first 2(=2) round. In the follow-
ing 2(*=%) round she places her points into the squares
without any points of Bob. Following the strategy she
can keep placing her points only in the squares without
Bob’s points and as a result, she can place them into a
convex position achieving a k-hole in the 2(*=1 round.

O

Now we generalize the idea where the ratio of the
points placed by Alice and Bob is (1 4 ¢) for any small
¢ > 0. In other words, Alice places at least one point
more than Bob after 7" round of the game. Then using
the similar argument of Lemma 10 we can conclude that
after a finite number of steps, Alice can secure at least
one such square that is free from a point of Bob. Thus
she iterates the strategy to achieve one square contain-
ing only k points placed by her. This takes ( + 1)1
turns to win the game. Hence we have the following
theorem.

Theorem 3 Alice can win the ESMB game by obtain-
ing a k-hole for any given positive integer k if the ratio
of the points placed by Alice to the points placed by Bob
is (14 ¢) for any e > 0.

3 ESMB game for equilateral holes

In this section, we address the question of obtaining
equilateral holes for Maker. This question does not arise
in the case of the classical Erdés-Szekeres problem: it is
trivial to generate a point set of any size where no two
pairs of points have the same distance between them.
We prove that Alice can create an equilateral 4-hole
in the game. We describe the strategy in this subsec-
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Potential
positions

Figure 7: Formation of an equilateral 4-hole.

tion. It can be followed that Alice can create an equi-
lateral triangle in the plane by placing As in the second
round and Bob must place her point inside the triangle
to prevent Alice from winning in the immediate next
round. Moreover, Bob ensures that Bs is placed in
such a way that it is not equidistant from two points
in {41, By, A2}. In the third round, Alice places A3 di-
viding one outer angle (£ A B As in the Figure 7) of the
triangle in such a way that the length of A3Bj is same as
the length of A;B;. Moreover, the circle centered at As
with a radius of the same length as the length of A3B;
intersects both the circles centered at A; and As of the
same radius. These two intersection points act as two
potential candidates for A4 such that either A1 A44A3B;
or Ay A4A3B1 becomes an equilateral 4-hole depending
on the placement of B3. This gives the following result.

Theorem 4 Alice wins the ESMB game for an equi-
lateral 4-hole by obtaining it from T points in the 4™
round.

4 ESMB game on a square grid

In this subsection, we study the game in a square grid
of a fixed size, say n x n. We show that if we allow
the players to violate the general position assumption
of the points, then Alice can win if and only if n >
[£]. If the grid is of size [£] it is easy to follow that
Alice can ignore the placement of Bob and can form
a k-hole from two consecutive rows or columns of the
grid. But, interestingly, the bound is tight as Bob can

prevent Alice from winning if n < [£].

Lemma 11 Alice does not have a winning strategy for
the ESMB game on an n xn square grid if n < (%1 with
kE>2.

Proof. We note that Alice can not form a convex k
hole only by using the points from two consecutive rows
or columns. Hence she has to use points from at least
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8

% ol

Figure 8: Winning strategy for Bob on a grid of n x n
with n < [£].

three rows or columns. Since any convex polygon of
size k must contain two points of at least one diagonal
of the grid, Bob places his n points alternatively on both
the diagonals depending on the placements of the points
by Alice, shown in Figure 8. This prohibits Alice from
obtaining a hole of the desired size. O

Thus we have the following theorem.

Theorem 5 Let us consider the ESMB game on an nx
n square grid where both the players have to place their
points on one of the vertices of the grid and they are
allowed to place three or more colinear points. Alice
can win the game by obtaining a k-hole for any positive
integer k > 2, if and only if n > [g]

5 Conclusion

For Maker with a slightly higher speed than Breaker
we have presented a general strategy to win the ESMB
game, but it takes exponentially long to finish. Also, we
observe that for small k like 8, the game finishes much
faster. Thus it is an intriguing open question to ad-
dress whether there exists a winning strategy for Maker
with the same speed as Breaker even if there are con-
structions of the large sets without hole [4, 10, 13, 14].
An important observation is that the Horton sets [10],
which are the building blocks of large point sets without
k-holes for k > 7, are fragile in the sense that inserting
one unwanted point in the set can create an unwanted
hole. Moreover, the expected number of holes in a ran-
dom point set of size n selected from a convex shape of
unit area in the plane is O(n?) [2]. On the other hand
the existing results on the expected size of the largest
hole in random point sets [3] are logarithmic in terms of
the number of points. Therefore, can Breaker delay the

game infinitely by preventing Maker from forming a k-
hole? If so, it is also interesting to study the maximum
value of k for which Maker can always win.
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The En Route Truck-Drone Delivery Problem

Danny Krizanc* Lata Narayanan®

Abstract

We study the truck-drone cooperative delivery problem
in a setting where a single truck carrying a drone travels
at constant speed on a straight-line trajectory/street.
The truck carries all items to be delivered. Delivery
to clients located in the plane and not on the truck’s
trajectory is performed by the drone, which has lim-
ited carrying capacity and flying range, and whose bat-
tery can be recharged when on the truck. We show
that the problem of maximizing the number of deliv-
eries is strongly NP-hard even in this simple setting.
We present a 2-approximation algorithm for the prob-
lem, and an optimal algorithm for a non-trivial family
of instances.

1 Introduction

The use of unmanned aerial vehicles or drones for last-
mile delivery in the logistics industry has received con-
siderable attention in business and academic communi-
ties, see for example [1, 3, 15, 9]. Drones have been
shown in a recent analysis [13] to have significantly less
life-cycle costs, and faster delivery time compared to
diesel or electric trucks in urban, suburban, and rural
settings, and have less harmful emissions compared to
diesel trucks. The potential applications where drone
delivery could make a big impact include contactless
delivery, return of unsatisfactory goods, rural or hard-
to-access delivery and delivery in disaster relief scena-
rios.

In this paper we consider a system in which the de-
livery of physical items to clients located in the plane is
done by two cooperating mobile agents having different
but complementary properties. The first mobile agent,
called the drone can move in any direction but it can
travel only a limited distance, called its flying range,
before it needs to recharge its battery. Furthermore, it
has limited carrying capacity. The second mobile agent,
called the truck can travel only along a fixed trajectory,
called a street but its battery/fuel is not only sufficient
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to follow the street as long as necessary, but it is also
equipped with a charging facility where the drone can
recharge whenever it reaches the truck. Furthermore,
it can carry all items that are to be delivered to the
clients.

The delivery of items to clients is done as follows. All
items to be delivered are preloaded on the truck at the
warehouse. The truck then moves along the street at
a fixed speed and it delivers items to any client who is
located on its trajectory. The delivery of an item to a
client who is not located on the trajectory of the truck
must be carried out by the drone. At an appropriate
time, the drone flies from the truck with the item to
be delivered to the given client, drops the item there,
and then flies back to the still-moving truck. There it
can recharge, pick up another item, and make the next
delivery, and so on. Clearly the same set-up can also
be used to pick up items rather than deliver them. For
ease of exposition, we always talk about item delivery
in this paper.

Given a set of delivery locations and the parameters
of the agents, i.e., the trajectory and the speed of the
truck, the flying range of the drone and its speed, we
want to compute a feasible schedule of deliveries that
mazximizes the number of deliveries made. Such a sched-
ule specifies the order in which the deliveries to clients
are done by the drone, and for each delivery it gives the
time the drone leaves the truck. Clearly, to be feasi-
ble, the schedule should ensure that for each delivery,
the drone can fly to the delivery location and back to
the still-moving truck while having travelled distance at
most its flying range, and arrive at the truck in time to
start its next delivery.

1.1 Related work

The algorithmic study of truck-drone cooperative deliv-
ery problems was initiated by Murray and Chu [12] and
Mathew et al. [11] where the problem of a single truck
being helped by a single drone to deliver packages to
customers is studied. Since then there has been a great
deal of work (Murray and Chu’s paper has received more
than 1000 citations) on different versions of what is var-
iously referred to as Truck-Drone Cooperative Delivery,
Drone-Aided Delivery or Last-Mile Delivery problems.
Variations considered include multiple trucks, multiple
drones, drone-only delivery, mixed truck-drone delivery,
etc. We refer the reader to recent surveys for more de-
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tails [3, 4, 9, 15, 16].

In the above work, the problem is most often mod-
elled using a weighted directed graph with customers
as nodes, streets and drone flight paths as edges, etc.
Under these circumstances the problems become ver-
sions of the Travelling Salesperson Problem or the Ve-
hicle Routing Problem. As such they are all easily seen
to be NP-hard in general and are solved by adapting
known exact (e.g., Mixed Integer Linear Programming)
or heuristic (e.g., greedy) techniques. For specialized
domains some variants can be shown to be polynomial
time, e.g. on trees [2].

In most of the previous research it is assumed that
the points at which a truck and drone can rendezvous
are part of the input (e.g., customer locations, depots)
and that the truck or drone stops at the rendezvous
point to wait for the other to arrive. More recent work
[7, 8, 10, 14] has focused on the case where the ren-
dezvous can occur “en route” as the truck is moving and
the rendezvous points are to be determined by the algo-
rithm, as is the case with our study. In these papers, the
problems studied are again generalized versions of TSP
or VRP and are attacked via adaptations of known ex-
act or heuristic techniques. Here we restrict ourselves to
the simplest version of the problem with one truck and
one drone, where the truck travels at a constant speed
along a single street. Surprisingly, even in this case, as
shown in Section 3, the problem is strongly NP-hard.

All of the above work is concentrated on minimizing
either the total delivery time or total energy require-
ments (or some combination of both) to deliver all of
the packages to all of the customers. To the best of our
knowledge we are the first to consider the problem of
maximizing the number of clients that are satisfied in
the en route model.

1.2 Our Truck-Drone Model

We define the truck-drone delivery problem more for-
mally as follows. We assume that the delivery points
as well as the trajectories of the truck and the drone,
are set in the 2-dimensional Cartesian plane. Without
loss of generality, we assume the warehouse is located
at [0,0], and the truck starts fully loaded with all items
to be delivered at the warehouse at time 0, and subse-
quently moves right on the z-axis with constant speed
1. Note that this allows us to measure the elapsed time
by the distance of the truck from the origin.

The speed of the drone is denoted by v and it is as-
sumed that v is a constant that is greater than 1. The
flying range of the drone is given by the value R, and is
defined as the maximum distance that the drone can fly
on a full battery without needing to be recharged. We
assume that the time to recharge the drone’s battery,
and to pick up an item from the truck, or to drop off an
item at its delivery location are negligible compared to

the delivery times, and thus are equal to 0. Therefore,
any time the drone leaves the truck it can fly its full
range R before returning to the truck.

We are given a multi-set D = {dy,ds,...,d,} of de-
livery points in the plane where the deliveries are to be
made. The truck delivers any item whose delivery point
is located is on its trajectory, we assume that this can
be done with negligible delay. Thus we assume below
that none of the points in D is located on the trajectory
of the truck, i.e., on the positive x-axis.

We now define a feasible delivery schedule for the
truck-drone delivery problem.

Definition 1 Given an instance I = (v, R, D) of the
truck-drone problem, where D = {di,ds,...,d,}, we
define a schedule Sy to be an ordered list of delivery
points to which deliveries are made, and the start time
of each delivery, i.e.,

S] = ((dil,sl), (di2,82), ey (dim,sm)), m S n

where m is called the length of the schedule and for
1 < j < m the drone makes a delivery to d;; by leaving
the truck at point [s;,0]. The schedule is feasible, if
s1 > 0, and for each j, 1 < j < m — 1, the drone can
reach d;; when leaving the truck at position [s;,0] and
return to the truck at or before [s;41,0].

Schedule Sy is called optimal if there is no schedule
that is longer than Sy, that is, makes more deliveries
than Sj.

Given an instance I = (v, R, D) of the truck-drone
problem, where v and R are the speed and the range
of the drone respectively, and D is the set of delivery
points, the goal of the truck-drone delivery problem is
to find an optimal delivery schedule.

Figure 1: Instance I = (2,10, {d1,ds,ds3,ds}), and its
schedule Sy = ((1,d1), (5,d2), (7,ds)). The trajectory of
the drone is in blue, that of the truck in red. The blue
numbers give the distances, the black numbers show the
time sequence

Figure 1 shows an example of a truck-drone problem
and of a feasible schedule.
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1.3 Our results

In Section 3, we show that even for the ostensibly sim-
ple case of a single truck travelling on a straight line,
and a single drone, the truck-drone delivery problem is
strongly NP-hard. In particular, we show that given an
instance I of the truck-drone problem and an integer k,
it is strongly NP-hard [5] to decide whether there is a
schedule S; of length k.

In Section 4, we describe a greedy algorithm 4, and
show that it computes a 2-approximation of an optimal
schedule in O(n?) time. The factor of 2 is shown to be
tight for this algorithm. Finally, in Section 5, we de-
fine a proper family of instances. Roughly speaking, in
such instances, the delivery points do not have the same
or “nearly” the same x-coordinates, where “nearly” de-
pends on the difference in their y-coordinates. In par-
ticular, the greater the difference in the y-coordinates
of the points, the greater is the difference in their z-
coordinates in proper instances. We then give an O(n?)
algorithm that calculates an optimal schedule for any
proper instance.

Note that throughout this paper we assume that
arithmetic operations, including taking square roots,
can be done in constant time.

2 Preliminary Results

We say that a point d = [z,y] is reachable by the drone
from position [s,0] if the drone can leave the truck at
[s,0], fly to point d and fly back to the truck with the
total distance travelled at most its flying range R. First
we examine some geometric properties of points in the
plane that are reachable from [s, 0] by the drone flying
with speed v and having flying range R.

Suppose the drone leaves the truck at position [s, 0],
makes a delivery at d = [z, y] and returns to the truck
using its full range R. To fly range R the drone needs
time ¢ = R/v and at that time the truck is at position
[s + R/v,0]. Therefore, the drone can make a delivery

Figure 2: In Ellipse E shown above, the speed of the
drone is not much higher than that of the truck. When
the speed of the drone increases, the distance between
the foci decreases, and the ellipse becomes closer to a
circle.

at point d = [z,y] if the total distance it flew satisfies
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the equation
HS,O], [x,y]I + HxvyL [8+R/U70]| =R

Clearly all such points d reachable by the drone from
[s, 0] using its full flying range lie on ellipse E (see Figure
2) with left focus [s, 0] and right focus [s+ R/v,0]. Fur-
thermore, the major radius, i.e. the length of the semi-
magjor azis of the ellipse is M = g, and minor radius,
i.e. the length of its semi-minor axis is m = %\/1}2 —1.
Next, considering also the delivery points that can be
reached by the drone by flying distance strictly less than
R, we conclude that all points reachable from [s,0] by
the drone within its flying range are located on or inside
the ellipse E.

Assuming that the ellipse E is centered at [0, 0], its
left focus [s,0] = [—4%,0], and its right focus is [£%, 0],
and M, m are the major, minor radii as specified above.
The equation of the ellipse is:

22 2
e % =1 (1)

Clearly, delivery to point d = [z,y] is feasible only if
—m <y < m, i.e., all delivery points should be located
in a band of width 2m centered along the x -axis.

Assume a delivery point d is on the right half of ellipse
FE, and the drone makes a delivery to d starting from
the truck at point [s’, 0] between the foci of the ellipse
E. Since the distance from [s’, 0] to d is shorter than the
distance from the left focus [s,0] of E to d, the drone
can reach the delivery point d, flying for distance < R.
However, the drone when leaving the truck at point [s, 0]
arrives at d earlier than when staying on the truck and
leaving for d only later at point [s, 0], and therefore it
also returns to the truck earlier. Thus when using flying
distance less than R the drone returns to the truck later
as shown in Figure 3.

Figure 3: The red lines show the delivery with the full
range R, the green lines show the delivery with range
less than R.

This leads to the next lemma:

Lemma 1 Consider a delivery point d in the right half
of the ellipse E. To make a delivery to d flying less that
the full range R, the drone must start the delivery at a
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point to the right of the left focus of E and the drone
returns to the truck to the right of the right focus of E.
Starting points for the drone to the left of the left focus
are not feasible.

A symmetric observation holds about delivery points
on the left half of E.

We now determine for each delivery point an interval
on the trajectory of the truck describing feasible depar-
ture points for the drone to make a delivery to point d.
Given a delivery point d, let £ and E5 be the ellipses
with major radius M and minor radius m, such that
their foci are located on the z-axis, with E; containing
d on its right half, while E5 contains d on its left half.
Let fi1, fia be the foci of E; for i € {1,2} (see Figure 4).
The following lemma now follows from Lemma 1 above.

Lemma 2 Focus fi1 is the point of the earliest start
for a delivery to d, and focus f12 is the point of the ear-
liest return to the truck from a delivery to d. Focus fo1
is the point of the latest start for a delivery to d that
can meet the truck, and Focus fao is the latest return to
the truck from any delivery to d. Feasible start points
for delivery to d lie between f11 and fo1, with the corre-
sponding return to the truck occurring between fi2 and

fa2.

d

TN

E, Esy

Figure 4: The red lines show the earliest delivery to d,
the blue lines show the latest delivery to d. A delivery
to d could be scheduled to start at a point between f1;
and fo1.

In the rest of this paper, given a delivery point d we
denote its earliest start time as es(d) and the corre-
sponding earliest return as er(d), the latest start time
of d as Is(d), and the corresponding latest return back
to the truck as ir(d),

By the definition of the ellipse, for any delivery point
d we have

er(d) —es(d) =lr(d) — ls(d) = R/v
the distance between the foci of E.

Given a point d = [z,y], we can calculate the values
es(d), ls(d) as follows. Imagine a horizontal line pass-
ing through d. It intersects the ellipse E centered at 0

at two points [—z’,y| and [2/,y]. According to Equa-
tion (1), we have (2/)2/M? + y*/m = 1. Therefore,
= My/(1— 7’7’1—22) Now, imagine sliding the ellipse E
along the z-axis. When F touches d for the first time,
we obtain F; having travelled distance x —2’. Similarly,
when E touches d for the last time, we obtain Fy having
travelled distance x + x’. Thus, we have:

Lemma 3 For d = [z, y]

es(d) =z — & — 2/, and er(d) = es(d) + R/v,
Is(d) =2 — £ + 2/, and Ir(d) = ls(d) + R/v.

The next lemma gives the return point of the drone to
the truck after a delivery to a delivery point d = [z, 3],
starting from the truck at a position [s, 0].

Lemma 4 Suppose we wish to make a delivery to a de-
livery point d = [x,y] using the drone, starting from
the truck at position [s,0], and returning to the truck at
position [ret, 0].

1. Ifes(d) < s <ls(d),

s+av—x+z
v2 —1

where a = \/y2 + (s —1)2, b = sv® + av — x, and

z=/b2—s(w2-1)(b+s+av—x)

2. If s < es(d), then ret(s,d,v) = er(d).

ret = ret(s,d,v) := s +

(2)

3. If s > ls(d), then delivery is impossible, thus we set
ret(s, d,v) = oo.

Proof. To see (1), observe that the total distance trav-
elled by the drone is dy = |[s, 0], [z, y]|+|[z, y], [ret, 0]| =
a 4+ /(ret —z)? + y2, which the drone travels in time
dy/v. At the same time the truck travels the distance
dy = ret —s. Thus we have the equation

a++/(z —ret)? + y? = v(ret —s)
(x —ret)? + % = (v(ret —s) — a)
2?2 — 2z ret +ret? 492 = v?(ret? —2s et +5%)—
— 2av(ret —s) + 32+
+ (5% — 252 + 2?%)

2

ret? —2z ret = v? ret? —20%sret —2av ret +

+ 0252 + 2avs + $% — 2sx

0= (v? — 1) ret? —2(sv? + av — x) ret +
+ s(v?s + s + 2av — 27)
0 = (v? — 1) ret* —2bret +s(b + s + av — ),
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and by solving the quadratic equation for ret > s we
have

b+ /b2 —s(v2—1)(b+s+av—x)
v2—1
s+av—x+/b2—s(w2—1)(b+s+av—x)
v2—1

ret =

:5+

as needed.

For (2), note that if s < es(d) then the drone re-
mains on the truck until position [es(d),0] is reached
and then it starts a delivery from position [es(d),0],
since by Lemma 1, this gives the earliest time the drone
can start from the truck for a delivery to point d. Thus
for any such s the drone returns to the truck at position
ler(d),0].

Finally, (3) follows from Lemma 2. O

For s where es(d) < s < ls(d) and a delivery point
d = [z,y], we call ret(s,d,v) — s the round-trip flight
time to d from [s,0]. It can be seen from Formula 2
that the round-trip flight time is not a linear function
in s, which makes a calculation of a schedule for a given
instance of the truck-drone problem more complicated.
The following is a direct consequence of Lemma 1

Lemma 5 For a delivery point d = [z,y] and a point
[s,0] between es(d) and ls(d), the round-trip flight time
ret(s,d,v) — s reaches the maximal value R/v at s =
es(d), it decreases until s = x(1 —y/v/v? — 1) and then
increases until s = ls(d) where it again reaches the maz-
imal value R/v.

Lemma 6 Let d = [x,y] and d' = [2/,y/] be two deliv-
ery points, and suppose there are valid drone trajectories
from [s,0] to d returning at [r,0] and from [s',0] to d’
returning at [r',0]. If s’ < s <1 <7’, then there is also
a valid drone trajectory from [s',0] to d returning at a
point before [r,0].

Proof. Let Ry be the length of the drone trajectory
from [¢/,0] to d’ and then to [r/,0], and similarly, let
Rs be the length of the drone trajectory from [s,0] to
d and then to [r,0]. Then R;/v and Ra/v respectively
are the distances from [s',0] to [/,0] and from [s, 0] to
[r,0]. Since ' < s < r < ¢/, it follows that Ry <
R;. Now consider the ellipse Fy with parameters (Ry,v)
with [s’, 0] as its left focus. Then d’ is on the right half
of Eq, and [r/,0] must be its right focus. Similarly, let
Es be the ellipse with parameters (Rg,v) with [s, 0] and
[r,0] as its left and right foci respectively, and with d
on the right half of the ellipse. Since s’ < s < r < 7/,
the ellipse Fs is completely contained in E7, and the
point d is in the interior of the ellipse F;. It follows
that there is a valid drone trajectory to d starting at
[s',0]. Furthermore, since the drone reaches d earlier
if it starts at [s/,0] than if it stayed on the truck until
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[s,0] and then flew to d, it must also return to the truck
earlier than [r,0]. O

In the truck-drone instance that we use in the proof
of strong NP-hardness in Section 3, many of the deliv-
ery points are located on the y axis. For these points
we can simplify the expression used to define function
ret(s,d,v) — s, and this simplified expression is used to
obtain upper and lower bounds on ret(s,d, v) — s.

Lemma 7 For s > 0 and a delivery point d = [0,y]
with v/4 <y < wv/2 we have

2 2 1+ 4s?
—y<ret(s,d,v)—s<—y+¢.
v v ve—1

Proof. Let As := ret(s,d,v) — s. Then the distance
travelled by the drone is \/s2 + 2 + /(s + As)2 + y2.
Since the drone travels at speed v, the time taken by
the drone is then

\/52+2y2+ \/(5+A5)2
” )

During the delivery, the truck travels distance As at
speed 1 taking the time As. Equating the two times we
get:

\/52+y2+\/(8+A8)2+y2
v

= As.

Solving for As, we obtain:

2(vy/82 + Y%+ s)

A:
5 v2 —1

From this expression we immediately obtain the lower
bound on As using s > 0:

2 . .
Next ot')seljve that /s2 +'y2 S Y+, Plugglng this
inequality into the expression for As we obtain:

20y +5*/29) +5) _ 200+ 55° 42

As < =
5= v —1 v —1
_2(1—1)%)vy+2v%vy+552+28
N |
2 2%+§32+5<2y 1+4s%+s
o v2 -1 o v2-1 7

where in the last inequality we used the fact that
v/4 <y <wv/2 O

3 Strong NP-hardness

In this section we prove that the following decision prob-
lem is strongly NP-hard:
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Schedule Length problem. Given an instance I of
the truck-drone problem, and an integer p, is there a
schedule Sy of length p (that is, Sy makes p deliveries)?

We show below that there is a polynomial reduc-
tion from the well known 3-Partition problem [5] to
the Schedule Length problem. Recall that in the 3-
Partition problem we are given a multi-set of integers
Y ={y1 <y < -+ < yp}, where n = 3k. Let
T = Y7 ,vyi/k. The 3-Partition problem asks if there
is a partition of Y into k triples, such that the sum of
elements in each triple is equal to 7. The 3-Partition
problem is strongly NP-hard [5].

Theorem 8 The Schedule Length problem is strongly
NP-hard.

Proof. We prove the theorem by exhibiting a reduction
from a 3-Partition instance Y = {y1,y2,...,yn} to an
instance I of the Schedule Length problem. We use
the notation for the 3-Partition instance Y introduced
immediately prior to the statement of the theorem. We
assume that n is sufficiently large; the values in Y are
bounded from above by a polynomial in n, so that n® <
T < n°t! for a sufficiently large constant c.

We now define the corresponding instance I of the
Schedule Length problem as follows. The speed of the
drone is set to v = T and the flying range of the drone
is set to R = 4T. Then the minor radius of the ellipse
corresponding to the speed and range of the drone is
m =212 —1.

For this proof, we depart from our convention of the
truck starting at [0,0] and instead specify the starting
position of the truck as [2,0] (this does not affect the
complexity of the problem, but makes some of the for-
mulas nicer). The set of delivery points D is partitioned
into three subsets called A, B and C, that are defined
below:

A ={[0,y1],]0,92],--.,[0,yn]} is a set of delivery points
located on the y-axis and correspond to the inputs to
the 3-Partition problem.

B = {[6 + €(n),m],[2(6 + €(n)),m],...,[(k — 1)(6 +
e(n)),m]} and
C = {[k(6 + €(n)),m], [k(6 + e(n)) + 4,m],..., [k(6 +

e(n)) +4T,m]}

are sets of delivery points that are located at distance
m from the z-axis and €(n) € (0,1) is a function of n to
be specified later.

Observe that each delivery point in B U C' can be
reached by the drone from exactly one location on the
x-axis, and the drone must fly its full range R = 4T to
make the delivery and return to the truck, and therefore,
each such delivery takes time R/v = 4. See Figure 5 for
an illustration of the instance I produced by the reduc-
tion, as well as the unique feasible drone trajectories for
delivery points in B and C.

In total there are n+ (k — 1) + T + 1 delivery points,
and we set p = n+ (k—1) +T + 1 in the Schedule
Length problem instance. In other words, this instance
asks whether there is a schedule that delivers to all the
delivery points. Observe that the number of points and
their coordinates are all bounded by a polynomial in n,
so the reduction runs in polynomial time.

We claim that the instance Y to the 3-Partition prob-
lem is a yes-instance if and only if I is a yes-instance to
the Schedule Length problem.

It is clear that since the flying range of the drone
equals 47", no deliveries to points in A can be scheduled
after the deliveries to points in C' are made. Thus a valid
schedule delivering to all the points must schedule de-
liveries to A in the intervals between deliveries to points
in B. There are k such intervals, and each interval is
of length 2 + ¢(n). We claim that at most three points
[0, yi,1, [0, ¥i,], [0, yi5] can be scheduled within such an
interval and if only if y;, + vi, + yi; < T'. Establishing
this claim would finish the proof of the theorem.

Assume we have three integers v;,,¥:,, ¥i, such that
Vi, + Yi, + Yis < T and the truck with the drone on it
is at position [i(6 + ¢(n) +2,m| for 0 <i <k —1. By
the upper bound on the delivery time in Lemma 7 and
observing that ¢ < k = n/3, the total time for the three
consecutive deliveries started at [i(6+¢(n)+2),m] is at
most

2(yin + Yz + Yia) | 51+ (K6 + e(n))* + (K(6 + ()
T T2 -1

2n2(6 + €(n))?

I =24 02T, (3)

<2+
Thus, the deliveries to [0, y4,], [0, ¥i,], [0, ¥4, ] can be com-
pleted before the delivery to [(i + 1)(6 + e(n) + 2,m]
is scheduled, provided that O(n?/T?) = O(n=2¢t2) <
e(n).

Assume we have three integers v;,,¥i,, ¥i, such that
Vi, + Yi, + Yis > T and the truck with the drone on it
is at position [i(6 + e(n) + 2, m] for 0 <i < k — 1. By
the lower bound on the delivery time in Lemma 7, the
total time for the three consecutive deliveries started at
[i(64€(n)+2,m] is at least 2(yi, +vip +Yis)/T > 2+1/T
and they cannot be completed before the delivery to
[(i +1)(6 + €(n) + 2,m] is scheduled, provided that the
term 1/T > n=°"! exceeds e(n).

It is left to notice that because we can take n and ¢
sufficiently large, we can find e(n) satisfying:

1 1
O <W) < E(TL) < nc+1.

For example, one could take ¢ = 4 and e(n) = 1/nS.
This completes the proof of strong NP-hardness.

O
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Figure 5: Illustration of the Schedule Length instance I output by the reduction from the 3-partition problem. The
unique feasible drone trajectories for delivery points in B and C' are also shown.

4 A Greedy Approximation Algorithm

In this section we describe a greedy scheduling algo-
rithm for the truck-drone problem. Our algorithm,
which we call A, , assigns deliveries to the drone as the
truck moves from left to right starting from the initial
position of the truck at [0,0]. When the truck with the
drone is at position [s,0], our greedy algorithm sched-
ules a delivery to point d which, from among all feasi-
ble delivery points, minimizes the round-trip flight time
from [s,0], i.e., which gives the earliest possible return
for the drone to the truck. Notice that the delivery point
which minimizes the round-trip flight time from [s, 0] is
not necessarily the delivery point that is at the shortest
distance from [s, 0]. For example, in Figure 8, the point
dy is closer than ds to [s,0]. Thus one needs to use
the function defined by Formula 2 to calculate which
delivery point requires the shortest time to return to
the truck. We then update s to be this shortest return
time. If there are no feasible delivery points, then s i
set to the earliest time any of the remaining points can
be reached after the current time.

Algorithm 1 gives the pseudocode for A,. It is
straightforward to see that Algorithm 4, can be im-
plemented in O(n?) time, since a single evaluation of
ret takes constant time. Figure 6 gives an example of
the trajectories of the drone according to an optimal
schedule and that of the schedule calculated by A,.

In the next theorem we compare the size of the sched-
ule calculated by Algorithm A, with respect to an op-
timal algorithm.

Theorem 9 Given an instance I = (v,R,D) of the
truck-drone delivery problem, let S, be the schedule pro-
duced by the algorithm Ay and let Sopr be an optimal
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Figure 6: The black arrows, red arrows show the travel
of the drone according to an optimal, greedy schedule,
respectively, for an instance I = (0,4,8, D) with D con-
taining five delivery points {d;,ds,...,ds}. The black
crosses and red crosses on the x-axis indicate the return
points of OPT and Ay, respectively.

schedule. Then
ISopr| < 2|8

Proof. Let D = {d;,ds,...,d,} and let

SOPT = ((dilasl)a (di27 82)7 ey (dip’ SP)), and

Sy = ((djlasll)v (dj235/2)7 ) (dquslq))7Where qg<p<mn.

We give a function F that maps delivery points in
Sopr to points in Sg. For every k, with 1 < k < p,
define 7 to be the return time of the drone for the k"
delivery in So pr and similarly for every k, with 1 < k <
q, define 7}, to be the return time of the drone for the
k' delivery in S;. Define @, to be the set of delivery
points in §; whose return to the truck in the greedy
schedule occurs during the flight time of the drone to
deliver the k' item in Sppp. That is,

Qr={dj, =7y € (sk, 4]}
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If Qr # 0, define last(Qx) to be the element of Qy
with the latest return according to the greedy schedule.
Now define P to be the set of delivery points in S,
whose start time in the greedy schedule is before the
start time of the k" delivery in the optimal schedule,
but whose return to the truck in the greedy schedule
occurs between the return from the k" delivery in the
optimal schedule and the start of the (k + 1)%* delivery.

Algorithm 1 Greedy Approximation Algorithm A4, to
Compute Feasible Delivery Schedule
Require: Instance I = (v,R,D) where D =
{dy,ds,...,d,}, is a list of delivery points.
Ensure: Sy is a feasible schedule of deliveries.
1: S;+ L+ 0
2. s+ 0
> For each delivery point d;, calculate es(d;) and
Is(d;) and insert triple into L.

i

4: forv=1...ndo

5 if s <ls(d;) then
6: x.es = es(d;)
7: x.ls =1s(d;)

9: Insert(L, x)

10: end if

11: end for

12: Sort(L, key = es)
13: while L # 0 do
14: x + first(L)

15:

16: if s < z.es then

17: S x.€e8 > If no feasible delivery point,
move s forward.

18: end if

19: > Find feasible delivery point which minimizes the
return time to truck.

20: Tmin < OO0

21: while = # NIL and s > x.es do
22; r < ret(s,v,x.d;)

23: if » < rpin then

24 Tmin < T

25: save < T

26: end if

27: x + next(L)

28: end while

29: > Insert next delivery point into schedule, update s
and list L
30: Insert (Sy, (save.d, s))

31: S < Tmin

32: for x € L do

33: if x.lr < s then
34: Delete (L, x)
35: end if

36: end for

37: end while

That is:

Py ={dj, :sy <spandry <71y <spi1}

If P, # (), note that it can have only one element,
denote it as py.
We are now ready to define the function F. For all

ke{l,...,p}

last(Qr) i Qr #0 (4a)
F(di,) = Pk if Q=0 and Py # ((4b)
di, otherwise (4c)

We give an example to illustrate function F using
an instance shown in Figure 6. In that case the optimal
schedule makes 5 deliveries in order to (dy,ds, ds, d4, ds)
and greedy schedule contains 3 deliveries (ds,dy,ds)
listed in order, omitting the starting times. For this
case the function F is as follows:

F(dy) = ds, F(da) = dy, F(d3) = ds, F(d5) = ds,
and ]:(d5) = d5.

First we prove that Clauses 4a, 4b, and 4c define a
valid function on L’, that is, every delivery point in the
optimal schedule is mapped to a delivery point in the
greedy schedule. Since Qi and Py only contain delivery
points in the greedy schedule, the only case to consider
is that Qr = P = 0 and F(d;,) = d;,, and d;, is not
part of the schedule S, of the greedy algorithm A,.

Let ¢ be the largest integer such that s, < s;. By
assumption dj, # d;,. Since Qi = P, = 0, either 7}, >
Spy1 or 1y < sp. If ) < s (see Figure 7(a)), consider
the (£+1)% delivery by the greedy algorithm. We know
that sj,, > s;, and since Q = 0, it must be that ), >
ri. Thus for its (¢ + 1) delivery, the greedy heuristic
should have chosen to deliver to d;, rather than to d;,,,,
a contradiction.

Therefore it must be that ré > Sg4+1. But then, using
Lemma 6, there is a valid trajectory for the drone flying
to d;, starting at s, with an earlier return time that is
at most ry < sg41 < 1y (see Figure 7(b)). Thus for its
0" delivery, the greedy heuristic should have chosen to
deliver to d;, rather than to d;,, a contradiction. Thus
d;, must be part of the greedy schedule, and F is a
valid function mapping the delivery points in Sppr to
the delivery points in S,.

Finally, we claim that F maps at most two
delivery points in Spopr to one delivery point
in & First, since the half-closed intervals
(s1,71)s (85, 75)], ..., (s}, 7}/] are all disjoint, and the
half-closed intervals (s1,71], (s2,72], ..., (sg/, %] are also
all disjoint, and any return point [r/,0] can satisfy at
most one of Clauses 4a and 4b, it follows that distinct
elements in Spopr are mapped to distinct elements of
Sy by those two clauses. Second, clearly distinct ele-
ments in So pr are mapped to distinct elements of S, by
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Figure 7: This figure illustrates the two cases in the
proof that the function F in Theorem 9 is well defined.
Red lines show deliveries in a presumed greedy sched-
ule, and black lines indicate deliveries in a presumed
optimal schedule.The dashed line represents the x axis,
with distances from the origin marked.

Clause 4c. Therefore, the only kind of ”collision” that
can occur is that F(d;, ) is mapped to d;, by Clause 4a
or Clause 4b and F(d;,) is mapped to d;, by Clause 4c.
This proves our claim that F maps at most two delivery
points in Sopr to one delivery point in S.

We conclude that the schedule S, created by A, con-
tains at least [p/2] elements, as desired. That is, A, is
a 2-approximation algorithm. O

The approximation ratio of 2 is tight. To see this,
consider the instance given in Figure 8. For this in-
stance the schedule computed by the greedy algorithm
contains exactly one half of the delivery points, while an
optimal schedule makes deliveries to all points. Thus,

the approximation factor of 2 in Theorem 9 cannot be
improved.

Figure 8: Approximation factor of 2 is sharp: in this
instance, dy,ds, ds, . .. are located at the maximal reach
of the drone, and reachable only from the left focus of
the corresponding ellipse (dashed green). An optimal
schedule, shown in black, contains all points in order
dy,ds,ds,dy,.... The greedy algorithm, can immedi-
ately schedule a delivery to ds, but not to d;. After
scheduling a delivery to dy a delivery to d; is not fea-
sible any more, and this scheduling, shown in red, is
repeated, resulting in the schedule ds, d4, dg, . . ..

5 Optimal algorithm for a restricted set of inputs

As seen in the proof of strong NP-hardness in Section 3,
having many delivery points with the same z-coordinate
creates a decision problem: should a delivery to a point
[0,y] be scheduled prior to or after the truck reaches
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[0,0]. These decisions make the truck-drone problem
NP-hard. In this section, we specify a family of in-
stances called proper instances in which the delivery
points do not have the same or “nearly” the same x-
coordinates, where “nearly” depends on the difference
in their y-coordinates. In particular, the greater the dif-
ference in the y-coordinates of the points, the greater is
the difference in their z-coordinates in proper instances.
We show that there is O(n?) algorithm to compute an
optimal schedule for proper instances.

Definition 2 Let I = (v,R,D) be an in-
stance of the truck-drone delivery problem where
D ={dy,da,...,d,}. We say I is a proper instance if:

(1) for every i,5 € {1,...,n}, with i # j, the
delivery point d; is not contained in the triangle
[es(d;),0],d;, [ir(d;), 0], and

(2) the set of closed intervals
{[es(d1),1s(d1)], [es(d2),ls(d2)], ..., [es(dn),ls(dyn)]}
form a proper interval graph [6], i.e., no interval in the
set is a subset of another interval in the set.

Figure 9 shows an example of a proper instance. The
definition of a proper instance implies that the delivery
points have pairwise different xz-coordinates and clearly,
not many of them can reside in a narrow vertical band.

The lemma below implies that for a proper
instance with D = {dj,ds,...,d,}, the inter-
vals [es(dr),ls(d1)], [es(dz2),ls(d2)],. .., [es(dn),ls(dy)]
are ordered by the x-coordinates of the corresponding
points in D.

Lemma 10 Let I = (v,R,D) be a proper in-
stance of the truck-drone delivery problem with D =
{di,do,...,dp}. Let di = [z;,y:] and d;j = [z;,y;] be
two points of D with x; < xj. Then either ls(d;) <
es(d;), ores(d;) < es(d;) <ls(d;) < ls(d;)

Proof. If y; < y; then Is(d;) > Ils(d;). Since inter-
val [es(d;),ls(d;)] cannot contain [es(d;),ls(d;)], either
ls(d;) < es(dj), or es(d;) < es(d;) <ls(d;) < ls(dj).

If y; > y; then es(d;) > es(d;). Since inter-
val [es(d;),ls(d;)] cannot contain [es(d;),ls(d;)], ei-
ther Is(d;) < es(d;), or es(d;) < es(d;) < ls( i) <
Is(d;). O

Given an instance I = (v, R, D), we can verify if I is
a proper instance in O(n?) time by checking each pair
of intervals for non-containment, and each triangle for
the non-inclusion of other points of D.

The following lemma is used to show that for proper
instances we can restrict our attention to schedules in
which the subsequent deliveries are ordered by the x
-coordinates of delivery points, and in which the trajec-
tories of the drone are non-crossing. See Figure 10 for
an illustration.
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Figure 9: An example of a proper instance I = (v, R, D) position for v = 3, and r = 12. For each delivery point
the red segment points to the corresponding ed and ld points on the line, and the green segment points to the
corresponding la. The three topmost points are at the limit of the reach of the drone.

di = [z1, 1] dy = [z1, 1]

Figure 10: (i) The crossing trajectories to d; and do
are shown in black. (ii) The non-crossing trajectories,
shorter in total, are in red.

Lemma 11 Let I = (v, R, D) be a proper instance of
the truck-drone problem. Assume that there is a feasible
schedule for this instance in which a delivery to, say
dy = [x2,y2] immediately precedes that to di = [x1,y1],
with x1 < xo. Then

1. The trajectories of the drone to dy and ds must
CTOoSS.

2. By swapping the order of deliveries to di and ds
the total time of the two deliveries cannot increase,
and thus swapping the two deliveries maintains the
feasibility of the schedule, i.e., crossings of two con-
secutive trajectories can be avoided.

Proof. To see (1), let s;,r; denote the start and return
times to delivery point d; for ¢ € {1,2}. Assume for con-
tradiction that delivery trajectories do not cross. If y; <
Y2, then d; lies inside the triangle [rq, 0], d2, [x2,0]. This
triangle is clearly contained in [es(dz), 0], da, [Ir(d2), O]
contradicting D being proper. If y; > yo then dy lies
inside the triangle [z1,0], d1, [s1,0], which is contained
inside [es(dy),0],dy, [Ir(d1),0]. This also contradicts D
being proper. See Figure 11.

Next, we show (2). By Lemma 1 we can assume that
the delivery to d; starts immediately at time 7o, i.e.,
s1 = 79 and terminates at time ry. Clearly, in this
case es(dy) < ls(d1) and thus, by Lemma 10, es(dy) <
es(ds) < s9 < 1o <ls(dy) < ls(dy). Thus, a delivery to

dy = [-’152-, Z/z] dy = [-”1/‘1-,’!/1]

Figure 11: Tllustration for the proof of (1) in Lemma 11.
dy = [x1,y1] and do = [z2, yo] with 21 < x9 and delivery
to dy occurring before the delivery to dy. Figure (a)
illustrates the case of y; < yo and the shaded region
demonstrates locations of d; which result in a crossing
trajectory. Figure (b) illustrates the case of y; > y2 and
the shaded region demonstrates locations of dy which
result in a crossing trajectory.

dy can be started at time s3, and a delivery to dy can
be started at time r5 or later. It remains to show that
the reversal in the delivery order can terminate latest
at time 7y.

Suppose first that delivery to dy, when started at time
so takes at most as much time as a delivery to dy at time
s2, see Figure 10 (ii). In the paragraph below, we use
s; to denote the point [s;, 0] and similarly r; to denote
the point [r;,0]. Consider the quadrilateral ss,d;,d2,r1
shown in blue. Since our instance is a proper instance,
the triangle sg,d;,71 doesn’t contain ds and thus this
quadrilateral is convex. By the triangular inequality
the sum |s2,d1| 4 |da, 71| of the lengths of two opposite
sides of the quadrilateral is strictly less than the sum of
the length of its diagonals |dy, 71| + |s2, d2|. Therefore,

|s2, d1|+|d1,r2| + [ra, d2| + |da, 1| <
< [s2,da| + |da, r2| + |r2, di| + |d1,71]
and the path s, dq, 72, ds, 71 is shorter than the trajec-
tory so,ds,T9,d1, 1. However, the path sq,dy, 79, do, 71

is not necessarily a valid drone trajectory if the delivery
to di from s, takes less time than the delivery to do
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from s5. Then, when delivering to dy first, the drone
returns to the truck at point r4 located strictly between
so and r9. But then the path so,dy,r),ds,r1 is even
shorter than path ss,dy,79,ds, 1. Thus, when starting
the delivery to da at r}, the drone returns to the truck
at a point r{ to the left of r1, which improves the total
delivery time to d; and ds.

dy = [x1, 1]

dy = [z1,y1]

Figure 12: Reversing the directions of deliveries and the
movement of the truck in (ii) converts a configuration
of the second case to the first case

Now suppose instead that delivery to di, when started
from so, takes more time then the delivery to dy from
se, as for example on Figure 12 (i). By the shape
of the function ret(s,d,v)), see Lemma 5, and since
es(dy) < es(dz) and Is(dy) < ls(dz2), a delivery to di,
when started from s; also takes more time than the
delivery to dy from s;. Consider the configuration on
Figure 12(ii) in which we reverse the movement of the
drone and of the truck. Then we reduced this to the pre-
vious case and a delivery from s; first to ds and then to
d; is shorter, and by reversing this once more we obtain
that the delivery from so first to d; and then to ds is
shorter. O

A proper instance is guaranteed to have an optimal
schedule with non-crossing trajectories. However not all
optimal schedules give non-crossing trajectories. Indeed
there are non-proper instances where crossing of trajec-
tories is required in any optimal schedule as demon-
strated in Figure 13.

dl (13

Figure 13: An instance of the problem where any opti-
mal schedule must contain crossing trajectories. Points
dy and d3 are at the maximum reach of the drone. When
scheduling a delivery first to d; then a delivery is pos-
sible either to ds or to dsz, but not to both.
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Definition 3 Let I = (v,R,D) be an instance
of the truck-drone delivery problem where D =
{di,ds,...,d,}. We call schedule

8[ = ((di1781), (diQ,Sg), ceay (dim,sm), m S n

monotone if the x-coordinate of d;; is strictly less than
the x-coordinate of d;, ., for every 1 <j <m —1,

In the next theorem we show that there always exists a
monotone schedule with the optimal substructure prop-
erty for proper instances.

Theorem 12 Let I = (v,R,D) be a proper in-
stance of the truck-drone delivery problem with D =
{d1,da,...,dn}. Assume that the points in D are listed
according to increasing x-coordinate. Then there is an
optimal schedule S; = ((diy, s1), (diy-82),- -, (di,, Sm)s
m < n for this instance with the following properties:

1. Sy is monotone.

2. For every j < m, the initial part
((diy s 51), (diy, 82)5 -5 (diy, 85)) of Sr minimizes
the delivery completion time for any subset of
{di,ds, ... d;;} of size j.

Proof. Assume I = (v, R, D) is a given proper instance
of the truck-drone delivery problem and let S; be an
optimal schedule for it. By a repeated application of
Lemma 11 we can swap any two consecutive deliveries
that don’t respect the order of z-coordinates of points,
as in the bubble sort, while maintaining the schedule
optimal. This eventually produces a monotone schedule
of the same (optimal) length, proving (1).

To show (2), assume that for some j < m,
there is a subset of j points {dy,dy,..., dg_j} of
the set {di,ds,...,d;;} for which there is a sched-
ule ((df,,s1), (di,,s3),...,(d; ,s})) with s < s
and which minimizes the delivery completion time
for any subset of {di,ds,...,d;;} of size j. Then
by concatenating ((d;, , s1), (di,, s5), ..., (d},,s})) with
((dijsrr8541)5- -5 (di,,, 8m), we get a valid schedule. In
this manner, repeating the process starting with j = 4,
and decreasing appropriately the value of j we can get
a schedule for I that is optimal, monotone, and satisfies
the property 2 of the theorem. O

We use Theorem 12 to describe a dynamic pro-
gramming algorithm that finds an optimal schedule for
proper instances.

Theorem 13 There is an O(n?) algorithm that cal-
culates an optimal schedule for any proper instance
I = (v,R, D) of the truck-drone delivery problem.

Proof. Assume the delivery points in D are listed in
the order of their x coordinates. Define T'(¢,5) to be
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the earliest delivery completion time for the truck and
the drone to perform exactly i deliveries from among
dy,da,...,d; where d; must be included in the schedule.
If such a schedule is not possible, we define T'(4, j) = co.
We can compute T'(4, j) using dynamic programming as
follows. We clearly have T'(1,j) = ret(s,d;,v) for the
base case of i = 1 (see Lemma 4 for the definition of ret)
where [s, 0] is the starting position of the truck. For i >
2, we have T'(i,j) = minj . ret(T(i — 1,5"),d;,v). This
recursive formula immediately follows from the optimal
substructure property stated in Theorem 12: a schedule
resulting in the earliest completion time of making ¢ out
of the first j deliveries where d; is included consists of
delivering to 4 — 1 out of the first j < j delivery points
(with earliest completion time T'(i — 1, 5')) followed by
earliest delivery completion to d;. Note that defining
ret(s’,v,d) = oo when s’ > [s(d) and T'(i,j) = co when
delivery is impossible correctly works with the recursive
computation of T'.

Having computed T', we can find the maximum num-
ber of deliveries that can completed in a valid schedule
by taking the maximum m such that T'(m,j) # oo for
some j. By recording for each (i,7) pair which choice
of j' resulted in the table entry T'(i,7), we can recon-
struct the schedule itself using standard backtracking
techniques.

The running time is dominated by computing the ta-
ble T(i,j). It has O(n?) entries and each entry can
be computed in time O(n), since a single evaluation of
ret takes constant time. The overall runtime is then
O(n?). O

6 Discussion

We have shown that even in the simple case of a sin-
gle drone with a single truck travelling in a straight
line, the problem of coordinating their efforts to maxi-
mize the number of deliveries made is hard. Our work
raises a number of different questions. We show that a
greedy strategy achieves a 2-approximation. Is a better
approximation possible? In particular, is the problem
APX-hard or might there be a PTAS for it? Our im-
plementation of the greedy strategy runs in O(n?) time.
Is a better running time for the algorithm possible by
taking advantage of the structure of the intervals cre-
ated by the drone paths? The set of proper instances
includes those where the y-coordinate is fixed. Could
this be expanded to include points with a limited num-
ber of different y-coordinates? More generally, is there a
"natural” setting in which the problem becomes fixed-
parameter tractable? Finally, many variations on the
problem are worth pursuing. Rather than maximizing
the number of deliveries made with a given speed or
drone range, one could consider the dual problems of
minimizing the speed or range required to complete all

deliveries. Versions with multiple drones and/or trucks,
larger capacity drones, etc. are also of interest.
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Euclidean Freeze-Tag Problem on Plane*

Nicolas Bonichon! Cyril Gavoille’ Nicolas Hanusse! Saeed Odak?

Abstract

The freeze-tag problem is an optimization problem in-
troduced by Arkin et al. (SODA’02). This problem
revolves around efficiently waking up a swarm of inac-
tive robots starting with a single active robot. Each
asleep robot is activated by an awake robot going to its
location. The objective is to minimize the total wake-up
time for all robots, the makespan.

A recent paper by Bonichon et al. considers the ge-
ometric version of the freeze-tag problem on the plane.
They conjectured that for the robots located on the
plane with fo-norm, the makespan is at most (1+2v/2)r,
where r is the maximum distance between the initial
active robot and any asleep robot. In this paper, we
prove the conjecture for the robots in the convex posi-
tion and for n < 7 or n > 281, where n is the number of
asleep robots (The conjecture was known to be true for
n > 528 robots as shown by Bonichon et al.). Moreover,
we show an upper bound of 4.63r for the makespan of
robots in a disk of radius r in the f5-norm, improving
the best known bound of 5v/2r = 7.07r.

1 Introduction

The freeze-tag problem is an optimization problem con-
cerned with waking up a swarm of asleep (inactive)
robots in the shortest possible time starting with a sin-
gle awake (active) robot. Consider a set of robots rep-
resented by S and |S| =n+1 for n € N. Let pg,...,pn
be the locations of the robots in a metric space, with pg
being the location of the initial awake robot.

To activate an asleep robot, an awake robot must
travel to the position of the asleep robot. As soon as
an asleep robot is activated (awakened), it can assist
in waking up the other asleep robots. We assume that
each awake robot moves at the same speed of one unit
per second while the asleep robots do not move. The
makespan (wake-up time) is the time of the last wake-
up. The freeze-tag problem has applications in group

*Due to the space constraint several proofs are omitted. For
the proofs see the full version of the paper.

fLaBRI, University of Bordeaux, CNRS, Bordeaux INP,
France

¥School of Electrical Engineering and Computer Science, Uni-
versity of Ottawa, Canada.

199

formation, searching, and recruitment in robotics, as
well as broadcasting and TP multicast problems in net-
work design (see [2, 9] and their references).

The problem can be rephrased as follows: A wake-up
tree of S is a binary weighted spanning tree rooted at
po such that the degree of pg is one and the length of
an edge is the distance between its endpoints (see for
instance Figure 1). The freeze-tag problem is to find a
wake-up tree of S with the minimum (weighted) depth.

Figure 1: An example of a wake-up tree with 6 asleep
robots in the Euclidean plane.

In this setup, Arkin et al. [3] give a constant ap-
proximation algorithm for the freeze-tag problem, when
one asleep robot is located on each vertex. They also
show that using an underlying graph metric, the prob-
lem is NP-hard. In a different paper, Arkin et al. [2]
show that the freeze-tag problem, even on star met-
rics, is NP-complete. Moreover, they show that ob-
taining a 5/3-approximation is NP-hard for general
metrics on weighted graphs. Therefore, a polynomial-
time approximation scheme does not exist unless P =
NP. In a related paper, Kénemann et al. [9] consider
the problem of finding a minimum diameter spanning
tree with a bounded maximum degree in a complete
undirected weighted graph and provide an O(y/logn)-
approximation algorithm for the freeze-tag problem in
the general setting.

In this paper, we consider the geometric freeze-tag
problem for the collection of robots. In the geometric
freeze-tag problem, robots are modeled as points in R?
in a particular metric for some d € N. For d = 3 and ¢,
norm, it has been shown that the geometric freeze-tag
problem is NP-hard where p > 1 [6, 7, 10]. Sztain-
berg et al. [11] give a heuristic algorithm with a tight



36" Canadian Conference on Computational Geometry, 2024

approximation of @(logl_l/d n) for the makespan of n
asleep robots in d dimensional space. In particular, their
greedy algorithm yields an O(1)-approximation in one
dimension (d = 1) and an O(+/logn)-approximation in
two dimensions (d = 2). Arkin et al. in [2], for any
constant d € N, provide a polynomial-time approxima-
tion scheme when robots are located in R? equipped
with £, metric. Moreover, their algorithm runs in time
O(nlogn + 2rolv(/e)),

It is worth mentioning that Hammar et al. [8] study
the online freeze-tag where each asleep robot is revealed
at a specified time. Later, an optimal algorithm for the
online freeze-tag problem was introduced by Burnner et
al. [5].

In the geometric setting, as long as normed spaces are
concerned, the positions of all the robots can be scaled
and translated such that all asleep robots are in a unit
disk, and the initial active robot is at the origin (i.e., the
active robot is at the origin and the distance between
the active robot and the farthest asleep robot is a unit).
Note that in this configuration, the makespan is always
lower bounded by the maximal distance between the
active robot and asleep robots (the radius of the unit
disk). Combinatorial upper bounds for the makespan
of robots in a unit disk with respect to £, norm are
studied by Bonichon et al. [4]. In particular, when
robots are located in the unit disk in the plane with ¢;
norm, they provide a tight strategy with makespan 5.
They also show [4, Theorem 2] that the makespan for
n asleep robots in the unit disk with one active robot
at the origin is at most 3 + ¢/y/n, where ¢ is a constant
depending on the norm.

We focus on the Fuclidean freeze-tag problem on the
plane. That is, we consider robots as points in the Eu-
clidean metric space on R2. In this setting, the problem
remains NP-hard [1], and Najafi Yazdi et al. [12] pro-
vide an algorithm with a makespan (5 + 2V/2 + \/5) for
the robots located in a unit square that runs in linear
time. Recently, Bonichon et al. [4] proposed an algo-
rithm with a makespan 5v/2. They also conjectured
that the maximum makespan of robots in a unit disk of
any norm is achieved when the number of robots is four.
For n = 4, we get the worst-case whenever four asleep
robots p1, p2, p3, and py form a square with sides of
length v/2. It takes time 1 to go from the active robot
po in the center to p;, and then one robot has to wake
up po followed by p3 in time 2v/2, and the other one
wakes up ps4. In the Euclidean freeze-tag problem, this
conjecture translates to the following.

Conjecture 1 ([4]) Let n be a positive integer. There
exists a strategy to wake up n asleep robots inside a unit
disk in Euclidean space starting with an active robot at
the origin in time at most 1 + 24/2.

Our main contributions are the following. First we
show that the Conjecture 1 holds for n < 7 or n >
281, and also when the robots are in convex position
(Theorems 1, 2, and 3). Then we provide a new upper
bound of 4.63 for the makespan of the Euclidean freeze-
tag problem on the plane, improving upon the best-
known result of 5v/2 ~ 7.07. This also shows that the
optimal upper bound for the Euclidean case is strictly
less than the lower bound of 5 for the ¢; norm.

The rest of this paper is organized as follows: The
next section will be dedicated to preliminaries and some
definitions for the geometric objects needed in the se-
quel. In Section 3, we discuss monotonic wake-up strate-
gies for two simple geometric objects as a subroutine. In
Section 4, as a warm-up, we prove Conjecture 1 for small
values of n. Section 5 and Section 6 study the correct-
ness of Conjecture 1 when the asleep robots are in a
convex position and when the number of asleep robots
is at least 281, respectively. Section 7 establishes an
improved makespan of 4.63 for the Euclidean freeze-tag
problem in the plane.

2 Preliminaries

For each 0 < ¢ < n, the wake-up time of robot p; is the
length of the path of p; from pg in the wake-up tree. The
depth of a wake-up tree indicates its makespan. Using
this terminology, a closed geometric region R on the
plane with a specified active robot has a makespan of
at most 7 if for every n € N, there exists a wake-up tree
for every configuration of n asleep robots in the region
R with a depth at most 7.

Many of the strategies that we will define rely on a
recursive decomposition of regions R into subregions.
Therefore, we will define some regions that will be useful
to us later on.

A cone of angle 6 and radius r is a geometric region
inside a disk of radius r between two segments with
one endpoint on the center of the disk and the other
endpoint on the boundary such that the angle between
the two segments is 6 (see Figure 2(a)). The center of
the disk is referred to as the cone’s apex. A cone defined
using a disk of radius one is called a unit cone.

A (unit) crown of angle 6 and width w is obtained
from a unit cone of angle 6 by subtracting a smaller cone
of the same angle and radius 1 — w (see Figure 2(b)).
Each non-trivial crown consists of 4 sides: two curved
sides and two straight-line sides. We call the longer
curved side of a crown the exterior side and the shorter
curved side of a crown is called the interior side. For
future reference, we represent the makespan of a unit
crown of angle # and width w starting with two active
robots at a corner on the exterior side of the crown with
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The
monotonic wake-up strategy to solve a cone with one
active robot in the apex. (b) A crown of angle 6 and
width w. The monotonic wake-up strategy to solve a
crown with two active robots on a corner.

Figure 2: (a) A cone of angle 6§ and radius r.

crown(w, 0).

A dome is the part of a cone between its arc and its
chord (see Figure 6). The radius and angle of a dome
are the same as the corresponding cone.

We define semi-cone to be the region enclosed be-
tween two chords of a unit disk with one common end-
point that does not contain the origin in its interior
(see Figure 7(a)). We call the common endpoint of two
chords the apex of the semi-cone.

Throughout this paper, ¢ stands for the golden ratio,
ie., ¢ = 1+T\/5 Note that ¢? = ¢ + 1.

3 First Bounds For Geometric Shapes

In this section, we present monotonic wake-up strate-
gies for two simpler geometric objects, namely the unit
cone and the unit crown, as subroutines for the other
algorithms discussed in the rest of the paper. We first
assume that for cones (resp. crowns) robots are ordered
w.r.t the distance (resp. angular distance) from the
apex (resp. a corner). Given a binary wake-up tree,
a strategy is said monotonic if for every path from the
root to leaves, points are ordered w.r.t to the distance
from the root.

We begin this section with a simple observation stat-
ing the triangle inequality in polar notation.

Observation 1 Let A = (rq,0,) and B = (ry,,6,) be
two points in polar notation inside a unit disk. Then
we have ||AB|| < |rq — rp| + max(rq, 1) - |00 — 0p]. In
particular, since rq,rpy < 1, we have ||AB|| < |ro —7s| +
|0 — Op].

In the following, |r, — 74| and max(rq,rp) - [0a — 0]
are referred to as the radial distance and angular dis-
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tance between A and B, respectively. As the first clas-
sical result, we present a result from [4] that establishes
an upper bound for the makespan of robots positioned
within a unit cone of angle 6 (refer to Figure 2(a)).

Informally, the initial robot finds the closest asleep
robot in the cone and the cone is partitioned into two
regions, namely, subcones of angle (¢ and (1 — ().
Then the process is repeated similarly in each re-
gion with one active robot. From Observation 1, the
length of the path pg,p1,...p¢ from the initial robot
toward any other robot is at most ) . |r; — ri—1| +
|6p, — Op,_,|. The sum of the first terms is at most
1 whereas for the angular detour we have A(f) <
max {6 + A(C0), (1—-0)0+ A((1—-¢)0)}. If we take
¢ = 1/2,A(0) < > ,~00/2" < 20. In fact, taking
(=2— ¢, we get:

Lemma 1 ([4](Proposition 14)) There exists a
strategy to wake up asleep robots in a cone of angle 6
and radius one starting with one awake robot at the
center of the cone in time at most 1 + ¢0.

As the next geometric subroutine, similar to
Lemma 1, we can construct a monotonic wake-up strat-
egy for a unit crown using a monotonic recursive parti-
tion into sub-crowns.

Lemma 2 There exists a strategy to wake up all of the
robots in a crown of angle 6 and width w starting with
two awake robots at a corner in time at most 0 + pw.

If we consider only one awake robot on the bound-
ary, we must consider an extra time to wake up another
robot, and then we can apply the result of Lemma 2.

Corollary 1 There exists a strategy to wake up all of
the robots in a crown of angle 8 and width w starting
with one awake robot at a corner in time at most 0 +

(1+¢)w.

Finally, with a strategy analogous to that in
Lemma 2, one can wake up robots within a rectangular
region.

Corollary 2 There exists a strategy to wake up all of
the robots in a rectangle of width w and height h starting
with two awake robots at a corner in time at most h +

ow.

4 Configurations With Small Number of Asleep
Robots

In this section, we state the correctness of Conjecture 1
for the small number of asleep robots.
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Figure 3: Projection of convex points on the disk.

Theorem 1 Let n < 7 be a positive integer. There
exists a strateqy to wake up n robots in a unit disk in
time less than 1 + 24/2.

The statement is trivial for n < 3. Let n € {4,5,6,7}
and p; be one of the robots such that the line passing
through pg and p; cuts the unit disk C into two parts,
each of which contains at most [(n — 1)/2] robots (dif-
ferent from py and p1). Let A and A’ be the intersection
of this line with C, such that p; is on the segment pgA.

The wake-up strategy is as follows: once the robot p;
is awakened, the two robots are positioned at point A.
Then, each robot takes care of half of the disk. In each
half-disk, the robot will awaken the robot closest to A,
and then the two robots will each awaken at most one
more robot (see Figure 1).

5 Robots In Convex Position

In this section, we assume that the coordinates p; are
ordered in the counter-clockwise cyclic ordering. We
present the following theorem:

Theorem 2 If the point set corresponding to S is in
a convex position within a disk C of radius one, the
makespan of S is upper bounded by 1 + 2+/2.

Let us sketch the proof of Theorem 2:

e For each p; € S, we assign the point p; € C being
the intersection of the ray perpendicular to p;_1p;
emanating from p; and going outside from the con-
vex hull of S. This projection is such that for any
pair p; and p;, [[pip}|| = [|pip;l| (see Figure 3).

e If S’ is a point set on the disk C, we provide a wake-
up tree T’ of makespan less or equal to 1 + 2v/2.

e The wake-up tree T on S is defined from 7. If
(p;, p}) belongs to T' then (p;, p;) belongs to T'. We

Case (I)

Case (II)

Figure 4: Robots on the disk. Case (I): The disk is
partitioned into 3 arcs. Case (II): Without the existence
of a small angle, the disk is partitioned into 2 half-disks.
Except for the last robot pg, robots ps to p; are awake
using a monotonic complete binary tree from p;.

show that the makespan of T' is smaller or equal to
the one of 7" and thus bounded by 1 + 24/2.

Let’s introduce a simple strategy to wake up an arc of
angle a containing k asleep robots while the first robot
p; on the arc in the counter-clockwise order is awake.
In the algorithm ARC STRATEGY, p; wakes up pjii,
and any monotonic complete binary wake-up tree can
be considered. By monotonic, we mean that each robot
wakes up another robot with a larger angular position.
The depth of this binary wake-up tree is 1 + |log, k.

DisK STRATEGY takes as an input the point set S
on the boundary of a unit disk and an angle ag. Take
B=m— 2+v/2 and let 1 <i < n be an integer where the
angle Zp;popi+1 is the smallest. We consider two cases
(see Figure 4):

o Case (I): If Zpipopiy1 < o then py wakes up
p;. For convenience, assume that the line passing
through py and p; is horizontal. The two robots
located at p;, wake up in parallel, all the robots
at an angular distance at most 7 — 8 from p;; one
going in the counter-clockwise order through p;;
and the other one in the clockwise order through
pi—1. As soon as p;41 is awake, it directly goes to
the position of the disk at an angular distance = — 3
from p; and wakes up all the remaining robots in
the remaining arc of angle 24.

o Case (II): If the previous case does not hold, take an
integer 1 < j < n such that the angle Zp;_1pop;+1
is the smallest. Again, for convenience, assume that
robots py and p; are located on a horizontal line.
As in the previous case, pg wakes up p; and robots
on the two arcs up to the angular distance m — «q
from p; are awake by two robots emanating from
pj using ARC STRATEGY. Omne robot from pjiq
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Figure 5: Illustration of proof of Theorem 3. (a) stage
one. (b) stage two: split into 8 semi-cones and 2 domes.

(resp. pj—1) directly goes to the last robot on the
arc (m — ap, ) (resp. (g — m,—7)). Then the rest
of the robots on the arcs of angle m — o are awake.

To conclude, we show that for ay = w/11, the Disk
STRATEGY has a makespan less than or equal to 1+2+/2.

6 Strategies For Large Number of Robots

By examining the constants closely, [4, Theorem 2] im-
plies that Conjecture 1 is correct when n, the number of
asleep robots, is at least 528. In line with [4, Theorem
2], we prove that Conjecture 1 holds when the number
of asleep robots in the unit disk is at least 281. To get
this lower bound on the number of robots, we need to
introduce a wake-up strategy for the domes and semi-
cones.

The sketch of our strategy is the following: (1) Since
n > 281, there is a cone of the angle at most % such
that it contains at least 9 asleep robots. We first recruit
a team of at least 10 robots (including the initial awake
robot) in the cone ending at the middle of the arc of the
cone Figure 5(a) (2) we partition the disk into 8 semi-
cones with a specific sequence of angles and 2 domes.
Each robot wakes up in parallel each of the regions (see
Figure 5(b)).

Lemma 3 There exists a strategy to wake up asleep
robots in a dome of angle o and radius one in a time at
most a/2 + sin (a/2) + ¢(1 — cos (a/2)) with an awake
robot on the corner of the dome.

Let a and b be the length of two chords of a semi-
cone, where a < b and « be the angle between them.
To upper bound the makespan of asleep robots with
one active robot on the apex, one can simply enclose a
semi-cone with a larger cone and apply the Lemma 1
to obtain a makespan of b+ ba¢ (see Figure 7 (a)). In
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Figure 6: A dome of angle «. Illustration of proof of
Lemma 3. Solving dome(«) using an enclosing rectan-
gle.

(a) - (b)

Figure 7: Illustration of proof of Lemma 4. (a) a semi-
cone. (b) bounding a semi-cone with a simpler geomet-
ric object.

the following lemma, we state an upper bound b + aa¢
when a < 7.

Lemma 4 There exists a strategy to wake up robots in

a semi-cone of angle o < % and side lengths a and b
where a < b, in time at most b+ aad, where the initial

active robot starts at the apex of the semi-cone.

By having an upper bound for the makespan of a
dome and semi-cone, we are ready to improve the lower
bound on the number of robots needed to ensure a
makespan of 1+ 2v/2.

Theorem 3 Let n > 281 be an integer. There exists a
strategy to wake up n robots in a unit disk in time less
than 1+ 2v/2.

7 A Better Upper-bound On The Wake-Up Time

In this section, we present an improved approximation
on the makespan of n € N asleep robots located in a
unit disk on Euclidean plane. By a careful study of the
first step in the analysis of Lemma 2 one can propose
the following improvement on the monotonic strategy
mentioned for the unit crown of width w and angle 6.
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Lemma 5 There exists a strategy to wake up all of the
robots in a crown of angle 8 and width w starting with
two awake robots at a corner on the exterior side of the

. . ¢4
crown in time at most 6 + (m) w.

Similar to Corollary 1, one can obtain the following
improved corollary for the makespan of robots starting
with one active robot at a corner of the interior side of
the crown.

Let g be the first asleep robot in an angular sweep
starting from the active robot pg. If pg first awakes ¢
and then the two robots directly join at the exterior side
of the crown, we can then apply Lemma 1 to the rest of
the crown and obtain the following corollary:

Corollary 3 There exists a strategy to wake up all of
the robots in a crown of angle 8 < 7w and width w
starting with one awake robot at a corner on the in-
terior side of the crown in time at most crown(w,d) <

¢4

In the rest of this section, assume that the asleep
robots p1,pa, -+, P, are in sorted order based on their
distance from pg. That is, if d; is the distance of p; from
po, for each 1 < i < n, then we have d; < dy < d3 <
-+ < dy,. We introduce two basic strategies to wake up
the robots in set S, and by mixing these two strategies,
we get an upper bound for the makespan of n robots
located in a unit disk in the plane.

Strategy One

The first awake robot at the origin, pg, travels to the
closest robot, p1, at a distance of dy, and after activating
p1, both of the robots, py and pp, travel back to the
origin at a total time of 2d;. Recall that the point at
a distance of dy from the origin is ps. Let ¢ be the line
that passes through the origin and ps. Next, pg and
p1 follow different paths. pg travels a distance of dy to
activate po. Then, pg and po split the remaining region
into two equal crowns of angle 2{ and width 1 — d»
(See Figure 8). Simultaneously, p; uses a strategy as
in the proof of Corollary 3 to wake up all the robots
within the crown of angle %’r and width 1 — dy with
the bisector ¢. Using Corollary 3, each of py, p; and

po wake up their designated crown in time of at most
4
2= 4 (Hﬁ) (1 dy).

Note that %’r + (1 + ﬁ) (1 —dy) is decreasing as
function of do. Since d; < d», the total makespan of this
strategy, T1(d1), as a function of dy, is upper bounded
by:

Ty (d1) < 2dy + da + crown(l — da, 2m/3)

Figure 8: Strategy one. Three crowns of angle 2% and

3

2 4
§1+2d1+;+( ¢ )(1—d2)

27
¢+ 5
¢4

2w
<1+42d — —_
<1+ 1+3+(¢3+2§T

)(1—d1).

Strategy Two

Note that strategy one is good when d; is small. We
use a simpler idea for the case when d; is large, i.e.,
the robots are close to the boundary of the unit disk.
In this strategy, the first awake robot, pg, travels to
the closest point p; at a distance of dy. Note that after
activating p1, the disk of radius d; centered at the origin
has no robots to be activated. Next, pg and p; split the
remaining region into two crowns of angle m and width
1—d;. Therefore, using Corollary 3, the total makespan
of the second strategy, To(d1), as a function of dy, is
upper bounded by:

¢4

3+7T

Ta(dy) < dy+erown(l—dy, m) < 1+7r+<¢ ) (1—dy).

Best of Two Worlds

By analyzing the best makespan of these 2 strategies,
we obtain the following result:

Theorem 4 Let n be a non-negative integer. There ex-
ists a strategy to wake up n robots within a unit disk
starting with an awake robot in the center in time less
than 4.6211. The construction of such a wake-up tree
can be done in linear time.

It is worth mentioning that a wake-up tree of depth
at most 4.6211 can be done in linear time. Whenever
n is large, the construction of such a wake-up tree can
be done in linear time using LINEAR-SPLIT-STRATEGY
using a partition of the disk into cones and applying
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linear time for every cone (cf. Appendix B of [4]). These
technical constructions are based on binary heaps and
do not require any ordering.
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Hyperplane Distance Depth*

Stephane Durocher®

Abstract

Depth measures quantify central tendency in the anal-
ysis of statistical and geometric data. Selecting a depth
measure that is simple and efficiently computable is of-
ten important, e.g., when calculating depth for multi-
ple query points or when applied to large sets of data.
In this work, we introduce Hypaerplane Distance Depth
(HDD), which measures the centrality of a query point
q relative to a given set P of n points in R?, defined as
the sum of the distances from ¢ to all (Z) hyperplanes
determined by points in P. We present algorithms for
calculating the HDD of an arbitrary query point ¢ rela-
tive to P in O(dlogn) time after preprocessing P, and
for finding a median point of P in O(dnlogn) time. We
study various properties of hyperplane distance depth,
and show that it is convex, symmetric, and vanishing at
infinity.

1 Introduction

Depth measures describe central tendency in statistical
and geometric data. A median of a set of univariate
data is a point that partitions the set into two halves
of equal cardinality, with smaller values in one part,
and larger values in the other. Various definitions of
medians exist in higher dimensions (multivariate data),
seeking to generalize the one-dimensional notion of me-
dian (e.g., [6]). For geometric data and sets of geometric
objects, applications of median-finding include calculat-
ing a centroid, determining a balance point in physical
objects, and defining cluster centers in facility location
problems [7]. A median is frequently used in statistics
to describe the central tendency of a data set. It is par-
ticularly useful when dealing with skewed distributions
or datasets that contain outliers. By using a median,
analysts can obtain a representative value that is less
affected by extreme values and outliers [10].

In 1975, Tukey introduced the concept of data depth
for evaluating centrality in bivariate data sets [12]. The
depth of a particular query point ¢ in relation to a given
set P gauges the extent to which ¢ is situated within the
overall distribution of P; i.e., when ¢’s depth is large,
q tends to be near the center of P. Since the intro-

*This work is funded in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

fDepartment of Computer Science, University of Manitoba,
{stephane.durocher,amirhossein.mashghdoust }Qumanitoba.ca
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duction of Tukey depth (also called half-space depth),
many more depth functions have been proposed.

Data depth functions should ideally satisfy specific
properties, such as convezity, stability (small pertur-
bations in the data do not result in large changes in
depth values), robustness (depth is not heavily influ-
enced by outliers or extreme values in the data), affine
invariance (the depth function remains consistent under
linear transformations of the data, such as translation,
scaling, and rotation), mazimality at the center (points
closer to the geometric center of the data set have higher
depth values), and vanishing at infinity (depth values
approach zero as a query point moves away from the
data set) [14].

2 Related Work

Tukey [12] first introduced the concept of location
depth. In R?, the Tukey depth of a point ¢ € R? rel-
ative to a set P of n points in R? is defined as the
smallest number of points of P on one side of a line
passing through ¢. This concept can also be generalized
to higher dimensions.

Definition 1 (Tukey Depth [12]) The Tukey depth
of a point ¢ € R? relative to a set P of points in R<,
18 the minimum number of points of P in any closed
half-space that contains q.

In univariate space, e.g., in R, the Tukey depth of ¢ is
determined by considering the minimum of the count of
points p; € P where p; < ¢, and the count of points
p; € P where p; > q.
A Tukey median of a set P in R? corresponds to a
point (or points) with maximum Tukey depth among
all points in R%.

Since Tukey’s introduction of Tukey depth, several
other important depth functions have been defined to
measure the centrality of ¢ relative to P.

Definition 2 (Mahalanobis Depth [9]) The Maha-

lanobis depth of a point ¢ € R? relative to a set P in R?
-1

is defined as [1+ (q — Q)TPd_l(q —q)] , where g and

P, are the mean vector and dispersion matriz of P.

This function lacks robustness, as it relies on non-robust
measures like the mean and the dispersion matrix. An-
other possible disadvantage of Mahalanobis depth is its
reliance on the existence of second moments [9].
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Definition 3 (Convex Hull Peeling Depth [2])
The convex hull peeling depth of a point ¢ € R? relative
to a set P in R? is the level of the convex layer to
which q belongs.

A convex layer is established by recursively removing
points on the convex hull boundary of P until ¢ is out-
side the hull. Begin by constructing the convex hull of
P. Points of P on the boundary of the hull constitute
the initial convex layer and are removed. Then, form
the convex hull anew with the remaining points of P.
The points along this new hull’s boundary constitute
the second convex layer. This iterative process contin-
ues, generating a sequence of nested convex layers. The
deeper a query point ¢ resides within P, the deeper the
layer it belongs to. However, the method of convex hull
peeling depth possesses certain drawbacks. It fails to
exhibit robustness in the presence of outliers or noise.
Additionally, it’s unfeasible to associate this measure
with a theoretical distribution.

Definition 4 (Oja Depth [11]) The Oja depth of a
point ¢ € R relative to a set P in R? is defined as the
sum of the volumes of every closed simplex having one

vertex at q and its remaining vertices at any points of
P.

In R?, the Oja depth of a point ¢ is the sum of the areas
of all triangles formed by the vertices ¢,p;, and p;, where

Definition 5 (Simplicial Depth [8]) The simplicial
Depth of a point ¢ € R? relative to a set P in R? is
defined as the number of closed simplices containing q
and having d + 1 vertices in P.

The simplicial depth of a point ¢ € R? is the number of
triangles with vertices in P and containing ¢q. This is a
common measure of data depth.

Definition 6 (L; Depth [13]) The L; depth of a
point ¢ € R relative to a set P in R? is defined as
ZIMEP ||Pi - Q||1-

The L; Median is the point that minimizes the sum of
the absolute distances (also known as the L; norm or
Manhattan distance) to all other points in P. The key
advantage of the L; Median is its robustness to out-
liers. It is less sensitive to extreme values in the dataset
compared to the Ly Median, which minimizes the sum
of squared distances. As a result, the L; Median can
provide a more accurate estimate of central tendency in
datasets with outliers or heavy-tailed distributions. The
L1 Median is used in various fields, including finance,
image processing, and robust statistics, whenever there
is a need for a robust estimate of the central location of
a dataset that may contain atypical values.

Definition 7 (Lo Depth [14]) The Lo depth (mean)
of a point q € R; relative to a set P in R? is defined as
> opiep P —all”

The Ly Median is the point that minimizes the sum of
the squared Euclidean distances. The mean is a widely
used measure of central tendency in statistics and data
analysis. The mean is not robust to outliers; a single
outlier can pull the mean arbitrarily far.

Definition 8 (Fermat-Weber Depth [4]) The
Fermat-Weber depth (Geometric depth) of a point
g € R relative to a set P in R? is defined as

Yopiep llpi —dll-

A deepest point (median) with respect to Fermat-Weber
depth cannot be calculated exactly in general when d >
2 and |P| > 5 [1].

There is no single depth function that universally out-
performs all others. The choice of a particular depth
function often depends on its suitability for a specific
dataset or its ease of computation. Nevertheless, there
are several desirable properties that all data depth func-
tions should ideally possess. In Section 3, we introduce
a new depth measure, and we examine which of these
properties it satisfies.

3 Results

In this section, we will introduce the Hyperplane Dis-
tance Depth (HDD) measure and study its properties.

3.1 Defintion

Definition 9 (Hyperplane distance depth) The
Hyperplane distance depth (HDD) of a point ¢ € R
relative to a set P in R is defined as

Dp(q) = Z dist(q, ), (1)

h;€Hp

where Hp is the set of all (7)) (d — 1)-dimensional hy-
perplanes determined by points in P, and dist(q, h;) de-
notes the Euclidean (Ls) distance from the point q to
the hyperplane h;.

Both Fermat-Weber depth and hyperplane distance
depth are defined as sums of Euclidean (Ls) distances.
Unlike Fermat-Weber depth, for which the location of
a median cannot be computed exactly in general when
d > 2 [1], as we show in Section 4, the location of a
HDD median can be computed exactly.

3.2 Properties

Theorem 1 In R, the HDD median relative to the set
P coincides with the usual univariate definition of me-
dian.
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Proof. By Definition 9, the median is a point that min-
imizes the sum of the distances to all possible points
passing through each point in P. Therefore, Hp =
P. Consequently, the HDD median is equivalent to
the usual definition of median in a one-dimensional
space. (]

Theorem 2 The HDD function Dp(q) relative to the
set P is convex over q € RY.

Proof. The distance function dy, (q) from a query point
q to the hyperplane h; is convex. Any non-negative lin-
ear combination of convex functions is convex. There-
fore, the HDD function }, . dn,(q) = Dp(q) is con-
vex over q. O

Theorem 3 The HDD median point relative to the set
P of points in R? is always on one of the intersection
points between d hyperplanes in Hp.

Proof. The distance from the point ¢ € R? to a hy-
perplane h; is equal to dp,(q) = %
b; are the hyperplane’s normal vector and the offset re-

spectively. Therefore, the HDD of the point ¢ is equal

to
Z dn, (Q) =

h,€Hp

where w; and

Depending on the position of ¢ with respect to h;,

dp,(q) = ‘w"lg}mb il can be equal to +w|i‘;g:r‘|bi (above the
hyperplane) ,— Tl

w;.q+b;

(below the hyperplane), or 0 (on
the hyperplane). Therefore, for any point ¢ we have

> dnle)= gi,qw

hi€Hp hi€Hp
+1, if ¢ is above h; (3)
gi,q = § —1, if ¢ is below h;

0, if g is on h;

It is worth noting that the derivative of the equation (3)
exists if ¢ is not on any of the hyperplanes in Hp (g;,4 #
0). Now to find the HDD median with the minimum
HDD measure, we should compute the derivative with
respect to ¢ and see where it will be equal to 0. For
any query point ¢ inside a region bounded by some Hp
hyperplanes and not on any Hp hyperplanes (Figure 1)
we have

d w;.q + b;
—Dp q gi
dg T dg h;, sl
(1)

=2 g“fn

h;€Hp

Equation (4) above cannot be equal to 0 in general since
there are no variables (4). This means the assumption
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P =

Figure 1: Example of HDD in two dimensions:
{Py, P1, Py, Ps} is the set of input points, I = {Iy, I1, I>}
is the set of intersection points, and ¢ is the query point.

we made about the query point not being on the hyper-
planes in Hp was incorrect. Therefore, we can say the
median is surely on one of the hyperplanes. If ¢ is on
hj, wj.q + b; will be equal to 0. Therefore, we can say

d d w;.q + b;
D . § el S
dq rl0) dq Io0 ™ g

hi€Hp—{h;}

Ww;
= 74 T . 5
2 Sy ®)

hi€eHp—{h;}

Using the same logic we can conclude that the median
point should be on another hyperplane in addition to h;.
We can repeat these steps d times and after that, it will
be proved that the median should be on the intersection
point of d hyperplane (that will be a single point), thus
the median will be on one of the intersection points. [

Theorem 4 The HDD median point relative to the set
P in R is always in the convex hull of the input points
P.

Proof. Let D;, (q) be the sum of the distances to all the
hyperplanes in Hp passing through the point p;. The
minimum of this convex function is always on the point
p; where the HDD is equal to 0. On the other hand,
since each hyperplane includes d input points from P,
we have Dp(q) =d}_, cp Dy, (q).

Now consider a point g, outside of the convex hull.
by computing the gradient of Dp(g,), we will show
that by moving ¢, closer to the convex hull, the
HDD gets smaller. Using the equation above we have
—VHp(q) = —d>_, .pVD, (q,). Since the mini-
mum of the function Dj, (¢) is on p;;, —VD, (q) is a
vector pointing to p; for p; € P. Therefore we can
conclude that for every point g, outside of the convex
hull, —VHp(q,) points to the convex hull that means
by moving toward that direction, the HDD decreases.
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Therefore the HDD median is always in the convex hull
of P. O

Theorem 5 The HDD median point relative to the set
P in R? is always at the center of symmetry.

Proof. Let pps be the median of the P s.t. P is sym-
metric. If pps is not on the center of symmetry, consider
o’ s, the reflection of pps across the center of symme-
try. Because of the symmetry, it is trivial that the HDD
measure of both points is equal. Since the median point
has the minimum depth measure among the other points
and the depth measure function is convex, all the points
on the line segment p,,p’ ,; should have a depth measure
equal to the median. Therefore, the median is always
at the center of symmetry. O

Theorem 6 The HDD measure relative to the set P in
R? vanishes as we move the query point to infinity.

Proof. As we move the query point ¢ to infinity, it is
straightforward that there exists a hyperplane h; € Hp
that gets further from ¢. Since we can move g arbitrar-
ily far from h;, and the distance from ¢ to the remaining
hyperplanes in Hp is non-negative, therefore HDD van-
ishes at infinity. O

Note that some measures of depth are defined such
that deep points have high depth values and outliers
have low depth values, whereas this property is reversed
for other depth measures. HDD is of the latter type,
with central points having a low sum of distances to hy-
perplanes in Hp, whereas this sum approaches infinity
as ¢ moves away from P. Consequently, for HDD, “van-
ishing at infinity” means that depth approaches co as
opposed to 0.

Theorem 7 The HDD measure relative to the set P in
R is not robust.

Proof. We will prove this fact using a counter-example
in a 2-dimensional space (Figure 2). We can move the
HDD median by changing the location of 2 points which
means the HDD is not robust. The median is always
on one of the intersection points and we can place the
points in a way that Iy is always the median (Figure 2).
We will compute the depth measures for the points I
(5) and I; (7), where I; is an arbitrary intersection point
except Ip.

DP(IO): Z dlplPi(IO)—i_ Z leQPi(IO) (6)

i€[3,n] 1€[3,n]

DP(Ii): Z lelPi(Ii)+ Z leQPi(Ii)

i€[3,n] 1€[3,n]

N (” X 2) dip,p (T:) + diy y, (I3) (7)

Figure 2: A counter-example that shows the HDD is
not robust

Regardless of the Iy position, we know that IgH; < Iy P
and IoH! < IoP;. Therefore, we have (Equation (6)):

DP(I()) < (n—2)[0P2+(n—2)10P1 = (n—2)P1P2 (8)
On the other hand, using Equation (7) we have:
Dp(1;) > dip p, (1:) 9)

Now by moving the points P; and P, far enough, let
dip p,(1i) = (n — 2)P1 P> + m, where m is a positive
number. Therefore, we have (inequality 9):

DP(IZ) > (n — 2)P1P2 +m (10)

Combining the inequality 8 and 10 we have Dp(I;) >
Dp(Iy).

Consequently, Iy is the median. By increasing m, the
median Iy gets as far as we want. This means by moving
P; and P, we can move the median point as much as
we want. (]

Definition 10 (k-stability [5]) A depth measure D is
k-stable if for all points q in R?, all sets P in R?, all
e > 0, and all functions f. : R — R such that Vp,

dist(p, f(p)) <€,
k'lD(Q7P)_D(fe(Q)7fe(P)|Sev (11)
where fe(P) ={fe(p) | p € P}.

That is, for any e-perturbation of P and ¢, the depth
of g relative to P changes by at most ke.

Theorem 8 The HDD measure relative to the set P in
R? is not k-stable for any constant k.

Proof. Choose any k > 0 and let n = max{1, [1/k] +
1}. Let P be a set of n points in R and let ¢ € R lie to
the left of P. By moving all points of P one unit to the
right (e = 1), the hyperplane depth of ¢ relative to P
increases by a factor of n, regardless of k. Thus HDD
is not k-stable. O
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Theorem 9 The HDD function Dp(q) relative to the
set P in R? is not equivariant under affine transforma-
tions.

Proof. We will prove this theorem using a counter-
example. Consider the set of points P =
{p0(0,0),p1(4,0),p2(2,1)}. Using Theorem 3 we can
show that the median is on point pa(2,1). Now consider
the set P’ = {p((0,0),p}(4,0),p5(2,5)} that is P under
1

0 5|
Using theorem 3 and 5 It can be shown that the median

is on the line pjpj now. This means that the HDD me-
dian is not equivariant under affine transformation. [J

the non-uniform affine transformation matrix

As we now show, HDD is equivariant under similarity
transformations, including translation, rotation, reflec-
tion and uniform scaling, since these preserve the shape
of P.

Theorem 10 The HDD function Dp(q) relative to the
set P in R? is equivariant under the similarity transfor-
mations.

Proof. For any rotation, reflection, or translation
transformation f, the distance from the query point
q to any hyperplane h; remains unchanged. That is,
for any point ¢ and any hyperplane h;, dist(q,h;) =
dist(f(q), f(hi))-

For any uniform scaling transformation f with a scal-
ing factor of k, distances between each pair of points will
be multiplied by k after the transformation. Therefore
it is easy to show that, for any query point ¢, the HDD
will be multiplied by k after uniform transformation.
Therefore, the median is equivariant under the uniform
scaling transformation. O

4 Algorithms

In this section, we provide three algorithms: a) to
compute HDD depth queries in O(dlogn) time after
O(n2d2+2d) preprocessing time, b) to find an HDD me-
dian point in O(dnd2 logn) time, and c) to find an ap-
proximate HDD median. Let P be a set of n points in
R9, and let Hp be the set of (Z) hyperplanes determined
by d point in P.

4.1 HDD Query Algorithm

The hyperplane distance depth of a query point ¢ rela-
tive to P can be computed by directly evaluating Equa-
tion (2) in O ((})) = O(n?) time. We will present an
algorithm that can calculate HDD in logarithmic time
after preprocessing. First, to measure the HDD of ¢, we
need to store some coefficients belonging to each poly-
tope formed by hyperplanes in Hp.
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Consider Equation (3). Let Sp be the set of all min-
imal polytopes determined by the arrangement of hy-
perplanes in Hp. For a query point g; in a polytope
si € Sp, the coeflicients g; , for h; € Hp are the same.
Therefore, for any points g in si, we can simplify the
summation in (3) in O(n?) time and find the 2 coeffi-
cients a; and by such that

w;.qi + b;
Dp(ge) = Y Gigp—1—— = ardr + bx

(12)
T Y|

Using Euler’s characteristic theorem we know that there
are O(ndg) polytopes formed by the hyperplanes in H
e.g. in Figure 1 there are 18 polytopes (faces) formed
by the 6 hyperplanes (lines). Therefore we will need
O(2nd2) € O(nd2) space and O(nd2 nd) € O(nd2+d) time
to preprocess.

Using the mentioned data structure we can calculate
the HDD measure in O(1) time if we know to which
polytope the query point belongs.

Given n hyperplanes in d-dimensional space and a
query point g, it takes O(logn) time to find the ¢ loca-
tion with a data structure of size O(n) and a prepro-
cessing time of O(n2?2)[3]. In our problem, there are
(2) € O(n?) hyperplanes. Therefore, with a preprocess-
ing time of () 22 O(n2d2+2d) and a space of O(nd2),
we can find the location of ¢ in O (log (3)) € O(dlogn)
time.

Now after finding the ¢’s location in O(dlogn), we
can calculate the HDD measure Dp(g;) in O(1) using
Equation (12).

Therefore, after O(nd’ 9 4 p2d°+2d) C Q(p2d*+2d)
preprocessing time using O(ndQ) space, we can find the
HDD of an arbitrary query point in O(dlogn) time.
This proves the following theorem.

Theorem 11 We can_preprocess any given set P of n
points in R in O(n? +24) time, such that given any
point ¢ € R, we can compute Dp(q) in O(dlogn) time.

4.2 Finding a HDD Median

By Theorem 3, a straightforward algorithm for finding
an HDD median of P is to check all points of intersec-
tion between d hyperplanes in Hp using an exhaustive
search. There are (3) hyperplanes in Hp and therefore

((2)) € O(ndQ) intersection points between hyperplanes
in Hp. Since it takes O(n?) to compute the Equation (2)
directly, a HDD median of P can be found in O(n® +)
time by this brute-force algorithm.

Next, we will introduce an algorithm that finds the
HHD median in O(dn® logn) time. When d = 2, this
second algorithm runs in O(n*logn) time, compared to
O(n®) time for the brute-force algorithm. First, we will
show that we can find the point with the smallest HDD
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on a line in O(dn?logn) time. Consider the intersec-
tion of d — 1 hyperplanes in Hp that determine a line
£. Since every hyperplane in Hp has exactly one point
of intersection with ¢, Hp N/ is a set of O(n?) points of
intersection. By Theorem 2, we can conclude that the
hyperplane depth of points on ¢ is a convex function.
Since Hp N ¢ is discrete, using binary search and calcu-
lating HDD in O(n?) time using Equation (2), we can
find the intersection point with the minimum HDD in
O(n4log(n?)) = O(dnlogn) time.

We can use the algorithm above to find the minimum
point for each intersection line among hyperplanes in
Hp to find an HDD median. Since each d — 1 hyper-

planes in Hp form a line, there are (d(j)l) € O(ndQ*d)

lines and thus we can find the median in O(alnd2 logn)
time. This proves the following theorem.

Theorem 12 Given a set P of n pgints in R, we can
find an HDD median of P in O(dn® logn) time.

4.3 Finding an Approximate HDD Median in R?

In this section, we will present an approximation algo-
rithm to find an HDD median of P with an error of 2"%%
in O(mn?logn) time, for any fixed m € Z*, where a is
the diameter of P.

Theorem 13 Given a set P of n points in R?, in
O(mn?logn) time we can find a point ¥’ in R? such that
dist(a’, x) < 2“%‘/31 , for any fivred m € Z*, where x de-
notes an HDD median of P and a = max,, 4cp dist(p, q).

Proof. Let [, be an arbitrary line among the lines in
Hp (see Figure 3). There are (}) lines in Hp and, con-
sequently, O(n?) points of intersection between [, and
lines in Hp. Using an analogous argument as in the
proof of Theorem 3, the point with minimum HDD
on [, lies at an intersection of [, and a line in Hp.
Therefore, using the same algorithm described in Sec-
tion 4.2, we can find the point iy, on [, with mini-
mum HDD in O(n?logn) time; let Ay, denote the line
in Hp such that iy, = hmin N le. Next we find the
closest points of intersection in Hp to 4y, on the line
hmin in each direction, say I,, and I;. We compute the
HDD for all the three points iymin, Ig, and I,. Since
imin has minimum HDD on the line {,, if Dp(imin) <
min{Dp(l,), Dp(13)}, then imi, is the HDD median (by
Theorem 2). By Theorem 2 again, Dp(imin) < Dp(Iy,)
or Dp(imin) < Dp(Ily). Furthermore, Dp(imin) >
Dp(L,) or Dp(imin) > Dp(I;). Without loss of gen-
erality, suppose Dp(I3) < Dp(imin) < Dp(I,). We
claim that all points in the half-plane bounded by hmin
that contains I,, have HDD that exceeds Dp(imin); we
prove this by contradiction. Suppose there exists a
point A in this half-plane such that Dp(A) < Dp(imin)-

Let B be the intersection point of the line [, and the
line segment AI;. Since imi, has minimum HDD on
the line l,, therefore, Dp(imin) < Dp(B). Further-
more, Dp(A) < Dp(B). On the other hand, we as-
sumed Dp(Iy) < Dp(imin) < Dp(l,) and we know
Dp(imin) < Dp(B). Consequently, Dp(I4) < Dp(B).
Combining the two resulting inequalities above, we have
Dp(A) < Dp(B) and Dp(l4) < Dp(B), which is im-
possible since the three points are on the same line and
the HDD function is convex. Therefore, no such point
A can exist.

i

hmin

Figure 3: An algorithm to eliminate the points belong-
ing to a half-space. The blue line [, is an arbitrary line
dividing the space into 2 halves. The dotted gray lines
are the lines in Hp.

Therefore, no point of intersection in Hp in this half-
plane can be an HDD median of P; in O(n%logn +
3n?) C O(n?logn) time we can remove these points
from consideration in our search for a median.

Now we will use this property to approximate the me-
dian point. Firstly, we will find the diameter a of the
input points in O(n) time and consider an a X a square
that contains P (see Figure 4). By Theorem 4, we know
that the median lies inside this square. At each step,
we draw the two lines ON and OM that partition the
square into four similar smaller squares, each with di-
mensions § x 7, and we apply the above algorithm to
eliminate two half-planes in O(n?logn) time. After m
steps we have a square of dimensions 57 X 57 and we re-
turn its center as an approximation of the HDD median.
Since the HDD median is a point inside this square, the

error is at most 2‘1% The total time complexity of the
algorithm is O(mn?logn). O

This strategy can be generalized to higher dimensions
by finding the minimum HDD on an arbitrary hyper-
plane h, (analogous to the line [, in the proof of Theo-
rem 13) to eliminate a half-space, but the time complex-
ity of finding the minimum HDD point on A, is high.
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D, C
M O
A B

Figure 4: Illustration in support of Theorem 13

5 Discussion and Possible Directions for Future Re-
search

Our algorithm for computing HDD queries presented in
Section 4.1 requires O(ndz) space and O(n2d2+2d) pre-
processing time. One natural possible direction for fu-
ture research is to identify algorithms with improved
preprocessing time or space.

Our algorithm for finding an HDD median presented
in Section 4.2 requires O(alnd2 logn) time. In addition
to seeking to identify lower bounds on the worst-case
running time required to find an HDD median, we could
attempt to reduce the running time using techniques
such as gradient descent or linear programming.

Our analysis of our algorithm for finding an approx-
imate HDD median presented in Section 4.3 does not
capitalize on the fact that the number of candidate
points decreases on each step; we charge O(n?logn)
time per step. If it could be shown that a constant
fraction of the remaining points are eliminated on each
step, then the bound on the algorithm’s time complexity
would be significantly improved.

Finally, we could consider alternative definitions for
depth using similar notions to those in Definition 1.
E.g., one can define a “line distance depth” that evalu-
ates the distances to all possible lines passing through
each pair of points in the set of input points. This defini-
tion coincides with Definition 1 when d < 2, but differs
in higher dimensions, for d > 3.
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Quantum Speedup for Some Geometric 3SUM-Hard Problems and Beyond

J. Mark Keil*

Abstract

The geometric 3SUM-hard problems have widely been
studied in computational geometry and recently, these
problems have been examined under the quantum com-
puting model. For example, Ambainis and Larka
[TQC’20] designed a quantum algorithm that can solve
many geometric 3SUM-hard problems in O(n'to()-
time, whereas Buhrman [ITCS’22] investigated lower
bounds under quantum 3SUM conjecture that claims
there does not exist any sublinear O(n'~%)-time quan-
tum algorithm, where § > 0, for the 3SUM problem.
The main idea of Ambainis and Larka is to formulate
a 3SUM-hard problem as a search problem, where one
needs to find a point with a certain property over a set of
regions determined by a line arrangement in the plane.

This paper further generalizes the technique of Am-
bainis and Larka for some 3SUM-hard problems when a
solution may not necessarily correspond to a single point
or the search regions do not immediately correspond
to the subdivision determined by a line arrangement.
Given a set of n points and a positive number ¢, we de-
sign O(n'+°M)-time quantum algorithms to determine
whether there exists a triangle among these points with
an area at most ¢ or a unit disk that contains at least ¢
points. We also give an O(n1+°(1))—time quantum algo-
rithm to determine whether a given set of intervals can
be translated so that it becomes contained in another
set of given intervals and discuss further generalizations.

1 Introduction

A rich body of research investigates ways to speed up
algorithmic computations by using quantum computing
techniques. Grover’s algorithm [20] (a quantum search
algorithm) has often been leveraged to obtain quadratic
speedup for various problems over the classical solution.
For example, consider the problem of finding a spe-
cific item within an unordered database of n items. In
the classical setting, this task requires {2(n) operations.
However, with high probability, Grover’s algorithm can
find the item in O(y/n) quantum operations [20]. In
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this paper we investigate quantum speedup for some
geometric 3SUM-hard problems.

Given a set S of n numbers, the 3SUM problem
asks whether there are elements a,b,c € S such that
a+ b+ c=0. The class of 3SUM-hard problems con-
sists of problems that are at least as hard as the 3SUM
problem. The classical 3SUM conjecture states that the
class of 3SUM-hard problems does not admit a truly
sub-quadratic O(n?~?) time, where § > 0, in a clas-
sical computer [19]. Some logarithmic-factor speedups
are now known [4, 11]. However, 3SUM can be solved
in O(nlogn) time in a quantum computer by applying
Grover search over all possible pairs as follows [2]: We
have O(n) quantum search operations to resolve and
if we maintain the elements of S in a balanced binary
search tree, then for each pair a,b, we can decide the
existence of —(a +b) € S in O(logn) time. In general,
such straightforward quantum speedup does not read-
ily apply to all problems even if they can be solved in
O(n?) time in a classic computer [7, Table 1].

Quantum algorithms have previously been examined
for many computational geometry problems [1, 23, 25,
26, 27, 28], but here we mainly focus on the class of
3SUM-hard problems. Ambainis and Larka [2] designed
a quantum algorithm that can solve many geometric
3SUM-hard problems in O(n't°())-time. Some ex-
amples are Point-On-3-Lines, Triangles-Cover-Triangle,
and Point-Covering. The Point-On-3-Lines problem
takes a set of lines as input and asks to determine
whether there is a point that lies on at least 3 lines.
The Triangles-Cover-Triangle problem asks whether a
given set of triangles in the plane covers another given
triangle. Given a set of n half-planes and an integer
t, the Point-Covering problem asks whether there is a
point that hits at least ¢ half-planes.

The idea of Ambainis and Larka [2] is to model these
problems as a point search problem over a subdivision of
the plane with a small number of regions. Specifically,
consider a random set of k lines in the Point-On-3-Lines
problem and a triangulation of an arrangement of these
lines, which subdivides the plane into O(k?) regions. We
can check each corner of these regions to check whether
it hits at least three lines in O(nk?) time. Otherwise,
we can search each region recursively by taking only
the lines that intersect the region into consideration.
It is known that with high probability every subprob-
lem size (i.e., the number of lines intersecting a region)
would be small [13, 21], and one can obtain a running
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time of O(n'*°(M) by a careful choice of k and by the
application of Grover search [2]. For the Point-Covering
problem, one can construct a similar subdivision of the
plane using k£ random half-planes. We can then count
for each region R, the number i of half-planes fully cov-
ering R in O(nk?) time, and if a solution is not found,
then recursively search in the subproblem for a point
that hits at least (¢ — ¢) half-planes. For the Triangles-
Cover-Triangle problem, one can construct the O(k?)-
size subdivision (of the given triangle T which we want
to cover) by k lines determined by k segments that are
randomly chosen from the boundaries of the set S of
given triangles. In O(nk?) time we can determine the
regions of T" that are fully covered by a single triangle
of S. For every remaining region R, let S(R) be a set
of triangles where each intersects R but does not fully
contain R. We now can search over all such regions R
recursively for a point that is not covered by S(R).

In this paper we show how Ambainis and Larka’s [2]
idea can be adapted even for problems where a solu-
tion may not correspond to a single point or the search
regions do not necessarily correspond to a subdivision
determined by an arrangement of straight lines. Specif-
ically, we show that the following problems admit an
O(n*+°M)-time quantum algorithm.
q-AREA TRIANGLE: Given a set S of n points, decide
whether they determine a triangle with area at most q.

q-POINTS IN A Disk: Given a set S of n points, deter-
mine whether there is a unit disk that covers at least ¢
of these points.

INTERVAL CONTAINMENT: Given two sets P and @ of
pairwise-disjoint intervals on a line, where |P| = n and
|Q| = O(n), determine whether there is a translation of
P that makes it contained in Q.

All these problems are known to be 3SUM-hard. If
q = 0, then the ¢-AREA TRIANGLE problem is the same
as determining whether three points of S are collinear,
which is known to be 3SUM-hard [19]. If we draw unit
disks centered at the points of S, then the deepest re-
gion in this disk arrangement corresponds to a location
for the center of the unit disk that would contain most
points. Determining the deepest region in a disk ar-
rangement® is known to be 3SUM-hard [3], which can
be used to show the 3-SUM-hardness of ¢-POINTS IN
A Disk. Barequet and Har-Peled [5] showed that the
INTERVAL CONTAINMENT problem is 3-SUM-hard.

While examining the INTERVAL CONTAINMENT prob-
lem, we noticed that our techniques generalize to a gen-
eral PAIR SEARCH PROBLEM: Given a problem P of size
n, where a solution for P can be defined by a pair of ele-
ments in P, and a procedure A that can verify whether a
given pair corresponds to a solution in O(n!'+°()) classi-
cal time, determine a solution pair for P. Consequently,

L Although the reduction of [3] uses disks of various radii, it is
straightforward to modify the proof with same size disks.

we obtain O(n'+t°(1))-time quantum algorithms also for
the following two problems which can be modeled using
pair search.

PoLyconN CUTTING: Given a simple n-vertex polygon
P, an edge e of P and an integer K > 2, is there a line
that intersects e and cuts the polygon into exactly K
pieces?

DISJOINT PROJECTIONS: Given a set S of n convex ob-
jects, determine a line such that the set objects project
disjointly on that line.

The PoLYGON CUTTING problem is known to be 3SUM-
hard [24]. DISJOINT PROJECTIONS can be solved in
O(n?logn) time in classical computing model [16], but
it is not yet known to be 3SUM-hard.

In the full version [22] of this paper we show how
the pair search can be further generalized for d-tuple
search or in R¢, which is relevant for the kSUM hard
problems [10, 14].

2 Preliminaries

In this section, we describe some standard quantum pro-
cedures and tools from the literature that we will utilize
to design our algorithms.

Theorem 1 (Grover Search [20]) Let X = {z, a2,
oy Tp} be a set of n elements and let f : X — {0,1}
a boolean function. There is a bounded-error quantum
procedure that can find an element x € X such that
f(z) =1 using O(y/n) quantum queries.

Theorem 2 (Amplitude Amplification [6]) Let A
be a quantum procedure with a one-sided error and suc-
cess probability of at least €. Then there is a quantum
procedure B that solves the same problem with a success
probability 2 invoking A for O(ﬁ) times.

By repeating Amplitude Amplification a constant
number of times we can achieve a success probability
of 1 — € for any € > 0. This technique has been widely
used in the literature to speed up classical algorithms.

Algorithm 1 presents the Recursive-Quantum-Search
(RQS) of Ambainis and Larka [2] for searching over a
subdivision, but we slightly modify the description to
present it in terms of subproblems. We first describe
the idea and summarize it in a theorem (Theorem 3) so
that it can be used as a black box. We then illustrate
the concept using the Point-On-3-Lines problem.

The algorithm decomposes the problem into O(k?)
subproblems, where k is a carefully chosen parameter,
and then checks whether there is a solution that spans
at least two subproblems but does not evaluate the sub-
problems. If no such solution exists, then the solution
is determined by one of the subproblems. If all the
subproblems are sufficiently small, then it searches for

216



CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

Algorithm 1 Recursive-Quantum-Search (RQS)

1: Procedure RQS(M,n,d,€), where M is a problem
of size at most n, ¢ is a positive constant, and € is
an allowable error parameter.

2. if |M| < k, where k = n!/® - §(logn + loge™!)

and « € O(y/logn/loglogn), then

3: Search for a solution by exhaustive search
4: else
5: Let Ry,...,R; be a decomposition of the

problem M into t subproblems, where
t € O(k?). Search for a solution that spans
two or more subproblems.

6: if any of the subproblems is larger than
% -0(log |M| +loge™!) then

T return Error

8: else

9: Let A be an algorithm that runs RQS

(R, n,d,€) recursively on randomly chosen
subproblem R. Run A with Amplitude
Amplification for a success probability at
least 1 —e.

a solution over them using Grover search; otherwise,
it returns an error. Consequently, one needs to show
that the probability of a subproblem being large can be
bounded by an allowable error parameter ¢, and hence,
Grover search will ensure a faster running time. An ex-
ample application of this algorithm is provided later in
this section.

We now have the following theorem, which is inspired
by Ambainis and Larka’s [2] result, but we include it
here for completeness.

Theorem 3 Let M be a problem of size at mostn. As-
sume that for every k < |M|, M can be decomposed
into O(k?) subproblems such that M can be solved first
by checking for solutions that span at least two subprob-
lems (without evaluating the subproblems), and then, if
such a solution is not found, applying a Grover search
over these subproblems (when we evaluate the subprob-
lems). Furthermore, assume there exists a constant §
such that the probability for a subproblem to have a size
larger than ‘Lk[l -6(log | M| +loge™1t) is at most €, where
€ is an allowable error probability.

If we can compute the problem decomposition and
check whether there is a solution that spans at least two
subproblems in O(|M|*+°Wk2) classical time, then RQS
can solve M in O(n*+°M) quantum time.

Proof. The first time RQS is called, M is the original
problem with size |[M| = n. Since the recursion tree has
a branching factor of O(k?), the number of problems at
level j is C1k%, where C; is a constant.

We set k to be n'/ - §(logn + loge™!), where a €

O(y/logn/loglogn). At each recursion, the problem
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size decreases by a factor of n=/®, and at jth level,

a problem has size at most n'~7/®. Since the cost of
problem decomposition and checking whether a solu-
tion spans two or more subproblems is O(| M |'+°(1)k2),
using Grover search, the cost for level j is /C1k% -
Co(nt=i/ap?/2peM)) where Cy is a constant. We sum
the cost of all levels to bound T'(n).

T'(n) < Cy Z V(Cik)2 (nl—j/an2/ano(1))
=0

N ,
— CynHE/@)to(1) ( Cik )j
2 nl/a
j=0
2. (Cint/e5(logn +loge™t) I
_ 14+(2/a)+o(1) 1 g g
= Con a)+o Jzz:o ( nl/a )

< 02n1+(2/a)+o(1) Z(CS log ’I’L)j
=0
< CZCV(Cg log n)anl+(2/a)+o(1)

_ G (03 logn> (n1+2/an(2/a)+0(1))

n2/a?

" 2
If a= m, then naZ=Cj5log(n). Hence

T(n) = Coanttato) = O(ntte®),
O

An Inspiring Example: We can use Theorem 3 as
a black box. For example, consider the case of Point-
On-3-Lines problem. Let S be the set of input lines. To
construct subproblems, choose k lines randomly, then
create an arrangement of these lines, and finally, trian-
gulate the arrangement to obtain O(k?) faces. Specif-
ically, a subproblem corresponding to a closed face F
consists of the input lines that bound F' and the lines
that intersect the interior of F'. If a solution point (i.e., a
common point on three lines) spans at least two closed
faces, then it must lie on an edge or coincide with a
vertex of the triangulation, which can be checked in
O(]S|k? log n) time without evaluating the subproblems.
If a solution point is not found, then we can search over
the subproblems using Grover search. Ambainis and
Larka’s [2] showed that there exists a constant ¢ such
that the probability of a subproblem to contain more
than (5%(10g(\5’|) +log(e~1)) lines is bounded by €, and
hence, we can apply Theorem 3. The following lemma,
which is adapted from [2], will be helpful for us to argue
about subproblem sizes.

Lemma 4 (Ambainis and Larka [2]) Let S be a set
of straight lines and let A be an arrangement of k lines
that are randomly chosen from S. Let T be a planar
subdivision of size O(k?) obtained by adding straight line
segments to A such that each face of T is of size O(1).
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Q.

Figure 1: (a)—(b) Illustration for a point set and its corresponding lines in the dual plane. (c) Illustration for T},
where k = 2, with a face R shown in blue shaded region. The dual and supporting edges are in blue and green,
respectively. (d) Hlustration for the zone of a supporting line.

Then the probability of a closed face of T, without its
. ) : s _
vertices, intersecting more than 6‘%(10g(|5|) +log(e™1))
lines of S is bounded by €, where é is a positive constant

and € is an allowable error probability.

The reason to restrict the attention to a closed face
without its vertices (in Lemma 4) is to avoid the de-
generate case with many lines intersecting at a common
point. In such a scenario, a random sample of S is likely
to have many lines passing through such a point, yield-
ing a closed face intersected by many lines. Ambainis
and Larka’s proof [2] did not explicitly discuss this sce-
nario.

3 Finding a Triangle of Area at most ¢

A well-known approach for finding a minimum area tri-
angle among a set S of n points [15] is to use point-line
duality. For each point p = (pg,p,), construct a line
p*, which is defined as y = p,x — p, in the dual plane.
Figure 1(b) illustrates a set of dual lines corresponding
to the points of Figure 1(a). Let o be the intersection
of two dual lines a* and b*. The algorithm uses the
property that the dual line ¢* with the smallest vertical
distance from o determines a triangle Aabc that mini-
mizes the area over all the triangles that must include a
and b. Here a vertical distance is defined by the length
of the smallest line segment parallel to the y-axis con-
necting o and ¢*. Consequently, one can first construct
a line arrangement in the dual plane and then exam-
ine its faces to find a minimum area triangle in O(n?)
classical time.

We now describe our approach using quantum com-
puting. One can check whether three lines in the dual
plane intersect at a common point in O(n1+°(1)) quan-
tum time [2], and if so, it would correspond to a triangle
of 0 area. Therefore, we may assume that the lines are

in a general position.

We first discuss the concept of ‘zone’ in an arrange-
ment and some properties of a minimum area triangle.
Let Ay be an arrangement of a set S} of k randomly
chosen dual lines, and let T}, be a triangulation obtained
from Ay in O(k?) time. The zone of a line £ is the set
of closed faces in Ay intersected by ¢. Figure 1(b)—(c)
illustrates a scenario where two lines d*, f* have been
chosen to create Tj,. For each face R in T}, s(R) denotes
the dual lines (a subset of S};) that bound R and the
dual lines that intersect the interior of R. We refer to
an edge of Ty as a dual edge if it corresponds to a dual
line of a point in S, otherwise, we call it a supporting
edge. The line determined by a supporting edge is called
a supporting line. We now have the following property
of a minimum area triangle.

Lemma 5 Let Aabc be a minimum area triangle. Let
q be the intersection point of a* and b*. Assume that q
18 not a vertex of Ty and q lies interior to a face R of
Ty (e.g., Figure 1(c)). Then either one of the following
or both hold: (a) ¢* belongs to s(R). (b) ¢* belongs to
s(Z), where Z is a zone of a supporting line of R.

Proof. Assume that (a) does not hold. We now show
that (b) must be satisfied. Consider a vertical line seg-
ment L starting from ¢ and ending on ¢*. Since ¢*
minimizes the vertical distance from ¢, no other dual
edge can intersect L (e.g., Figure 1(d)). Since ¢ is en-
closed by R and since c¢* is outside of R, there must be a
supporting edge ¢ on the boundary of R that intersects
L. If the zone of the corresponding supporting line does
not contain ¢*, then we can find a dual line other than
c* that intersects L, which contradicts the optimality
of Aabc. Figure 1(d) illustrates the zone of ¢, which is
shaded in orange. O

We now show how to leverage Theorem 3.
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Let Ry,...,R; be the faces of T. We choose
s(R1),...,s(R) as the subproblems. By Lemma 4, the
probability of a subproblem being large is bounded by
€. In Lemma 6, we show how in O(nk?logn) time, one
can check whether there is a triangle Aabc of area at
most ¢ such that no subproblem contains all three dual
lines a*, b*, ¢*. Consequently, we obtain Theorem 7.

Lemma 6 A triangle that has an area of at most q
and spans at least two subproblems can be computed in
O(nk?logn) time.

Proof. Each candidate triangle Aabc satisfies the prop-
erty that the intersection point ¢ of two of its dual lines
lies in some face R and the third dual line does not inter-
sect s(R). Here the condition (b) of Lemma 5 must hold
and it suffices to examine the zone of each supporting
line of R. We thus check the zones of all the supporting
lines of T} as follows. Specifically, given an arbitrary
line, its zone in an arrangement of n lines can be con-
structed in O(nlogn) time [29]. Let e be a supporting
line and let Z, be its zone. We search over all the faces
of Z. to find a (vertex, edge) pair, i.e., (v, L), such that
they lie on opposite sides of e and minimize the vertical
distance from v to L. To process a face F' we construct
two arrays L, and L. Here L, (L;) is an array obtained
by sorting the vertices on the upper (lower) envelope of
F using x-coordinates in O(|F|log |F|) time. Since F is
convex, for each vertex ¢ in L,, (L), we can use Ly (L)
to find the dual line that has the lowest vertical distance
from ¢ in O(log | F'|) time. Since the number of edges in a
zone is O(n) [12], the total time required for processing
all the faces is at most O(nlogn). For O(k?) supporting
lines, the running time becomes O(k?nlogn). O

Theorem 7 Given a set S of n points, one can deter-
mine whether there is a triangle with area at most q in
O(n**t°M) quantum time.

4 Finding a Unit Disk with at least ¢ Points

Let S be a set of n points and consider a set D of n unit
disks, where each disk is centered at a distinct point
from S. Note that to solve ¢-POINTS IN A DISK, it
suffices to check whether there is a point r that hits at
least ¢ disks in D. However, searching for r using Theo-
rem 3 requires tackling some challenges. First, we need
to create a problem decomposition, where the proba-
bility of obtaining a large subproblem is bounded by
an allowable error probability. This requires creating
a subdivision (possibly with curves) where the size of
each region (corresponding to a subproblem) is O(1).
Second, we need to find a technique to check for solu-
tions that span two or more subproblems.

Consider an arrangement Ay of k randomly chosen
disks from D. We first discuss how the regions of Ay
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(a)

Figure 2: Illustration for the proof of Lemma 8.

can be further divided to create a subdivision A} where
the size of each region is O(1).

Lemma 8 Let A be an arrangement of k unit disks.
In O(k?logn) time, one can create a subdivision of A},
by adding straight line segments such that each face is

of size O(1).

Proof. For each disk, we create four pseudolines as fol-
lows. Consider partitioning the disk into four regions
by drawing a vertical and a horizontal line through its
center. For each circular arc, we create a pseudoline by
extending its endpoints by drawing two rays following
the tangent lines, as shown in Figure 2(a). However, the
resulting subdivision may still contain faces with linear
complexity (e.g., the face F' in Figure 2(b)). We sub-
divide each face further by extending a horizontal line
segment from each vertex. The details are included in
the full version [22]. At the end of the construction, each
cell of the subdivision can be described using O(1) arcs
or segments. The construction inserts at most O(k?)
straight lines and takes O(logn) time per addition to
complete the process in O(k?logn) time. O

We now show how to leverage Theorem 3. Let
Ry, ..., R be the faces of A). Let s(R;), where 1 <17 <
t, be the disks that intersect the closed region R; (except
its vertices), but do not fully contain R. We subtract
how many disks fully contain R from ¢ and therefore,
they should not be considered in the recursive subprob-
lems. We show that the probability of a subproblem
being large is bounded by e (see the full version [22]).
Lemma 9 shows how to check whether there is a solu-
tion point 7 (i.e., a point hitting at least ¢ disks) that
coincides with a vertex of A}, or spans at least two sub-
problems in O(nk?logn) time. Consequently, we obtain
Theorem 10.

Lemma 9 Let r be a point that hits at least q disks.
If r coincides with a vertex of Aj, or spans at least two
subproblems then it can be found in O(nk?logn) time.

Proof. For each edge e = (v,w) of A}, we first count
the number of disks intersected by v in O(n) time. We
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Figure 3: (a) P. (b) Q. (c) P C Q. Illustration for (d)
Remark 11 and (e) Theorem 12.

then compute all the intersection points between e and
the input disks and sort them based on their distances
from v in O(nlogn) time. Finally, we walk along e from
v to w, and each time we hit an intersection point o, we
update the current disk count (based on whether we are
entering a new disk or exiting a current disk) to compute
the number of disks intersected by o. O

Theorem 10 Given a set S of n points, one can deter-
mine whether there is a unit disk with at least q points
in O(n'*+°W) quantum time.

5 Determining Interval Containment

Let Z be an instace of INTERVAL CONTAINMENT, and
let P = (p1,...,pn) and @ = (qi1,...,qm), where
m = O(n), be the two sets of pairwise disjoint intervals
of Z. We now give an O(n'*°()-time quantum algo-
rithm to determine whether P can be translated so that
it becomes contained in Q. If there is an affirmative so-
lution, then we can continuously move the intervals in P
until an endpoint of one of its intervals hits an endpoint
of an interval of @, as shown in Figure 3(c)—(d).

Remark 11 If Z admits an affirmative solution, then
there is a solution where an end point of one interval of
P coincides with an end point of an interval in Q.

We now use Remark 11 to find a solution for Z.

Theorem 12 Given two sets P and Q of O(n)
pairwise-disjoint intervals on a line, one can determine
whether there is a translation of P that makes it con-
tained in Q in O(n*+°M) quantum time.

Proof. We place the intervals of @ on the positive x-
axis starting from (1,0) and the intervals of P on the
positive y-axis starting from (0,1), as shown in Fig-
ures 3(e). Consider a set H of 2n horizontal lines and
a set V of 2m vertical lines through the endpoints of
the intervals of P and @, respectively. Let Ay be an ar-
rangement determined by k& randomly chosen lines from
(HUYV), e.g., the thick blue lines of Figures 3(e). Add
the smallest area rectangle containing P and @ to the

arrangement so that we get a subdivision T}, where
its faces Ri,...,R; are rectangles. By s(R;), where
1 < i < t, we denote the lines of H and V that in-
tersect the closed region R;.

We now show how to leverage Theorem 3. By Re-
mark 11, it suffices to examine pairs of endpoints from
P and Q. Let a be an endpoint from P and b be an
endpoint from ) that determine a solution. Let o be
the intersection point of the corresponding lines ¢, € V'
and ¢, € H. We refer to o as the solution point, which
may lie at a vertex, or interior to an edge, or interior to
a face of T

We choose s(Ry),...,s(R:) as the subproblems. By
Lemma 4, the probability of a subproblem being large
is bounded by e. In O(nk?logn) time, we can check
whether o coincides with a vertex of Tk, i.e., spans at
least two subproblems (Figure 3(e)). However, we do
not check whether the solution o lies on an edge